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A sequence‑based evolutionary 
distance method for Phylogenetic 
analysis of highly divergent 
proteins
Wei Cao 1,2, Lu‑Yun Wu 1,2, Xia‑Yu Xia 1,2, Xiang Chen 1, Zhi‑Xin Wang 1* & Xian‑Ming Pan 1*

Because of the limited effectiveness of prevailing phylogenetic methods when applied to highly 
divergent protein sequences, the phylogenetic analysis problem remains challenging. Here, we 
propose a sequence-based evolutionary distance algorithm termed sequence distance (SD), which 
innovatively incorporates site-to-site correlation within protein sequences into the distance 
estimation. In protein superfamilies, SD can effectively distinguish evolutionary relationships both 
within and between protein families, producing phylogenetic trees that closely align with those based 
on structural information, even with sequence identity less than 20%. SD is highly correlated with the 
similarity of the protein structure, and can calculate evolutionary distances for thousands of protein 
pairs within seconds using a single CPU, which is significantly faster than most protein structure 
prediction methods that demand high computational resources and long run times. The development 
of SD will significantly advance phylogenetics, providing researchers with a more accurate and reliable 
tool for exploring evolutionary relationships.

Evolutionary information on protein sequences is crucial for various purposes, including homologue detection1,2, 
protein design, and drug target selection3. Phylogenetic analysis is a widely used method for extracting this 
information that provides valuable insights into the early evolution of proteins, such as identifying ancestral 
peptide motifs and key sites for protein conformation shifts. However, when dealing with superfamilies con-
taining remote homologues, accurate and unbiased phylogenetic analysis remains a challenge because of high 
sequence divergence and a large data scale.

A protein superfamily is the largest group of proteins sharing a common ancestor4. Proteins in the same 
superfamily might have highly divergent sequences with sequence identity as low as 15%5. Traditional phylo-
genetic analysis methods, such as Bayesian inference, maximum likelihood (ML), maximum parsimony, and 
distance-based methods, often perform poorly in the analysis of highly divergent sequences such as those found 
in a superfamily. This is attributable to the unreliable nature of multiple sequence alignments (MSAs) obtained 
from these sequences6. Among these methods, distance-based methods, such as neighbour joining, are good 
choices for the phylogenetic analysis of protein sequences in a superfamily because of their ability to circumvent 
MSA degradation and their scalability for large datasets.

The effectiveness of an evolutionary distance matrix is essential for the success of distance-based phyloge-
netic analysis. There are three main categories of traditional sequence-based evolutionary distance estimation 
methods. The first category consists of mathematical model-based algorithms that calculate the percentage of 
nonidentical amino acids and then correct the probability of multiple substitutions in evolution to estimate 
the evolutionary distance7–9. The second category uses a series of residue substitution matrices to estimate the 
evolutionary distance. These matrices obtained from large datasets of taxa and alignments are divided into two 
groups: simple and complex. Simple substitution matrices, such as the Dayhoff10, Jones-Taylor-Thomton(JTT)11, 
Whelan and Goldman(WAG)12, and Müller-Vingron (MV)13 models, ignore site heterogeneity during evolu-
tion. However, different sites in protein sequences experience varying evolutionary rates and are characterized 
by different substitution models because of differences in evolutionary pressures14. This led to the development 
of a complex substitution matrix series15–18. Both types of evolutionary distance estimation algorithms rely on 
MSAs. As the awareness of less informative MSAs for remote homologous proteins has increased, there has been 
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a shift towards the use of pairwise sequence alignments (PSAs) in phylogenetic analysis. The third category of 
evolutionary distance estimation algorithms is based on PSAs, such as the Needleman–Wunsch (NW) algorithm 
and all-to-all MMseq219,20.

In this study, we proposed the sequence-based algorithm sequence distance (SD) for evolutionary distance 
estimation. Unlike existing sequence-based methods, this method leverages the correlation information between 
sites from position-specific scoring matrices (PSSMs) to construct a feature matrix for further evolutionary 
distance estimation21. This approach, which incorporates the correlation between sites, has successfully pre-
dicted protein structures22, identified protein–protein interactions23, and extracted the evolutionary features 
of key viral proteins24. Our results demonstrate that the SD algorithm can accurately measure the evolution-
ary distances between remote homologues in protein superfamilies and distinguish evolutionary relationships 
within and between families, even when the protein sequence identity is less than 20%. Furthermore, the SD 
algorithm continues to perform effectively when the sequence identity is as low as 10%, whereas other sequence-
based methods fail at this level. Under the fact that the protein structure being much more highly conserved 
throughout evolution than the protein sequence, several structure-based phylogenetic analysis methods are 
developed. Protein structure prediction tools have achieved remarkable advancements in recent CASP14 and 
CASP15. However, these methods typically demand a substantial amount of computing resources, including 
CPUs, GPUs, and even TPUs, which may not be accessible to most researchers. Moreover, for proteins with 
lengths exceeding 1000 residues, predicting their structures may take several days. In contrast, the SD algorithm 
can efficiently calculate evolutionary distances for thousands of protein pairs in just a few seconds using a single 
CPU. Furthermore, the distances derived from the SD algorithm highly correlate with structural similarity, and 
the topology of evolutionary trees based on the SD algorithm is much more similar to that based on structural 
evolutionary distances than that based on other methods. In conclusion, the SD algorithm can be widely used 
for the phylogenetic analysis of remote homologues, especially in cases of high sequence divergence.

Materials and methods
The superfamily database
The protein superfamily database was constructed on the basis of the SCOP2 database5. SCOP2 is a non-redun-
dant, manually classified database that provides information on the structural and evolutionary relationships 
between proteins. To evaluate the effectiveness of the evolutionary distance on a superfamily level, which is the 
largest classification level capable of finding common ancestor sequences, we conducted a series of tests. Initially, 
we filtered out proteins shorter than 50 amino acids or longer than 500 amino acids. After this screening, 31,725 
proteins belonging to 2106 superfamilies remained. Then, we eliminated 715 superfamilies that featured only a 
single family and 938 superfamilies with fewer than five protein domains to ensure further statistical analysis. 
Then, 529 superfamilies consisting of 14,108 proteins were used for further database construction (Table 1). For 
each protein superfamily, we built datasets with sequence identities under different thresholds (0.5, 0.4, 0.3, 0.2, 
and 0.1) using PISCES25.

SD algorithm
The state-of-the-art sequence-based evolutionary distance estimation methods assume that each site in the 
protein sequence is independent. In the evolutionary distance estimation algorithm SD, we consider the cor-
relations between adjacent sites in protein sequences. The algorithm utilizes the interactions between residues 
as extracted from PSSMs and considers the predicted secondary structure and solvent accessibility to depict 
the local structure of sites. Based on these features, a feature profile is constructed. SD then employs PSA using 
these feature profiles to eliminate low-quality MSAs. The evolutionary distance is ultimately calculated on the 
basis of the best alignment score.

The SD algorithm uses three input features: the PSSM, predicted secondary structure, and solvent accessibil-
ity. The PSSM is calculated using PSI-BLAST in the BLAST v2.2.25 package with a three-iteration search of the 
Uniref90 database and an E-value threshold of 0.00126. Each element in the PSSM represents the probability of 
occurrence of 20 amino acids at each site in the protein. The secondary structure and solvent accessibility are 
predicted by SPIDER227. The secondary structure feature is one-dimensional, and it can take on the values H 
(α-helix), E (β-sheet layer), and C (irregularly coiled). The solvent accessibility feature describes the solvent con-
tact area of the amino acid at the site. This characteristic is assigned values of either B (buried) when the relative 
accessible surface area (rASA) of the residue predicted by SPIDER2 is less than 20%, or E (exposed) when the 

Table 1.   The counts of folds, superfamilies, families, and proteins under different sequence identities in the 
superfamily database.

Sequence identity thresholds Fold Superfamily Family Protein

0.1 322 401 2714 5741

0.2 324 402 2725 6080

0.3 324 403 2734 7848

0.4 397 529 3065 11,162

0.5 398 529 3093 13,717

All 398 529 3093 14,108
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rASA exceeds 20%27. This resulted in a total of 23 input features for each site, including 20-dimensional amino 
acid occurrence probability features, 1-dimensional secondary structure features, and 2-dimensional solvent 
accessibility features (Fig. 1).

The construction of a feature profile is a critical step in the SD algorithm, as it incorporates the correlations 
between sites into the original input features. This transformation process consists of two main steps: (1) con-
structing the probability profile of a specific residue pair occurrence at adjacent sites by calculating the cross 
product of the probability of amino acid occurrence at site i and site i + 1, resulting in a 20 × 20-dimensional 
vector, and (2) constructing the probability profile of the intersection of neighbouring residue occurrence types 
and local structural features. The crossover information is obtained as a total of 4 × 3 × 20-dimensional vectors. 
After these transformation steps, the feature profile for each site is a 640-dimensional vector that considers the 
correlation between neighbouring sites.

Next, we defined a pairwise scoring function for feature profile alignment, as presented in Eq. (1). Given 
matching between site i of protein sequence L1 and site j of sequence L2, the scoring function is

The SD algorithm calculates the evolutionary distance between two protein sequences by first using a global 
alignment algorithm based on a scoring function of the site feature profile. The scoring function consists of three 
terms. ML1 is the feature profile (L1 × 640-dimentional vector) for protein sequence L1. And the same definition 
for ML2 . The first term is the dot product of the feature profile vectors of sites i and j when they are matching. 
The second term is the secondary structure matching score. In this term, if the predicted secondary structure 
of two sequence sites is the same, then SS(i, j) = 1 ; otherwise, SS(i, j) = 0 , and ω1 is the weight coefficient. The 
final term is the relative solvent accessibility. In this term, if the predicted relative solvent accessibility of two 
sequence sites is the same, then rACC(i, j) = 1 ; otherwise, rACC(i, j) = 0 , and ω2 is the weight coefficient. ω1 
and ω2 are chosen ranging from 1.0 to 2.0 through experimentation and optimization.

Pairwise sequence alignment in SD is based on the classical NW algorithm28, which requires a global sequence 
alignment from start to end. The gap penalty function that we used is the affine gap penalty function. As pre-
sented in Eq. (2), we implement three scoring matrices. The process of state transfer is divided into four steps: 
match transfer to match, match transfer to open gap, open gap to match (end gap), and open gap to open gap.

(1)S(i, j) = ML1(i) ·ML2(j)+ ω1SS(i, j)+ ω2rACC(i, j)

M(i, j) = max







M(i − 1, j − 1)+ s(xi , yi),Match xi, yi
Ix(i − 1, j − 1)+ s(xi , yi), Insertion in x
Iy(i − 1, j − 1)+ s(xi , yi), Insertion in y

Ix
(

i, j
)

= max

{

M
(

i − 1, j
)

+ d,Open gap in x
Ix
(

i − 1, j
)

+ e,Extend gap in x

PSI-BLAST

20

L

SS ACC

1 2

PSSM

Feature Profile Construction

i

i+1

20 21

20 1 2

Input feature matrix Neighbor sites correlation
400

L

240

Output feature profile

FAY---HDMGCLGI
LISGNGSNL-QAII

mapping Smax to [0,1]

Alignment:

SD distance

Score:

Smax

Needleman-Wunsch global alignment

based on SD scoring function

Figure 1.   Overview of the SD algorithm.
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Since the alignment score obtained by the former process represents the closeness of two sequences, it is 
mapped to the [0,1] space to calculate the evolutionary distance of two protein sequences.

Evaluation of evolutionary distances
To assess the ability of evolutionary distances to identify SCOP relationships at the superfamily level, we intro-
duce the concept of the recognition rate (RR). The RR refers to the percentage of superfamilies for which pro-
teins belonging to the same family and those from different families can be differentiated based on a specified 
evolutionary distance. First, we calculated the superfamily standard deviation (sfsd) as follows:

where i, j are proteins in the same superfamily but in different families and di,j is the evolutionary distance 
between i  and j calculated by different algorithms. sfsd can detect the heterogeneity of distant evolutionary 
relationships, preventing the omission of situations in which the evolutionary distance between families exceeds 
the threshold. We used the Mann–Whitney U test to determine whether the distribution of evolutionary dis-
tance within the same family and that between different families were significantly different. The RR is defined 
as follows:

where Q is a set of protein superfamilies in which the distribution of evolutionary distance between proteins 
within the same family is significantly different from the distribution of evolutionary distance between proteins 
in different families, #Q is the number of elements in the set, and #sf  represents the total number of superfamilies 
in the database. The performance of the evolutionary distance in recognizing SCOP relationships increases as 
the RR increases.

Furthermore, we define relative distance (RD) as follows:

RD measures the extent to which evolutionary distances vary within and between families. disame refers to 
the mean evolutionary distance of proteins within the same family in superfamily i, and didiff  refers to the mean 
evolutionary distance between proteins of different families in superfamily i. A higher RD indicates better per-
formance of the evolutionary distance.

Protein similarity calculation
Remote homologues are characterized by low sequence identity but certain structural similarities. Thus, the 
evolutionary distance used for the phylogenetic analysis of proteins with remote homologues might exhibit a 
relationship with structural similarities. We used our superfamily database to investigate the correlation between 
evolutionary distances based on sequence information and structural similarity.

Because proteins with sequence identities greater than 20% are likely to have similar structures, we removed 
redundant proteins with sequence identities exceeding 20% using the PISCES program25. In total, 7035 proteins 
were retained.

To measure structural similarity, we used the template modelling score (TM-score), which provides a global 
measure of the structural similarity between proteins29.

In the formulas, D0 denotes the scale factor, which makes the TM-score length-independent. Di is the distance 
of the i-th pair of the equivalent residues between the two structures, which depends on the superposition matrix; 
the ‘max’ means the procedure to identify the optimal superposition matrix that maximizes the sum in Eq. 829. 
N  is the sequence length of the template protein. Nali is the length of the aligned sequence. To obtain a more 
appropriate expression of the structural similarity between two protein sequences, it is important to normalize 
the TM-score based on the appropriate chain. As different chains can result in different values, we use the fol-
lowing formula to calculate the TM-score:

(2)Iy(i, j) = max

{

M(i, j − 1)+ d,Open gap in y
Ix(i, j − 1)+ e,Extend gap in y
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Here, Ni refers to the length of protein sequence i , and TMi represents the calculated TM-score normalized 
by protein sequence i . The same definition applies to Nj and TMj . Formula (10) ensures a more accurate reflec-
tion of structural similarity between two protein sequences, irrespective of the chain used for normalization.

Phylogenetic tree construction
In this study, several sequence-based evolutionary distance algorithms were implemented for comparison. They 
are mainly from three classes. The first class consists of mathematical model-based evolutionary distances. The 
Raw distance, JCP distance, Kimura distance, and Scoredist distance were calculated by Belvu 2.26, which require 
the input of MSAs obtained from Cluster Omega30. The second class includes residue substitution matrix-based 
evolutionary distances, which are divided into simple substitution matrix-based distances and complex sub-
stitution matrix-based distances. The former include the EXP-DAY, EXP-JTT, EXP-MV, EXP-WAG, ML-DAY, 
ML-JTT, ML-MV, and ML-WAG distances calculated by lapd 1.031. The latter type is the IQ-Tree-ML distance, 
which is calculated by IQ-Tree v1.6.932 using different complex amino acid substitution matrices and selecting 
the optimal matrix by the ML rule. The MSA was obtained from Cluster Omega30. The third class includes pair-
wise sequence alignment-based evolutionary distance. The Needleman–Wunsch (NW) distance was calculated 
using the biopython package33, whereas the MMseq2 distance was obtained directly from the intermediate 
results generated by the evolutionary analysis software graph splitting19. For phylogenetic tree construction, we 
used BioNJ, an accurate and widely used evolutionary distance-based phylogenetic tree generation method34.

Evaluation of the accuracy of the phylogenetic tree
We calculated the Robinson–Foulds (RF) distance to evaluate the accuracy of the estimated phylogenetic tree 
using ETE3 3.1.235. The RF distance between two trees is defined as the number of steps required to convert the 
first tree topology into the second tree topology. This process involves interrupting the branch (edge) unique to 
tree A and generating a branch unique to tree B. Consequently, the RF distance between trees A and B is equal 
to (n1 + n2), where n1 represents the number of branches unique to tree A and n2 represents the number of 
branches unique to tree B. There are algorithms that normalize the RF distance. The advantages of the RF distance 
are simplicity, intuitiveness, and low computational cost.

Results
The evolutionary distance calculated by SD is highly correlated with protein structural 
similarity
For proteins in constructed superfamily database with varying sequence identities, we investigated the relation-
ship between the structural similarity score (TM-score) and the evolutionary distance. Specifically, we compared 
the SD distance with the NW distance, MMseq2 distance and IQ-Tree distance. As detailed in the Materials and 
Methods, NW, SD and MMseq2 are based on PSA, while the IQ-Tree distance is based on MSA.

Protein pairs within each superfamily were pooled and analysed under different thresholds to calculate evo-
lutionary distances and TM-scores. They were divided into groups based on their TM-scores, and the mean and 
variance of different evolutionary distances were calculated for each group (Fig. 2a).

As illustrated in Fig. 2b,c, in the superfamily dataset, the mean of TM-score is 0.2622, and the Pearson cor-
relation between evolutionary distances and TM-score increased with increasing sequence identity. However, 
for proteins with low sequence identity (10% and 20%), the SD distance could effectively reflect the evolutionary 
distances of protein structures while other evolutionary distances failed. The PSA-based distances performed 
better than MSA-based distances. IQ-Tree distance displayed a large variance in each TM-score-based group, 
while MMseq2 distance barely had variance in the 0.1 to 0.5 TM-score range. SD decreased smoothly with 
increasing TM-scores; conversely, the NW distance displayed a noticeable decrease only in the initial section, 
and its mean value remained unchanged when the TM-score exceeded 0.4. For protein pairs with a sequence 
identity under 20%, the overall Pearson correlation between the SD evolutionary distance and TM-score was 
−0.80867, and the correlation between the NW evolutionary distance and TM-score was −0.47572. A larger SD 
evolutionary distance indicates lower structural similarity between proteins, whereas other PSA-based evolu-
tionary distances are limited in its ability to reflect changes in protein structural similarity. Meanwhile, the SD 
distance provided a better indication of the variation in protein structural similarity and has the potential to be 
applied to the search for distant templates.

In this study, we compared SD with the widely used protein distant homologue identification software 
SPARKS-X and HHblits, which incorporate template structural information36,37. The SCOP20_v1.75 database 
contains 6365 proteins with less than 20% sequence identity. We evaluated the similarity of the structures of 
the Top1 distant homologues identified by different methods to the target proteins, measured by the TM-score.

For SPARKS-X, the profile of each sequence was obtained by three iterations of PSI-BLAST (with an E value 
threshold of 0.001), and for HHblits, directly from https://​github.​com/​soedi​nglab/​hh-​suite. All parameters were 
set as default for SPARKS-X and HHblits. As shown in Supplementary Table 1, the mean TM-scores of the Top1 
distant homologues identified by SPARKS-X, HHblits, and SD were 0.6216, 0.6199, and 0.61538, respectively. 
Additionally, the percentages of proteins with TM-scores > 0.5 were 75.75%, 76.99%, and 76.10%, respectively. 
The performance of SD was comparable to that of SPARKS-X and HHblits for both evaluation criteria.

(10)TM − scorei,j =
NiTMi + NjTMj

Ni + Nj

https://github.com/soedinglab/hh-suite
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The SD algorithm can accurately distinguish SCOP relationships at the superfamily level
To evaluate the performance of the SD algorithm in distinguishing evolutionary relationships within and between 
families at the superfamily level, we calculated the RR and RD and compared these parameters with those cal-
culated using other evolutionary distance methods. The details of the RR and RD calculations can be found in 
the Materials and Methods.

As illustrated in Fig. 3a, evolutionary relationships were more easily detected when sequence homology 
exceeded 0.3. To evaluate the ability of evolutionary distances to distinguish proteins within and between families, 
different sequence homology thresholds were set. Our results demonstrated that the SD algorithm performed 
best in terms of the RR and RD when the homology threshold ranged from 0.1 to 0.5. As the homology threshold 
decreased, both the RR and RD decreased for all evolutionary distances tested. Under a homology threshold of 
0.5, the SD algorithm demonstrated significant differences in evolutionary distances between and within families 
for 75.24% of superfamilies, with an RD of 0.66. Under homology thresholds of 0.4 and 0.3, the SD algorithm still 
performed best, with significant differences in evolutionary distances between and within families measured for 
64.69% and 66.75% of superfamilies, respectively. The slight superiority of SD under the 0.3 sequence identity 
threshold compared to the 0.4 threshold can primarily be attributed to variations in dataset distribution across 
these different sequence identity thresholds. Furthermore, it is important to consider that RR inherently demon-
strates statistical variability, which can lead to fluctuations in performance metrics when assessed across varying 
thresholds. However, these results were generally inferior to those obtained under a homology threshold of 0.5.

In the twilight zone of protein sequence evolution, distinguishing evolutionary relationships within and 
between families at the superfamily level is challenging. At a homology threshold of 0.2, compared to a thresh-
old of 0.3, although proteins in the same family generally maintain similar conformations or functions, their 
recognition ability rapidly weakens, causing a sharp drop in the RR from 66.75% to 49.86%. RD also decreased 
by approximately 14% from 0.5606 at the 0.3 homology threshold to 0.4811 at a threshold of 0.2. This decrease 
in performance is mainly attributed to an increase in the evolutionary distance within the family as the sequence 
homology decreases. Despite these challenging conditions, the SD algorithm still outperformed other evolution-
ary distances. The performance of the SD algorithm at the superfamily level was further demonstrated by its 
stability even at a low homology threshold of 0.1. The RR only decreased from 49.86% to 46.11%. Similarly, this 
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gap was also reflected in RD. The downwards trend of the two indicators tended to be flat. Detailed results can 
be found in Supplementary Table 2.
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Compared to other evolutionary distance methods, SD demonstrated superior performance for both the RR 
and RD, which was maintained at different homology thresholds. The SD algorithm’s advantages are particularly 
evident when sequence homology is high, highlighting its broad discrimination capabilities. Under the condition 
of low sequence homology, SD remains applicable. Overall, these results demonstrated that SD can effectively 
distinguish evolutionary relationships within and between families in the superfamily database, even under 
conditions of low sequence identity.

Case study: SD distance of the Homeodomain‑like superfamily
We analysed the performance of SD in determining evolutionary relationships from the perspective of the 
entire superfamily database. In this section, we utilized the Homeodomain-like superfamily, which consists of 
proteins with helices involved in DNA binding38,39, as a case study to further evaluate the ability of SD to infer 
evolutionary relationships. With a sequence identity threshold of 50%, the Homeodomain-like superfamily 
comprises 167 proteins divided into 24 families. Notably, the Tetracyclin repressor-like family has more than 50 
domains, while two other families have more than 20 domains, and six families have more than two domains 
(see Supplementary Table 3). These characteristics of the Homeodomain-like superfamily highlight its sequence 
variability and evolutionary diversity. To illustrate the actual distribution of evolutionary distances within the 
Homeodomain-like superfamily, we calculated pairwise alignment-based, mathematical model-based and residue 
substitution matrix-based evolutionary distances of proteins in this superfamily (Fig. 3b).

Several methods for measuring evolutionary relationships, such as PSA or complex substitution matrix-based 
methods, exhibit varying degrees of accuracy. The NW method provides an effective measure of relationships 
that occur within and between families, but it displays significant overlap between the distance distributions 
of interfamily and intrafamily relationships, indicating its inability to differentiate between close and distant 
relationships (also known as the twilight zone). Conversely, IQ-Tree performs well in depicting intrafamily 
evolutionary relationships, whereas most interfamily distances take a maximum value. Measurement of the 
latter was beyond the scope of IQ-Tree. Similarly, MMseq2 also fails to accurately measure the evolutionary 
relationships between families. In contrast, SD distinguishes between close and distant evolutionary relation-
ships effectively, with distances measured by SD tending to be larger for relationships between families than for 
relationships within families. Furthermore, the distribution of distances of the two groups were significantly 
different (p < 0.001, Mann–Whitney U test).

Although the R distance calculation does not involve sequence alignments, it can measure remote evolution-
ary relationships. However, there is overlap between interfamily and intrafamily distance distributions. As shown 
in Fig. 3b, JCP distance, Kimura distance, and Scoredist distance fail to effectively distinguish remote evolution-
ary relationships, with most interfamily relationships assigned a maximum value of 300. The findings indicate 
that the effective range of the existing mathematical correction-based evolutionary distances is insufficient for 
accurately estimating the evolutionary distances of distant sequences within protein superfamilies. Additionally, 
the quality of MSA may be compromised when incorporating highly divergent sequences, resulting in a failure 
to measure close evolutionary relationships.

Simple amino acid substitution-based models perform well in inferring proximate relatives, but their range 
is limited in measuring remote evolutionary relationships. EXP-DAY, EXP-JTT, and EXP-WAG underperform 
in this regard, whereas EXP-MV is capable of estimating remote evolutionary relationships. However, upon 
a comparison of evolutionary distances within and between families, the distributions of the two groups are 
similar, indicating that these evolutionary distances are inadequate in distinguishing between close and distant 
evolutionary relationships.

Performance of SD distances for the phylogenetic analysis of superfamilies
In this section, we utilized the SD distance to perform phylogenetic analysis of protein sequences within a 
superfamily. Specifically, phylogenetic trees were constructed using SD distances, and their topological features 
were compared to those of trees constructed using the TM-score as a structural evolutionary distance. The TM-
score, which represents structural similarity, is more suitable for evolutionary tree construction than sequence 
homology since two distant homologous proteins with insignificant sequence similarity could adopt a common 
fold and may perform similar biochemical functions40. The accuracy of the phylogenetic trees was assessed by 
comparing their topologies with that of the evolutionary tree generated by BioNJ based on the TM-score, and 
the RF distance was used to measure topology similarity, where smaller distances indicate greater accuracy.

Our results demonstrated that the RF distances of the SD phylogenetic tree ranged mainly from 0.25 to 0.7, 
with a probability of 0.1189 that the RF distance would be 0, indicating that in 11.89% of superfamilies, the 
SD-based phylogenetic trees had the exact same topology as the TM-score-based phylogenetic tree (Fig. 4). 
Moreover, under different sequence identity thresholds, SD consistently displayed a lower RF distance than the 
other methods. Notably, the mean RF distance hardly changes with increasing sequence identity, suggesting that 
SD is less influenced by sequence identity. Taken together, our findings highlight the suitability of SD for the 
phylogenetic analysis of proteins within superfamilies.

Case study: Phylogenetic analysis of the Flavoreductase‑like superfamily
The Flavoreductase-like superfamily (ID: 3,000,055) is an important group of proteins that function as FAD/
NAD(P) binders41, and it comprises 36 proteins with sequence identities under 50% (see Supplementary Table 4). 
To gain a deeper understanding of the evolutionary relationships between the six distinct families within this 
superfamily, we conducted a comprehensive analysis. The SD algorithm required 21 s on a single CPU to cal-
culate the distance matrix for the set of 630 protein pairs. We constructed phylogenetic trees based on various 
evolutionary distances and compared them to the TM-score-based tree. Our results indicated that the SD-BioNJ 
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phylogenetic tree was the most similar to the TM-score-based tree among all the trees based on different algo-
rithms (Fig. 5). This observation suggests that the SD distance is a reliable metric for measuring evolutionary 
distances among the members of this superfamily. Both the SD-BioNJ and TM-BioNJ trees grouped the GMC 
oxidoreductase-like, UDP-galactopyranose mutase-like and Amine oxidase-like protein families together, indi-
cating their close evolutionary relationships, and only a few minor variations were observed in the evolutionary 
relationships within families. In terms of overall topological differences, the SD-BioNJ tree had the lowest RF 
distance of 0.212 when compared to the reference tree, while the IQ-Tree-BioNJ tree and MMseq2-BioNJ tree 
had higher RF distances of 0.606 and 0.424, respectively.

Therefore, our findings suggest that the SD distance can effectively distinguish the evolutionary relationships 
between families within the Flavoreductase-like superfamily and that the SD-BioNJ tree is a useful tool for the 
phylogenetic analysis of protein sequences in this superfamily. Our detailed analysis of the Flavoreductase-like 
superfamily provides valuable insights into the evolutionary relationships between its six different families. Topol-
ogy of different evolutionary trees for the Homeodomain-like superfamily can be found in Supplementary Fig. 
S1. The SD distance metric was found to be the most accurate among the evolutionary distance-based methods 
for phylogenetic analysis of this superfamily.

Discussion
We developed the SD algorithm for protein evolutionary distance calculation based on a single protein sequence. 
Since the evolutionary processes of different sites are influenced by the local structure and amino acids of the 
surrounding sites, we extracted the interaction information from neighbouring residues using a PSSM and 
utilized the predicted secondary structure information and solvent accessibility information to depict local 
structure. In addition, pairwise sequence alignment was performed using the SD algorithm to avoid the impact 
of low-quality MSAs.

In remote evolutionary relationship analysis, SD outperformed traditional methods, accurately measuring 
inter- and intrafamily evolutionary distances in the SCOP2 database, especially under low sequence homology 
thresholds. We found that SD was more effective than other methods in distinguishing intra- and interfamily 
proteins under different homology thresholds, as demonstrated by the RR and RD. As the SD distance correlates 
well with protein structural similarity and can identify a comparable percentage of distant homologues in the 
SCOP20 dataset, it can be applied to search for distant homologous sequences. When combined with structural 
information, it supports an effective distant homologous template search in protein structure prediction.

In terms of phylogenetic analysis, the SD algorithm yielded high topological similarity with evolutionary trees 
constructed on the basis of structural similarity. We measured the difference in topology between trees using the 
RF distance metric and found that the mean RF distance between SD-BioNJ trees and structural similarity-based 
trees was smaller than those of IQ-Tree-BioNJ and MMseq2-BioNJ trees. A case study of the Flavoreductase-
like superfamily demonstrated that the SD-based tree and TM-score-based tree depicted similar evolutionary 
relationships among protein families, but they differed in describing some proteins within families. In terms of 
computational efficiency, we evaluated the SD algorithm on several randomly selected sets of protein sequences 
from the superfamily database, and it requires only a few seconds on a single CPU to compute the distance matrix 
for thousands of protein pairs (Supplementary Table 5).

The increasing number of protein structures solved through X-ray crystallography and nuclear magnetic 
resonance (NMR) techniques has highlighted the fact that the protein structure being much more highly con-
served throughout evolution than the protein sequence. This is because tertiary structures are subject to strict 
constraints during evolution to maintain structural stability, functional integrity, and folding correctness under 
the pressure of natural selection. In fact, the evolution rate of protein structures is significantly lower than that 
of protein sequences. New folds emerge on a timescale of billions of years42. Several approaches have been taken 
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Figure 4.   The distribution of RF distances between the evolutionary distance-based phylogenetic trees and the 
TM-score-based phylogenetic trees analysed under varying sequence identities.
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to incorporate structural information into evolutionary analysis. A stochastic evolution model that combines an 
insertion/deletion model, an amino acid substitution model, and a structural drift model has been proposed43. 
Another group used an amino acid substitution model that considers both amino acid identity and side-chain 
conformational states to estimate evolutionary distances44. Protein structural alignment algorithms, includ-
ing Q-score and RMSD, are also used45,46. Incorporating structural information can potentially enhance the 
accuracy of evolutionary distance estimation. However, despite the significant progress made in computational 
protein structure prediction methods in recent years, their accuracy is still limited and they often require high 
computational resources and long execution times. Consequently, the practical application of structure-based 
algorithms for evolutionary distance estimation may be constrained.
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Figure 5.   Topology of different evolutionary trees for the 3,000,055 superfamily. The colour-coded branches 
denote distinct families. (a) The phylogenetic tree generated using SD. (b) The reference evolutionary tree 
constructed on the basis of the structural evolutionary distance TM-score. (c) The evolutionary tree derived 
from pairwise sequence alignment-based evolutionary distance MMseq2. (d) The phylogenetic tree obtained 
using the ML method in IQ-Tree.
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Data availability
The SD program has been written in C++ language, and it runs on the Linux platform. It is free for use on the 
web server http://​166.​111.​152.​74:​8888/​sd_​dista​nce/. For academic users, the executable code and superfamily 
database can be obtained by e-Mail: pan-xm@mail.tsinghua.edu.cn.
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