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Abstract

Charting microRNA (miRNA) regulation across pathways is key to characterizing their function. Yet, no method currently exists
that can quantify how miRNAs regulate multiple interconnected pathways or prioritize them for their ability to regulate coordinate
transcriptional programs. Existing methods primarily infer one-to-one relationships between miRNAs and pathways using differentially
expressed genes. We introduce PanomiR, an in silico framework for studying the interplay of miRNAs and disease functions. PanomiR
integrates gene expression, mRNA–miRNA interactions and known biological pathways to reveal coordinated multi-pathway targeting
by miRNAs. PanomiR utilizes pathway-activity profiling approaches, a pathway co-expression network and network clustering
algorithms to prioritize miRNAs that target broad-scale transcriptional disease phenotypes. It directly resolves differential regulation of
pathways, irrespective of their differential gene expression, and captures co-activity to establish functional pathway groupings and the
miRNAs that may regulate them. PanomiR uses a systems biology approach to provide broad but precise insights into miRNA-regulated
functional programs. It is available at https://bioconductor.org/packages/PanomiR.
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INTRODUCTION
MicroRNAs (miRNAs) are small noncoding RNAs that act as potent
regulators of cellular functions and molecular pathways [1]. They
posttranscriptionally regulate gene expression and can coordi-
nate gene function across distinct pathways. miRNA dysregula-
tion has been shown to be a central component of the patho-
genesis of diverse diseases, including neoplastic conditions and
neurodegenerative disorders [2–20]. Because miRNAs can target
dozens of genes, characterizing their role in health and disease
requires charting of coordinate co-regulation across heteroge-
neous molecular cascades and pathways. There has been exten-
sive progress in the development of bioinformatic methods for
mapping the effects of miRNAs on the regulation of distinct
biological pathways [4, 21–27]. However, no framework currently
exists for characterizing miRNA regulation across multi-pathway
dynamics that drive transcriptional programs in both healthy and
diseased states.

Current best practice for the transcriptomic study of miRNA
regulation focuses upon miRNA–gene or one-to-one miRNA–
pathway relationships. Widely used miRNA–pathway analysis
techniques such as gene set enrichment and co-expression
analysis primarily detect whether a single pathway is potentially
regulated by a miRNA [4, 21]. Enrichment analyses evaluate the
presence (overlap) of targets of a single miRNA in a single pathway,
aiming to identify pathways with a higher number of targets
than expected by chance [21, 22, 28–32]. Many enrichment-based
tools rely on precalculated miRNA–pathway relationships and

require users to predetermine their pathways of interest from
the disease data [23, 27, 33]. Alternatively, correlation methods
evaluate the association of the expression of a single miRNA with
a gene or a proxy value representing the activity of a pathway
[4, 34]. Table 1 describes some of the most widely used methods
for miRNA pathway analyses, their scope, implementation and
approaches. A one-to-one approach to miRNA–pathway analysis
does not match the regulatory landscape of miRNAs. Large-
scale functional processes in health and disease coordinate
across pathways in multiple ways, including gene sharing,
pathway co-activity, multi-pathway co-regulation and cross-talk
[35–40]. The shortcoming of current approaches in accounting
for these complex relationships and disease-specific expression
dynamics limits our ability to detect the potential of a miRNA
to regulate highly specific or broadly acting gene expression
programs.

We have developed a framework to address the existing limi-
tations of miRNA–pathway analysis from a systems perspective,
to uncover how functional groupings of pathways are coordinated
by miRNAs to form gene expression programs. Our system, Path-
way networks of miRNA Regulation (PanomiR), discovers central
miRNA regulators based upon their ability to target coordinate
transcriptional programs. It determines if a miRNA concurrently
regulates and targets a coordinate group of disease- or function-
associated pathways, as opposed to investigating isolated miRNA–
pathway events. PanomiR derives these multi-pathway targeting
events using predefined pathways, their dysregulation in disease
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Table 1: Overview of standard miRNA-pathway analysis methods and PanomiR

Method/Reference Multi-pathway
targeting

Pathway activity
dynamics

Pathway coordina-
tion/interaction

Open-source
software

Tissue-specific
customization

PanomiR
This work

X X X X X

miRPath v4.0 [33] X
(Fisher’s method for
meta-analysis)

Wilk and Braun [4] X X X
miRPathDB 2 [23] X

Precalculated
(inactive download
links)

X
Precalculated

MITHrIL [24] X
(via DEG and DE
miRNA)

X X

miRTar [25] X
Web portal
non-functional

BUFET [26] X X
miTalos [27] X

Web portal
non-functional

X
Precalculated

states, their relative co-activation, gene expression and annotated
miRNA–mRNA interactions.

PanomiR profiles the activity of pathways and identifies
disease-specific differentially regulated pathways by extending
established activity summarization techniques we have previ-
ously developed such as Pathprint and Pathway-Drug Network
[41–43]. PanomiR identifies network modules of dysregulated
pathways, derived from the pathway co-expression network
(PcXN.org), to define broad-scale differentially regulated pathway
groups [41–43]. PanomiR then determines the miRNAs that target
these coordinate pathway groups using a novel statistical test
and predetermined miRNA–mRNA interactions [44, 45]. Taken
together, these steps produce broad-scale, multi-pathway and
disease-specific miRNA regulatory events (Figure 1). PanomiR
is available to the community as a free and open-source, user-
friendly Bioconductor package.

MATERIALS AND METHODS
Overview
PanomiR takes as input a user-provided gene expression data
set (e.g., RNA-Sequencing (RNA-Seq)) to quantify pathway
activity profiles based on annotated pathway databases such as
the Molecular Signatures Database (MSigDB) (Figure 1A and B)
[46]. Pathway activity profiles are then compared between
two conditions (e.g., cancer versus control, wild type versus
knockout) to identify and prioritize differentially regulated
pathways (Figure 1C). PanomiR constructs a co-activity network
of differentially regulated (or disease dysregulated) pathways to
determine broad-scale condition-associated groups of functions.
It then deconvolves the co-activity network into coherent func-
tional groups using reference pathway co-expression networks,
leveraging our previously described pathway activity methods
(Figure 1D and E) [41–43]. PanomiR then integrates user-provided
miRNA–mRNA interactions (such as predicted targets from
TargetScan [44] or experimentally validated interactions from
TarBase [45]) to evaluate miRNA regulatory effects on coordinate
pathway groups (Figures 1F and 2). The final output of PanomiR
is a ranked list of central miRNAs, together with statistical

significance levels for each group of differentially regulated
pathways, providing an effective means for identification of
pathway groups and for key miRNA prioritization, ranking and
target detection.

Capturing pathway activity dynamics
Building upon our previous methodology, Pathprint [41–43],
PanomiR ingests a user-provided gene expression data set and
calculates pathway activity scores and so captures pathway
functional dynamics (Figure 1B). The scores are proxy values
for the activity of genes in individual pathways, which, in turn,
represent biologically meaningful functional units. By capturing
gene expression levels as pathway activity scores, inherent
complexity is reduced while tolerance to noise is increased when
compared to gene-centric analyses [4, 42, 43, 47]. Pathway activity
scores leverage the complex inter-relationships and co-activity
of genes. Pathway activity scores examine biological functions
in a continuum and detect biological signals where standard
differential gene expression analyses fail [4, 34, 41, 43, 47–49].

We capture pathway activity profiles in a two-step process: (a)
we rank genes in each sample in descending order, according to
their expression, i.e. the highest expressed gene gets the largest
rank-score, and (b) we calculate the average squared ranks of
genes that belong to a pathway as the activity score. Formally, for
a pathway X with n genes, Pathwayx = {

gx
1, . . . , gx

n

}
, the activity

score, Aca,x, in sample a is

Aca,x = 1
n

∑n

i
ranka

(
gx

i

)2

where ranka
(
gx

i

)
refers to the rank of gene gx

i (descending order) in
sample a based on expression values. We generate activity profiles
for each pathway of interest in each sample. Then, pathway
profiles are normalized across the input samples (Supplemen-
tary Material). PanomiR uses the canonical pathways collection
from MSigDB as its pathway database reference [46]. MSigDB
is a carefully curated database that represents non-redundant
pathways from established pathway repositories such as KEGG
and Reactome [46, 50, 51].

PcXN.org
PcXN.org
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Figure 1. PanomiR workflow. PanomiR prioritizes miRNAs that target coordinate groups of pathways. (A) Input gene expression data set and a set
of annotated pathways. (B) Gene expression data are summarized into pathway activity scores. (C) Pathway activity profiles are compared between
disease and control subjects to discover differentially regulated pathways. (D) Differentially regulated pathways are mapped to the canonical PCxN,
where nodes denote pathways and the edges denote correlation of activity scores. (E) Within the network of differentially regulated pathways, modules
of coordinate pathways are identified using graph clustering algorithms. (F) miRNAs are prioritized using annotated miRNA–mRNA interactions (known
or predicted) for preferential targeting within each cluster of differentially regulated pathways. The outputs of the pipeline are individual lists of miRNAs
with prioritization scores (targeting P-values) per each cluster of pathways.

Detection of differentially regulated
disease-associated pathways
PanomiR compares pathway activity profiles between case and
control subjects to determine functional dynamics in disease.
PanomiR defines differentially regulated pathways by determin-
ing statistically significant differences in pathway activity profiles
between cases and controls using linear models, implemented
in the Limma package (Figure 1C) [52]. In contrast to enrichment
analysis, the linear modeling framework of PanomiR determines
the directionality of differential regulation: it defines whether a
pathway is upregulated or downregulated in disease subjects (or
experimental conditions) and accounts for confounding variables
such as batch, sequencing center or any other fixed effects and
continuous covariates. PanomiR outputs an ordered table of dif-
ferentially regulated pathways along with P-values of differential
regulation, adjusted for multiple hypothesis testing using false
discovery rate (FDR) [53].

Detection of groups of differentially regulated
pathways via their co-expression networks
Dysregulation of an individual pathway is rarely an isolated
event since pathways share activity and are often co-regulated.
PanomiR accounts for co-regulation to place differentially
regulated pathways into groups that represent high-level
disease programs by exploiting the PCxN [43]: a reference tool
that organizes and assesses the shared activity of pathways
(Figure 1D). PanomiR leverages PCxN’s network, generated from

a curated data set of 3207 expression profiles, providing an
independent platform, to query co-activity of all pathways in
the MSigDB data set [43, 54].

PanomiR masks PCxN to contain only the subnetwork of
differentially regulated pathways that were identified from the
two-group data analysis in the previous step. In the masked
network, nodes represent differentially regulated pathways and
edges activity-correlation of pathways. PanomiR subsequently
identifies densely interconnected differentially regulated path-
way subnetworks using graph clustering algorithms (Figure 1E).
The default clustering algorithm of PanomiR is Louvain, but
PanomiR can use other clustering methods that are available
in the igraph R-package [55]. The subnetworks denote clusters
of highly correlated coordinate groups of differentially regulated
pathways driving disease- or condition-specific functions.

miRNA prioritization within clusters of
differentially regulated pathways
PanomiR exploits the concept that a coordinate group of disease-
associated pathways has common miRNA regulators. Using anno-
tated miRNA–mRNA interactions and an empirical statistical test
(Figure 2), it analyzes clusters of differentially regulated path-
ways, to define central miRNAs and captures the extent to which
the targets of a specific miRNA are present within a group of
coordinate pathways. miRNA regulatory events are then identified
in three sequential steps (Figure 2): (i) by calculating individ-
ual miRNA-pathway overlap scores, (ii) by generalizing miRNA



4 | Naderi Yeganeh et al.

Figure 2. miRNA prioritization from pathway clusters. (A) PanomiR generates an observed targeting statistic, Sx
c, for a miRNA X with respect to C, an

observed cluster of pathways. The cluster-targeting statistic is an average individual overlap score for each miRNA-pathway pair. Individual overlap
scores (e.g., S1, S2) are functions (inverse normal) of the overlap statistic (Fisher’s exact test) between the miRNA target genes and the pathway member
genes (B) PanomiR generates an empirical distribution of cluster-targeting scores for a miRNA X by randomly selecting a set of pathways and recalculating
the cluster-targeting score. (C) The prioritization P-value is calculated by comparing the observed targeting statistic, Sx

c, to the null distribution of the
targeting scores of miRNA X. The P-value is used to rank the miRNAs.

targeting scores to a group of pathways (i.e., a cluster of differ-
entially regulated pathways) and (iii) by estimating the statis-
tical significance of miRNA targeting scores using an empirical
approach. The empirical statistical tests are specific to the input
data set, for each miRNA and each cluster of differentially regu-
lated pathways.

In the first step, PanomiR derives the overlap scores for indi-
vidual miRNA-pathway pairs using P-values from Fisher’s exact
test, capturing overrepresentation of targets of a specific miRNA
in each individual pathway. To make analysis disease-, condition-
, tissue- or cell-type- specific, PanomiR calculates overlap scores
using only the genes expressed in the input experiment. In the
second step, an overall targeting score for a given cluster of
pathways (Figure 2) is derived. The clusters of pathways are gen-
erated in the previous step using PCxN. Formally, for each cluster
of differentially regulated pathways, C, the targeting score of a
miRNA x is

Sc
x = 1

| C |
∑

y∈C
Φ−1 (

1 − Pxy
)

where Φ−1(.) denotes the inverse of the standard normal cumu-
lative distribution function (CDF) and Pxy denotes the Fisher’s
exact test P-value of overlap between the targets of miRNA x and
genes of pathway y. The targeting-score, Sc

x, is related to Stouffer’s
method (with equal weights) for P-value aggregation. The inverse
normal CDF avoids extreme cases in which an miRNA has many
targets in one pathway and only a few targets in other pathways
in a cluster.

In the third step, the statistical significance of the targeting
score Sc

x is determined in order to produce cluster-specific lists
of miRNAs ranked by targeting P-values. The targeting-score does
not constitute, by itself, an unbiased measure of miRNA-targeting
as it might depend on the number of targets of a miRNA. To

create an unbiased measure, PanomiR also derives an empirical-
targeting P-value, P(Sc

x), for a score of Sc
x. This P-value denotes the

probability of observing a larger-targeting score from a random
cluster of pathways (with | C | members) than the one observed.
This empirical probability is derived using a bootstrap sampling
approach by selecting randomized groups of pathways and re-
calculating their cluster targeting score. This approach directly
tackles known or unknown biases in gene annotations for miRNA
targets, as have been discussed by our group [21] and others [56,
57]. The output P-values are then adjusted for multiple hypothesis
comparison using the Benjamini–Hochberg FDR [53].

Given the computational cost of bootstrap sampling, espe-
cially to calculate small P-values, PanomiR employs a Gaussian
approximation approach to estimate P(Sc

x). In clusters of large-
enough size (>30 pathways), Sc

x values follow a normal distribu-
tion according to the central limit theorem. PanomiR uses pre-
calculated Gaussian distribution estimates from 1000 random
Sxvalues to overcome the computational costs in these cases.
In the last step, miRNAs are prioritized based on P-values for
targeting each cluster. PanomiR’s framework was assessed in a
case study of a liver cancer data set from The Cancer Genome
Atlas (TCGA) with 368 primary tumor samples and 49 controls
(details in Supplementary Material).

Parameter sensitivity analysis
All steps of PanomiR’s framework (Figure 1) were evaluated across
input parameters and algorithmic choices. The sensitivity of
PanomiR’s pathway activity profiling (steps 1–3) was evaluated
using synthetic data derived from randomized pathways and
disease groups (case/control) in comparison with biologically
meaningful pathways and disease samples (details in Supple-
mentary Material, Supplementary methods). The consistency of
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identified pathway clusters from PCxN was evaluated by assess-
ing clustering algorithms and pathway input sizes and compared
with Jaccard similarity analysis (steps 4–5). Sensitivity analysis
of Gaussian estimated miRNA P-values of pathway groups was
performed with respect to individual pathways using jackknife
estimation (step 6). The sensitivity of miRNA prioritization to
parameters of predicted miRNA–mRNA interactions was assessed
using Jaccard similarity analysis (step 6). Supplementary material
contains details of the implementation and specifications of
parameter sensitivity analysis.

Comparative assessment of PanomiR and
established miRNA–pathway analysis tools
PanomiR’s miRNA prioritization was compared with widely used
miRNA–pathway analysis tools DIANA-miRPath v4.0, MIENTUR-
NET and MITHRIL (parameter details in Supplementary Material)
[22, 24, 33]. PanomiR was also directly compared against Fisher’s
exact test (hypergeometric test) because the latter is incorporated
in the vast majority of existing tools including DIANA-miRPath,
MIENTURNET, miTalos and miRPathDB v2.0 [22, 23, 27, 33]. In
addition to packages and webservers, two adaptations of exist-
ing miRNA–pathway analysis approaches were implemented and
assessed in the PanomiR’s ecosystem: (1) miRNA hits: determin-
ing the number of pathways within a given cluster that were
significantly enriched for targets of a miRNA and (2) P-value
aggregation: using Fisher’s method and/or Stouffer’s method to
obtain one single P-value that combines enrichment P-values of
a miRNA within all pathways in a cluster. In addition to evalua-
tion of miRNA prioritization, PanomiR’s pathway activity profiles
were compared to MITHRIL’s results for assessment of disease-
associated pathways. PanomiR was compared to other tools in
terms of number of miRNAs detected, biological relevance of
miRNAs attributed to their respective pathway groups and bias in
prioritization of miRNAs with a large number of targeted genes.

RESULTS
We present a case study of PanomiR’s utility to provide a sys-
tematic, unbiased and biologically meaningful determination of
regulatory miRNAs. We applied our system (Figure 1) to a liver
cancer gene expression data set from The Cancer Genome Atlas
(TCGA) comprising 368 primary tumor samples and 49 controls
(data preprocessing detail in Supplementary Material, Supple-
mentary methods) [58, 59]. PanomiR identified differentially reg-
ulated pathways and uncovered their regulating miRNAs in liver
cancer. We assessed the biological relevance of the readouts and
evaluated the parameter sensitivity and statistical robustness of
PanomiR in silico. Our framework recapitulated known central
miRNAs in hepatocellular carcinoma with a biologically mean-
ingful assignment of pathways under their regulation, unbiased
by the number of genes targeted by each miRNAs. By comparing
PanomiR’s results with liver cancer literature and other miRNA–
pathway analysis tools, we demonstrate its ability to unbiasedly
infer informative multi-pathway targeting events by miRNAs.

PanomiR detects multiple liver cancer-associated
pathways
We generated and compared pathway activity profiles from nor-
mal tissues adjacent to tumor (TCGA abbreviation: NT, n = 49)
and primary solid tumors (TCGA abbreviation: TP, n = 368) from
liver cancer gene expression RNA-Seq data and using the MSigDB
pathway database. PanomiR detected 428 upregulated and 397
downregulated pathways in TP compared to NT (FDR < 0.01, total

pathways 1220; Tables 2 and S1). The large-scale differences in
pathway activity profiles closely mirror the differential expression
results at the gene level where more than 50% of the genes were
differentially expressed (DE) based on a similar statistical design
(FDR < 0.01; n = 7801; total genes = 14 212).

Differentially regulated pathways reflected well-established
dysregulated functions in liver cancer (Table 2). For example,
NUCLEAR SIGNALING BY ERBB4 was downregulated in TP and
activated in NT and has the highest statistical significance among
all pathways (Figure 3A, Table 2). Downregulation of ERBB4 in
tumors is in concordance with a well-established body of evi-
dence on the roles of ERBB signaling as a tumor suppressor in
liver cancer [60, 61]. In addition, we found downregulation of
HDL-MEDIATED LIPID TRANSPORT in tumor tissues, corroborated
by several reports on lipid disorders in liver cancer including
decreased plasma levels of HDL [62, 63]. These results suggest
the utility of PanomiR in detecting differentially regulated disease
functions through pathway activity analysis.

We compared the pathway readouts of PanomiR with path-
way enrichment analysis of DE genes from the same data set.
Enrichment analysis (Fisher’s exact test) identified 51 enriched
pathways (FDR < 0.01, Table S2) within the DE genes (differential
gene expression: FDR < 0.05; |LogFC| > 1; Supplementary mate-
rial). Of these enriched pathways, 50 were also determined as
differentially regulated by PanomiR. Significant overlap between
the results suggests that PanomiR recapitulates the majority of
enrichment analysis readouts (Fisher’s exact test P-value = 3.5 ×
10−8). PanomiR detected liver cancer pathways that were missed
by enrichment analysis (Tables 2 and S1). For example, the top
liver cancer-associated pathway according to PanomiR, NUCLEAR
SIGNALING BY ERBB4, was not detected by enrichment analysis
(P-value = 1). Enrichment analysis (overrepresentation test) priori-
tizes pathways with more DE genes than expected by chance. This
means that enrichment analysis misses pathways with differen-
tial activity between disease and controls subjects that do not
have increased DE gene proportions. These results highlight two
main advantages of PanomiR over pathway enrichment analysis:
(a) the ability to detect significant functional dysregulation in
disease even in absence of significant differential gene expression
and (b) the ability to determine the direction of differential path-
way regulation, i.e. upregulation or downregulation.

Synthetic data analysis shows PanomiR captures
biologically meaningful signals
To assess the recapitulation of biological signals by PanomiR,
we employed two randomization tests (Supplementary Material,
Supplementary methods). First, we asked to what extent PanomiR
detected differentially regulated pathways in a random assign-
ment of samples to case and control groups in liver cancer (i.e. bio-
logically meaningless classes). PanomiR found a very small num-
ber of differentially regulated pathways (mean = 0.054, SD = 1.2)
via randomized case/control sample assignment (Table S3). This
means that PanomiR is not prone to detect spurious findings
(i.e., differentially regulated pathways) in absence of a biological
signal.

Next, we examined if using biologically meaningful pathways
(as annotated in the MSigDB) demonstrated any advantages over
using randomly assigned gene sets. We generated randomized
pathways by permuting gene labels to conserve the pathway
overlap structure of the original MSigDB data set. We found that
annotated gene sets generate a significantly larger number of
differentially regulated pathways than randomized ones (one-
sided z-test P-value <3.34 × 10−5; mean = 693.785 pathways at an

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
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Table 2: Detection of differentially regulated pathways in liver cancer. Most significant differentially regulated pathways identified by
PanomiR according to the P-value of differential activity between tumor (TP) and normal tissues (NT) from TCGA database. Differential
regulation P-values were derived using linear models using the limma package by comparing pathway activity profiles of TP versus NT.
Differential activation adjusted P-values are for multiple hypothesis testing using FDR. Direction denotes upregulation or
downregulation of pathway activity in TP versus NT. Enrichment adjusted P-values for pathways are provided for comparison.
Enrichment P-values were derived from the differentially expressed genes (|FC| >1, FDR <0.05). The column ‘#DE genes’ shows the
number of differentially expressed genes (TP versus NT) that are present in the pathway

Differentially regulated pathways Adjusted
P-value

Direction
TP versus NT

Enrichment adj.
P-value

#DE genes

REACTOME: NUCLEAR SIGNALING BY ERBB4 1.13E−30 DOWN 1 5
KEGG: NEUROACTIVE LIGAND RECEPTOR INTERACTION 1.13E−30 DOWN 0.00109 27
KEGG: JAK STAT SIGNALING PATHWAY 3.19E−28 DOWN 1 12
REACTOME: CLASS A1 RHODOPSIN LIKE RECEPTORS 2.98E−27 DOWN 0.0114 28
REACTOME: GPCR LIGAND BINDING 4.2E−27 DOWN 0.0265 35
REACTOME: HDL MEDIATED LIPID TRANSPORT 7.57E−26 DOWN 0.53 4
PID: TCR CALCIUM PATHWAY 1.29E−25 DOWN 1 3
BIOCARTA: GATA3 PATHWAY 1.25E−24 DOWN 1 1
REACTOME: ASSEMBLY OF THE PRE REPLICATIVE COMPLEX 2.19E−24 UP 0.849 11
REACTOME: ORC1 REMOVAL FROM CHROMATIN 1.03E−23 UP 1 9
KEGG: TRYPTOPHAN METABOLISM 1.37E−23 DOWN 0.000547 15
BIOCARTA: ACTINY PATHWAY 4.77E−23 UP 1 0
REACTOME: PROTEIN FOLDING 5.59E−23 UP 1 0
KEGG: CYTOKINE–CYTOKINE RECEPTOR INTERACTION 1.71E−22 DOWN 0.0543 33
PID: ARF6 PATHWAY 2.55E−22 DOWN 1 5
BIOCARTA: IL1R PATHWAY 3.87E−22 DOWN 1 3
REACTOME: REGULATION OF INSULIN LIKE GROWTH FACTOR IGF ACTIVITY BY
INSULIN LIKE GROWTH FACTOR BINDING PROTEINS IGFBPS

5.02E−22 DOWN 0.0474 6

REACTOME: SIGNALING BY GPCR 1.28E−21 DOWN 0.447 52
REACTOME: PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE TO CCT TRIC 2.63E−21 UP 1 0
REACTOME: LIPOPROTEIN METABOLISM 2.64E−21 DOWN 0.0521 9
PID: IL1 PATHWAY 3.2E−21 DOWN 1 3
REACTOME: M G1 TRANSITION 3.92E−21 UP 0.447 15
BIOCARTA: TOLL PATHWAY 4.12E−21 DOWN 1 2
KEGG: UBIQUITIN MEDIATED PROTEOLYSIS 7.43E−21 UP 1 4
REACTOME: MRNA SPLICING MINOR PATHWAY 8.3E−21 UP 1 0

FDR < 0.01; SD = 39.1). To assess PanomiR’s sensitivity irrespective
of P-values cut-offs, we also compared the distribution of adjusted
P-values of differentially regulated pathways between MSigDB
and randomized pathway collections. A one-sided Kolmogorov–
Smirnov test showed a significant difference between the ran-
domized gene sets and known pathways (P-value <2.86 × 10−18

Table S3, Figure S1). This finding shows that biologically mean-
ingful gene sets were more likely to sensitively capture biological
signals.

Identification of coordinate clusters of
differentially regulated pathways
Pathways coordinate and co-regulate through various mecha-
nisms, including shared genes. We used the PCxN—where edges
represent precalculated correlations between pathways based on
independent gene expression data—to detect coordinate groups
of differentially regulated pathways [43]. We mapped the 200
most statistically significant differentially regulated pathways
onto the PCxN network. We then performed Louvain cluster-
ing to identify coordinate pathway groups among the top 200
pathways.

PanomiR identified three major clusters of differentially
regulated pathways (Figure 4) with consistent functions: (i) the
largest cluster of differentially regulated pathways (cluster A)
contained pathways upregulated in cancer such as SPLICEOSOME,
PROTEASOME, TRANSLATION, RNA POLL II TRANSCRIPTION
and SIGNALING BY WNT (Supplementary Table S4). Wnt
signaling activation is a critical mechanism for transformation of

precancerous lesions into liver cancer through proliferation [64].
(ii) The second largest cluster (cluster B) contained pathways
related to cell cycle and proliferation (Figure 4, Table S4). (iii) The
third cluster (cluster C) contained liver cancer-associated signal-
ing pathways that were either down or upregulated in cancer with
terms related to ERBB signaling, IL signaling and NOTCH signaling
(Table S4). Differentially regulated pathways within clusters A
and B showed a coherent direction of differential regulation in
cancer (TP) versus normal adjacent tissues (NT), suggesting coor-
dinate multi-pathway dysregulation driving high-order disease
functions.

Detection of regulatory miRNAs that target
clusters of differentially regulated pathways
We evaluated whether coordinate clusters of differentially
regulated pathways have common miRNA regulators. In our
case study, we examined both experimentally supported (TarBase
v8.0; >500 K interactions) and predicted miRNA–mRNA interac-
tions (Targetscan v7.2; >113 K interactions) to detect miRNAs
that target each cluster of differentially regulated pathways
(Tables 3, 4, S5 and S6). Our results showed that PanomiR
identified distinct informative miRNAs for each cluster of liver
cancer-associated pathways.

Experimentally supported interactions
PanomiR detected 202, 104 and 1 miRNA regulators in clusters
A, B and C, respectively (FDR < 10−5, Tables 3 and S5). These
included known liver cancer-associated miRNAs with consistent

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
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Figure 3. Pathway activity analysis of the Liver Hepatocellular Carcinoma data set from the Cancer Genome Atlas. (A) Detection of differentially regulated
liver cancer pathways by comparison of pathway activity profiles between normal tissues adjacent to tumors (NT) and tumor primary (TP) samples from
TCGA data. Boxplots show the most significant differentially regulated pathways selected based on P-values of difference between NT and TP (Table 2).
(B) Principal component analysis (PCA) projection of the samples based on either all genes or all pathways. Pathway summarization in PanomiR allows
to analyze the activity of pathways in a continuum. PCA of pathways conserves sample groups and captures a higher variation compared to the PCA of
genes.

Figure 4. PanomiR deconvolutes coordinate clusters of differentially regulated pathways in liver cancer. The network displays a pathway co-expression
map of liver cancer pathways. PanomiR detected three major groups of pathways, defined by the direction of differential regulation and clusters of
coexpression. The three classes are (i) activation of transcription in tumors (cluster A); (ii) activation of cellular replication (cluster B); and (iii) deactivation
of specific signaling pathways (cluster C). Each node in the network represents a differentially regulated pathway (Table 2). Edges represent canonical
coexpression between two pathways, obtained from an independent compendium of gene expression data, derived from the PCxN method. Node colors
represent unsupervised network clusters found by the Louvain algorithm. Clusters were manually labeled according to the functional consensus of
their pathways.
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Table 3: PanomiR prioritizes regulatory miRNAs in liver cancer using experimentally validated interactions. Prioritized miRNAs for
each identified pathway cluster, ranked by PanomiR targeting P-value (Figure 2). miRNAs are prioritized based on experimentally
validated miRNA–mRNA interaction from TarBase V8.0. Enrichment analysis results are provided for comparison. The column
‘#Pathways enriched’ denotes the number of pathways in the cluster with significant (FDR < 0.25) enrichment in the targets of each
miRNA, derived using Fisher’s exact test

Cluster A (n = 65) Cluster B (n = 60) Cluster C (n = 58)

miRNA Hits
(#pathways
enriched)

PanomiR
adjusted
P-value

miRNA Hits
(#pathways
enriched)

PanomiR
adjusted
P-value

miRNA Hits
(#pathways
enriched)

PanomiR
adjusted
P-value

hsa-miR-525-3p 1 2.7E−43 hsa-miR-107 40 1.92E−22 hsa-miR-410-3p 1 2.25E−07
hsa-miR-1307-5p 0 1.4E−27 hsa-miR-124-3p 38 2.04E−22 hsa-miR-552-3p 4 0.00057
hsa-miR-302c-5p 0 6.22E−24 hsa-miR-103a-3p 40 3.24E−21 hsa-miR-5187-5p 1 0.00057
hsa-miR-631 5 6.61E−24 hsa-miR-129-2-3p 37 2.31E−17 hsa-miR-612 2 0.00254
hsa-miR-663a 6 1.64E−23 hsa-miR-1-3p 36 2.43E−17 hsa-miR-198 7 0.0142
hsa-miR-595 4 4.03E−23 hsa-miR-23a-5p 3 8.12E−16 hsa-miR-621 2 0.0172
hsa-miR-933 1 1.04E−22 hsa-miR-663a 5 3.29E−15 hsa-miR-199b-5p 4 0.0209
hsa-miR-510-5p 1 1.04E−22 hsa-miR-449b-5p 33 2.26E−14 hsa-miR-204-3p 1 0.0249
hsa-miR-5009-5p 7 2.23E−22 hsa-miR-147a 41 2.26E−14 hsa-miR-4733-5p 1 0.0503
hsa-miR-2682-5p 0 4.65E−22 hsa-miR-193b-3p 35 3.26E−14 hsa-miR-506-3p 2 0.0503
hsa-miR-486-3p 0 1.77E−19 hsa-miR-192-5p 21 6.28E−14 hsa-miR-564 8 0.0535
hsa-miR-936 1 3.06E−19 hsa-miR-548ar-3p 8 1.69E−13 hsa-miR-1291 6 0.0666
hsa-miR-550b-2-5p 2 3.46E−19 hsa-miR-34c-5p 21 2.91E−13 hsa-miR-299-5p 1 0.0737
hsa-miR-23b-3p 38 4.88E−19 hsa-miR-301a-5p 7 2.99E−13 hsa-miR-373-3p 2 0.0737
hsa-miR-214-5p 4 4.23E−18 hsa-miR-214-3p 35 2.99E−13 hsa-miR-335-5p 2 0.0877

Table 4: PanomiR prioritizes regulatory miRNAs in liver cancer using predicted interactions. Prioritized miRNAs for each identified
pathway cluster, ranked by PanomiR targeting P-value (Figure 2). miRNAs are prioritized based on predicted miRNA–mRNA interaction
from TargetScan V7.2. The column ‘pathways enriched’ denotes the number of pathways in the cluster with significant (FDR < 0.25)
enrichment in the targets of each miRNA, derived using Fisher’s exact test

Cluster A Cluster B Cluster C

miRNA Hits
(#pathways
enriched)

PanomiR
adjusted
P-value

miRNA Hits
(#path-
ways
enriched)

PanomiR
adjusted
P-value

miRNA Hits
(#pathways
enriched)

PanomiR
adjusted
P-value

hsa-miR-371a-5p 0 1.06E−38 hsa-miR-191-5p 2 2.53E−19 hsa-miR-219a-2-3p 3 1.68E−09
hsa-miR-505-3p.2 0 8.96E−34 hsa-miR-892c-

3p/hsa-miR-452-5p
1 8.81E−14 hsa-miR-376c-3p 4 9.51E−09

hsa-miR-1298-5p 0 1.88E−31 hsa-miR-4424 4 4.26E−12 hsa-miR-1249-3p 0 4E−08
hsa-miR-556-5p 0 3.4E−28 hsa-miR-339-5p 3 8.51E−11 hsa-miR-3605-3p 3 1.2E−07
hsa-miR-325-3p 3 5.95E−25 hsa-miR-944 0 8.51E−11 hsa-miR-143-3p 3 2.06E−07
hsa-miR-495-3p 0 1.05E−23 hsa-miR-345-5p 1 2.03E−10 hsa-miR-514b-

5p/hsa-miR-513c-5p
1 6.57E−07

hsa-miR-1278 1 1.05E−23 hsa-miR-518c-3p 0 8.89E−10 hsa-miR-187-3p 3 1.39E−06
hsa-miR-651-5p 0 1.46E−22 hsa-miR-154-5p 2 3.17E−09 hsa-miR-625-3p 1 3.06E−06
hsa-miR-323b-3p 0 6.39E−18 hsa-miR-1251-5p 1 3.47E−09 hsa-miR-1306-5p 2 5.83E−06
hsa-miR-421 0 1.16E−17 hsa-miR-599 1 3.47E−09 hsa-miR-873-5p.1 3 7.82E−06
hsa-miR-876-5p 0 1.43E−17 hsa-miR-216a-5p 1 1.21E−08 hsa-miR-155-5p 2 7.82E−06
hsa-miR-150-5p 1 1.49E−17 hsa-miR-542-3p 1 1.35E−08 hsa-miR-942-5p 3 1.40E−05
hsa-miR-487b-3p 0 4.13E−17 hsa-miR-410-3p 1 1.42E−08 hsa-miR-382-3p 2 1.40E−05
hsa-miR-542-3p 1 1.01E−16 hsa-miR-524-5p 0 1.90E−08 hsa-miR-545-5p 1 1.61E−05
hsa-miR-380-3p 0 8.57E−16 hsa-miR-7151-5p 0 1.92E−07 hsa-miR-4428 1 2.43E−05

modes of action with their targeted pathway clusters. Cluster A
was targeted by miR-525-3p, miR-1307, miR-631 and miR-663a—
these miRNAs have been previously shown to have a role in
tumor migration and invasion [65–68]. Cluster B was targeted
by miRNAs with established roles in regulating cell cycle in
liver cancer including miR-107, miR-124-3p and miR-103a-3p. For
example, miR-107 is a P53-associated regulator of cell cycle and
proliferation, elevated in early stage liver cancer [69–72]; miR-
124-3p is a tumor suppressor that regulates proliferation and

invasion in liver cancer by inducing G1-phase cell-cycle arrest
[73, 74]; and miR-103a-3p is a promoter of proliferation that is
highly dysregulated in liver cancer [75]. In cluster C, we found
miR-410-3p as a central regulator of the relevant module. This
miRNA has been shown to be a circulating biomarker of distant
metastasis into the lung and the liver [76, 77]; it also regulates
adenomas via signaling pathways such as MAPK, PTEN/AKT and
STAT [78, 79]. In cluster C, we also found a significant targeting
role for miR-552-3p, which has been associated with liver cancer
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and regulates various hallmarks of cancer [80]. Supplementary
material provides an examination of the relationship between
PanomiR miRNAs with differentially expressed miRNAs in liver
cancer. While we did not find a significant association between
prioritization by PanomiR and differential expression, PanomiR
attributes distinct DE miRNAs to distinct groups of pathway-
targeting events—providing a knowledge-driven approach for
functional characterization of data-driven disease miRNAs
(Tables S7–S9). Our results establish that PanomiR successfully
detects key regulating liver-cancer miRNAs and their downstream
differentially regulated pathways based on gene expression data.

Predicted miRNA–mRNA interactions
We also assessed PanomiR’s miRNA prioritization using predicted
miRNA–mRNA interactions from the TargetScan database [44].
Although PanomiR detected multiple liver cancer-associated miR-
NAs from predicted interactions, the set of prioritized miRNAs
was different than that of experimentally supported interactions
(Tables 4 and S6). For example, PanomiR prioritized miR-299-3p in
cluster C, a regulator of IL and STAT signaling pathways in liver
cells, which have several associated annotated pathways in clus-
ter C [81]. Our results suggest that predicted and experimentally
validated miRNA interactions databases produce complementary
results, and both should be considered for the downstream anal-
ysis of transcriptomic data.

Parameter sensitivity analysis
We evaluated the sensitivity of PanomiR to input parameters
and algorithmic choices. Our results show that PanomiR pro-
duces consistent results across varying input sizes, clustering
algorithms and cut-offs for selecting predicted miRNA–mRNA
interactions. We also show that PanomiR’s estimated miRNA
prioritization P-values are robust and not driven by individual
pathways.

Sensitivity to the number of input pathways
We asked whether the number of significant pathways selected in
the module detection step (Figure 1D) affected the organization of
pathway clusters. We iteratively performed Louvain clustering on
the top pathways (ranging from 150 to 450 pathways with 50 incre-
ments) and assessed the Jaccard similarity between the top three
clusters (Supplementary Material). Our results showed a strong
conservation of module composition across varying parameter
choices with a high-level one-to-one correspondence between the
top three clusters in all iterations (Figure S2).

Assessment of different clustering algorithms
We investigated whether the choice of clustering algorithm
affected the pathway module composition. PanomiR supports a
range of clustering algorithms using the igraph package [55]. We
evaluated the Jaccard similarity between the top three clusters
within the top 200 differentially regulated pathways identified by
Louvain, edge-betweenness, Infomap and fast-greedy clustering
algorithms [82–85]. The fast-greedy and Louvain algorithms
distributed pathways across three clusters, while the edge-
betweenness and Infomap methods distributed the pathways
mainly into two clusters (Figure S3A). Our results showed a strong
one-to-one correspondence between the clusters generated by
fast-greedy and Louvain as well as between the clusters generated
by edge-betweenness and Infomap algorithms (Figure S3B). The
results suggest an overall high-level stability of pathway modules
using varying algorithms.

Stability of PanomiR’s miRNA prioritization P-values
We assessed the robustness and sensitivity of PanomiR’s miRNA
prioritization by analyzing if the P-values of miRNA targeting were
driven by individual pathways. We used a jackknifing strategy
to recalculate PanomiR’s P-values in the clusters of differen-
tially regulated pathways by leaving out one pathway at a time
(Supplementary Material). The jackknifed P-values perfectly cor-
related with the original PanomiR P-values (Spearman’s rho = 1,
Figure S4). This result shows that PanomiR’s miRNA prioritization
depends on the collective targeting of pathways by each miRNA
and is undriven by individual pathways. Additionally, we com-
pared miRNA P-values estimated using the Gaussian method with
those derived from bootstrapping. We found a significant correla-
tion (Spearman’s rho = 0.9997, Figure S5), which demonstrates the
stability of PanomiR’s estimated P-values.

Parameter sensitivity in using predicted miRNA–mRNA
interactions
We assessed PanomiR’s miRNA prioritization using varying
parameters for the selection of predicted miRNA–mRNA inter-
actions in the TargetScan database (details in Supplementary
Material). We deployed four strategies to generate lists of pre-
dicted miRNA targets. These strategies either used a combination
of conserved miRNA families along with prediction scores or
solely used various cut-offs for miRNA-mRNA binding prediction
scores (Table S10). Using rank-based correlation analysis and
hierarchical clustering, we show that PanomiR-derived miRNA
ranking for targeting the three clusters of differentially regulated
pathways is consistent and positively correlated across various
selections of predicted miRNA–mRNA interactions (Figure S6).

Comparison of PanomiR with existing
miRNA–pathway analysis tools
We compared PanomiR with widely used miRNA–pathway
analysis tools including DIANA-miRPath v4.0, MIENTURNET
and MITHRIL v2.1 [22, 24, 33]. Many state-of-the-art tools use
extensions of the over-representation analysis to infer miRNA–
pathway interactions. To our knowledge, DIANA-miRPath is the
only existing tool that directly assesses multi-pathway targeting
by miRNAs. DIANA-miRPath uses Fisher’s aggregation on miRNA-
pathway over-representation P-values (referred to as ‘term-
centric’ analysis). However, in contrast to PanomiR that aims to
prioritize transcriptional programs spanning multiple pathways
controlled by specific miRNAs, miRPath’s aggregation statistic
returns whether the selected miRNA significantly targets at
least one of the identified pathways [33]. Other tools, including
miRPathDB v2.0, can determine how many pathways are enriched
in gene targets of a queried miRNA, which we refer to as ‘miRNA
hits’. Unlike PanomiR, most tools (including DIANA-miRPath,
miRPathDB and miTalos) do not provide an objective selection
of input pathways and leave the input to the users. We compared
our system with other tools using both the original software
(where functional and applicable) and their adaptations within
PanomiR’s system.

For a fair comparison using the same background of genes
and pathways, we assessed two adaptations of existing miRNA–
pathway analysis approaches in the PanomiR’s ecosystem:
‘miRNA hits’ and ‘P-value aggregation’. Specifically, we extended
the enrichment analysis to a group (cluster) of pathways by
interrogating the number of pathways within a given cluster that
were significantly enriched for targets of a miRNA (miRNA hits).
This ‘miRNA hits’ approach is similar to the functionalities within
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad418#supplementary-data
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miRPathDB v2.0 and miTalos [23, 27]. For example, if the targets
of a miRNA are significantly enriched in five pathways within
a group of pathways, the miRNA receives a targeting (hit) score
of 5. For the ‘P-value aggregation’ approach, we used Fisher’s
method to obtain one single P-value that combines enrichment P-
values of a miRNA within all pathways in a cluster. This approach
has been previously implemented in DIANA-miRPath v4.0 for
multi-pathway targeting. We also analyzed Stouffer’s P-value
aggregation method within clusters to combine miRNA–pathway
enrichment P-values as an alternative of Fisher’s method.

Prioritization of disease-associated miRNAs
PanomiR successfully detected liver cancer-associated miRNAs
that were not prioritized by enrichment analysis (miRNA hits)
and P-value aggregation approaches (Tables 3 and S5). When
using experimentally supported miRNA–mRNA interactions,
enrichment analysis of cluster A revealed miR-525-3p as enriched
in only 1 and miR-1307-5p in none out of 65 pathways (Table 3).
Fisher’s aggregation-adjusted P-values for miR-525-3p and miR-
1307-5p were 1.3 × 10−9 and 9.15 × 10−1, respectively (Table S5).
When using predicted miRNA–mRNA interactions, PanomiR
detected several miRNAs that were not detected by the number
hits in the enrichment analysis (Table 4). It is worth noting that
the enrichment tests (Tables 3 and 4) used a relaxed threshold
(FDR < 0.25) to allow for more sensitive detection. Using a
conservative cut-off (e.g., FDR < 0.05) would have retained an
even lower detection rate of miRNAs. The results suggest that (a)
PanomiR can detect liver cancer-associated miRNAs that are not
detectable by simple enrichment tests or current miRNA pathway
approaches and (b) a subset of critical liver cancer miRNAs can
be detected only by analyzing a group of pathways in the form of
coordinated programs and not by examining individual pathways.

Bias of existing methods in prioritizing miRNAs with more
targeted genes
One-to-one miRNA-pathway enrichment analyses have been
shown to be biased toward detecting miRNAs with a larger
number of targets [56]. For the standard multi-pathway strategies
discussed above, we examined the relationship of the number of
targets of a miRNA with its prioritization ranking (Tables 4 and S5).
The enrichment score (hits) ranking of miRNAs significantly
correlated with their number of gene targets. Stouffer’s and
Fisher’s P-value aggregation methods also showed a strong
correlation between the number of miRNA targets and the P-
value ranking in cluster A of the TCGA data. These results
suggest that current commonly available approaches for multi-
pathway targeting are biased toward prioritizing miRNAs with
more targets. In comparison, PanomiR did not show a significant
correlation between ranking of a miRNA (based on P-value) and
the number of its targets (Figure 5), suggesting its ability to
prioritize miRNAs irrespective of the number of their gene targets.

In addition to our local implementation of miRPath v4.0
(Fisher’s aggregation, Figure 5), we directly compared our results
with the most recent online version of miRPath v4.0 using its
‘Term-centric’ analysis (Supplementary Material) [33]. miRPath’s
portal only allowed 20 input pathways at each query. Thus, we
manually queried the top 20 pathways in cluster A of the TCGA
liver cancer data. miRPath v4.0 identified 193 miRNA targeting
the top 20 pathways in cluster A (Table S1). Concordant with our
Fisher’s aggregation implementation results, miRPath showed a
significant bias toward prioritization of miRNAs with a higher
number of gene targets (Spearman’s rho = 0.48, Figure S7).

Other comparisons
We compared PanomiR with MIENTURNET (a network-based
prioritization method of regulating miRNAs) by querying the list
of DE genes in the online portal [22]. MIENTURNET identified
three significant miRNAs targeting events (FDR < 0.05) (Table S12):
miR-192-5p, miR-215-5p and miR-193-5p. MIENTURNET does
not directly determine pathway deregulation events and infers
miRNA targeting using gene interactions networks. The online
portal detected functional pathway enrichment of miR-192-5p
and miR-193b-5p using the interaction network of the input list
genes. The MIENTURNET’s enrichment results predominantly
included terms related to cell cycle, overlapping with cluster B
of PanomiR. PanomiR determined miR-192-5p as a top miRNA
targeting the differentially regulated pathways in cluster B. We
also compared PanomiR with MITHRIL, which detects pathway
dysregulation using DE genes or DE miRNAs. MITHRIL detected
nine significantly deregulated KEGG pathways (FDR < 0.01),
mainly related to metabolic pathways. Among these, ‘Drug
metabolism – cytochrome P450’, ‘Retinol metabolism’ and
‘Linoleic acid metabolism’ were represented in cluster C of
PanomiR (Tables S4 and S13). Our results demonstrate that when
compared against existing methods, PanomiR provides unique
functionality, high sensitivity and results that are not affected by
commonly observed biases.

DISCUSSION
PanomiR is a framework to determine miRNA regulation of
multiple coordinately regulated pathways. Most of the existing
tools for miRNA–pathway analysis are focused on one-to-
one miRNA–pathway relationships and lack the ability to
infer relationships between miRNAs and their groups of co-
regulated pathways. Approaches to address this problem have
used standard enrichment analysis as a basis for interrogation
of multi-pathway targeting. However, this approach does not
take into account the interaction between pathways and their
relative expression dynamics [86]. Alternative gene-network-
centric miRNA-analysis approaches, such as MIENTURNET, do
not directly examine the interactions of miRNAs with known
pathways. In network-based tools, disease pathways are only
inferred from gene-network modules [22, 87–89]. PanomiR
addresses these challenges by deconvolving gene expression
into coordinate groups of differentially regulated pathways;
measuring the extent to which miRNAs target these groups.
Applied to a case study of liver hepatocellular carcinoma,
PanomiR captured broad-scale characteristics of cancers such
as dysregulation of transcription, cellular replication and
signaling (Figure 3). These groups, composed of differentially
regulated pathways, represented coherent higher-order func-
tional units that recapitulated specific, yet central, disease
mechanisms.

The use of pathway activity profiles is a key component of
PanomiR. It sensitively detects differentially regulated pathways
and provides granular definition of coordinate functional groups
(Figures 2 and 3, Table 2). PanomiR detected critical known liver
cancer pathways, even though there were few differentially
expressed genes associated with them (Table 2). Pathway activity
profiles in PanomiR determine the up- and downregulation
of pathways. The activity profiles are directly comparable
and translatable across different experiments, which makes
it possible to leverage co-expression of pathways to detect
disease-specific functional dynamics and themes across data
sets, platforms and species [41].
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Figure 5. Unbiased prioritization of miRNAs by PanomiR. PanomiR prioritizes miRNAs with either a small or large number of annotated targets. In
contrast, enrichment-based miRNA-prioritization methods are biased toward prioritization of miRNAs with larger numbers of gene targets. The figure
displays correlation analysis of miRNA-prioritization rankings with the number of gene targets in Cluster A of the liver cancer data set. Each point
represents a miRNA annotated in the TarBase database. (A) Spearman correlation analysis did not find a significant association between the number
of targets and the prioritization ranking of miRNAs by PanomiR (correlation −0.03). (B) The number of enriched pathways for a miRNA significantly
correlated with its number of gene targets. We also observed a significant correlation between the number of a miRNA’s targets and its prioritization
ranking based on (C) Stouffer’s method and (D) Fisher’s method for aggregation of enrichment P-value. X-axes denote the log number of gene targets
of miRNAs based on experimentally validated miRNA–mRNA interactions from the TarBase database. The y-axis in (B) represents the number of
significantly enriched pathways (Adjusted P-value < 0.25, Table 3).

PanomiR’s multi-pathway approach provided unbiased detec-
tion of miRNA regulatory events in liver cancer that was not
detectable by conventional analyses (Figure 4, Table 3). By using
113 K high-confidence predicted miRNA interactions (TargetScan)
and more than 500 K experimentally supported (TarBase) miRNA
targets, PanomiR discovered informative and complementary
miRNA regulatory events (Tables 3 and 4). The prioritized miRNAs
identified by PanomiR have distinct roles in the disease and target
pathways. The results also show that PanomiR can identify key
miRNAs that target groups of pathways even with only a few
targeted genes within individual pathways.

CONCLUSION
PanomiR provides an advancement over the current practice
of studying static, isolated miRNA–pathway interactions. It
is the first systems biology framework to study multiple
differentially regulated pathways, their co-activity and their
regulating miRNAs. The model achieves its broad-scale inference
by accounting for co-expression of pathways and disease-
specific expression dynamics to identify miRNA-regulatory
events.

PanomiR provides multiple functionalities that are not avail-
able through established miRNA–pathway analysis tools. These
include pathway dysregulation analysis, identification of groups
of co-expressed pathways for miRNA prioritization and granular
assignment of disease-associated miRNAs to specific groups of

disease pathways. These features enable PanomiR to produce
unbiased miRNA prioritization results, which, in turn, sensitively
determine key disease miRNAs and their targeted pathways even
when there are only few known gene targets or significant differ-
entially expressed genes.

Limitations of the PanomiR approach include (1) PanomiR
detects one-to-many miRNA–pathway relationships and does not
provide the analysis of many-to-one relationships; (2) PanomiR’s
infers miRNA from gene expression data. In addition, PanomiR
does not provide co-expression analysis between pathways and
miRNAs. Additional cross-examination with miRNA expression
data may be necessary to make the results more actionable,
representing a potential area for future expansion; (3) PanomiR
primarily works with bulk RNA-Seq data and is not designed
for single-cell/spatial transcriptomic data sets. For users who
are interested in single-cell/spatial transcriptomic analysis of
miRNA–pathway relationships, we suggest adapting a pseudo-
bulk transformation prior to using PanomiR; and (4) the complete
landscape of miRNA–mRNA binding relationships is unknown.
This gap can drive discrepancy in miRNA prioritization based
on different background data sets of miRNA–mRNA interactions
(examples in Tables 3 and 4). In order to mitigate this gap,
we have made PanomiR adaptable to varying miRNA–mRNA
interaction databases, pathway gene sets and gene expression
data sets to facilitate user-specific study designs and research
questions. PanomiR is available to the community as an open-
source R/Bioconductor package.
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Key Points

• Characterizing the roles of miRNAs in health and disease
requires charting of coordinate co-regulation across het-
erogeneous molecular cascades and pathways. PanomiR
is the first-of-its-kind method aiming to capture the
effects of miRNAs in coordinating multi-pathway tran-
scriptional programs.

• PanomiR enables the detection of differential pathway
regulation events between two groups. It uses pathway
activity profiling to identify phenotype/group-associated
transcriptional programs using a co-expression network
of disease-associated pathways.

• PanomiR achieves sensitive and unbiased prioritization
of disease-regulating miRNAs using statistical tests for
analyzing one-to-many miRNA–pathway relationships
within groups of coordinate disease functions.

• PanomiR is available as a user-friendly, open-source soft-
ware package. It enables using a diverse range of clus-
tering algorithms, background pathways and miRNA–
mRNA interaction databases.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxford
journals.org/.
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