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Objectives:Whole-bodymagnetic resonance imaging (WB-MRI) has been dem-
onstrated to be efficient and cost-effective for cancer staging. The study aim was
to develop a machine learning (ML) algorithm to improve radiologists' sensitivity
and specificity for metastasis detection and reduce reading times.
Materials andMethods:A retrospective analysis of 438 prospectively collected
WB-MRI scans from multicenter Streamline studies (February 2013–September
2016) was undertaken. Disease sites were manually labeled using Streamline ref-
erence standard. Whole-bodyMRI scans were randomly allocated to training and
testing sets. A model for malignant lesion detection was developed based on
convolutional neural networks and a 2-stage training strategy. The final algorithm
generated lesion probability heat maps. Using a concurrent reader paradigm,
25 radiologists (18 experienced, 7 inexperienced inWB-/MRI) were randomly al-
located WB-MRI scans with or without ML support to detect malignant lesions
over 2 or 3 reading rounds. Reads were undertaken in the setting of a diagnostic
radiology reading room between November 2019 and March 2020. Reading
times were recorded by a scribe. Prespecified analysis included sensitivity, spec-
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ificity, interobserver agreement, and reading time of radiology readers to detect
metastases with or without ML support. Reader performance for detection of
the primary tumor was also evaluated.
Results: Four hundred thirty-three evaluableWB-MRI scans were allocated to al-
gorithm training (245) or radiology testing (50 patients with metastases, from pri-
mary 117 colon [n = 117] or lung [n = 71] cancer). Among a total 562 reads by
experienced radiologists over 2 reading rounds, per-patient specificity was 86.2%
(ML) and 87.7% (non-ML) (−1.5% difference; 95% confidence interval [CI],
−6.4%, 3.5%; P = 0.39). Sensitivity was 66.0% (ML) and 70.0% (non-ML)
(−4.0% difference; 95% CI, −13.5%, 5.5%; P = 0.344). Among 161 reads by in-
experienced readers, per-patient specificity in both groups was 76.3% (0% differ-
ence; 95% CI, −15.0%, 15.0%; P = 0.613), with sensitivity of 73.3% (ML) and
60.0% (non-ML) (13.3% difference; 95% CI, −7.9%, 34.5%; P = 0.313).
Per-site specificity was high (>90%) for all metastatic sites and experience levels.
Therewas high sensitivity for the detection of primary tumors (lung cancer detec-
tion rate of 98.6%with and without ML [0.0% difference; 95%CI, −2.0%, 2.0%;
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P = 1.00], colon cancer detection rate of 89.0% with and 90.6% without ML
[−1.7% difference; 95% CI, −5.6%, 2.2%; P = 0.65]). When combining all reads
from rounds 1 and 2, reading times fell by 6.2% (95% CI, −22.8%, 10.0%) when
using ML. Round 2 read-times fell by 32% (95% CI, 20.8%, 42.8%) compared
with round 1. Within round 2, there was a significant decrease in read-timewhen
using ML support, estimated as 286 seconds (or 11%) quicker ( P = 0.0281),
using regression analysis to account for reader experience, read round, and tumor
type. Interobserver variance suggests moderate agreement, Cohen κ = 0.64; 95%
CI, 0.47, 0.81 (with ML), and Cohen κ = 0.66; 95% CI, 0.47, 0.81 (without ML).
Conclusions: There was no evidence of a significant difference in per-patient
sensitivity and specificity for detecting metastases or the primary tumor using
concurrent ML compared with standard WB-MRI. Radiology read-times with
or without ML support fell for round 2 reads compared with round 1, suggesting
that readers familiarized themselves with the study reading method. During the
second reading round, there was a significant reduction in reading time when
using ML support.

Key Words: whole-body MRI, diffusion-weighted imaging, T2-weighted
imaging, cancer staging, machine learning, MRI segmentation, metastasis
detection, diagnostic test performance, human-in-the-loop, radiology read-time

(Invest Radiol 2023;58: 823–831)

P atients being investigated for suspected or confirmed cancer often
undergo multiple imaging tests to ascertain the initial TNM stage

before formulating the final treatment strategy. The multicenter pro-
spective NIHR Streamline studies compared the diagnostic accuracy
of whole-body magnetic resonance imaging (WB-MRI) with standard
staging pathways (CT ± regional MRI [rectum, liver, brain] ± FDG
PET/CT), for initial staging in patients with newly diagnosed non–
small cell lung or colorectal cancer.1,2 The studies also evaluated the
number of tests required and the time taken before reaching the final
treatment plan. The Streamline studies found that WB-MRI is a viable
alternative to standard pathways with similar accuracy but reduced stag-
ing time and cost.1,2 However, WB-MRI has not yet been widely trans-
lated into staging pathways in lung and colon cancer, although there is
more widespread use for staging bone disease in myeloma and to some
extent in prostate and breast cancer.3–5 One speculative reason for this
could be due to a perceived need for specialist expertise in reading
WB-MRI, as well as the time taken to report the scans, due to the chal-
lenges of integrating a large number of complex sequences available
on WB-MRI.

Significant developments in machine learning (ML), especially
deep learning (DL), have opened the possibility of automated segmenta-
tion and lesion detection on CT and MRI.6–11 However, ML techniques
for cancer lesion detection onWB-MRI have not been widely researched.

The aim of this study was to develop and clinically test an algo-
rithm for cancer lesion detection on WB-MRI scans in patients re-
cruited to the Streamline studies with lung and colorectal cancer, using
a human-in-the-loop approach. The intended use of the algorithm was a
concurrent ML heat map on WB-MRI images at the time of interpreta-
tion, alerting radiologists to potential metastases, with the hypothesis
that ML support would improve lesion detection and reduce read-times.
Secondary objectives included evaluating reader performance for inex-
perienced WB-MRI readers and detection of the primary tumor with
or without ML.

MATERIALS AND METHODS

Study Design
This retrospective studyobtained ethical approval (ICREC15IC2647,

ISRCTN 23068310). Patients gave written consent in Streamline stud-
ies (ISRCTN43958015 and ISRCTN50436483) for use of deidentified
data for future research. TNM stages for each casewere provided by the
source study.
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Scans were acquired at 16 recruitment sites between February
2013 and September 2016, using a minimum WB-MRI protocol.12

The Streamline consensus reference standard for sites of disease was
used.1,2 In brief, this consisted of multidisciplinary consensus meetings,
which retrospectively considered all imaging, treatment interventions,
histopathology, and patient outcomes for at least 12 months after cancer
diagnosis to ascertain the cancer stage and site of metastasis at diagnosis.

Cases were randomly allocated to model training and clinical
testing (stratified by primary tumor type [lung or colon], presence of
at least 1 metastatic lesion, and recruitment site), ensuring sufficient
cases with and without metastases were allocated to the testing set to
meet the power calculation, with all other cases allocated to training.

Data Preparation
All DICOM data received were initially included. Individual an-

atomical imaging stations of the 3 key sequences (defined as axial
T2-weighted [T2WI], diffusion-weighted [DWI], or apparent diffusion
coefficient [ADC] map) were stitched into a single DICOM stack and
converted to NIfTI (https://nifti.nimh.nih.gov/).11,13 Cases were ex-
cluded due to absence of a key sequence or technical failure (NIfTI con-
version or running the algorithm).

All visible disease sites (primary tumor and metastases) were
segmented by trained radiologists using ITK-Snap, on T2WI and
DWI NIfTI volumes based on the location, size, and number of lesions
identified by the Streamline trials reference standard.14 Not all sites
could be identified on the WB-MRI, as the source reference standard
included metastases that subsequently became radiologically visible
within 6 months, considering them likely present (although occult) at
initial staging (see Supplemental Digital Content 1, http://links.lww.
com/RLI/A825, which shows the visible sites for ground truth segmen-
tation against the reference standard).

Data Availability
Among 486 patients in the Streamline studies, 438WB-MRI scans

were available for the study (270 colorectal and 168 lung cancer, 114
with metastases) (Fig. 1). The stages of disease are provided in Table 1.

Among 245 scans allocated to training, there were 19 technical
failures with 226 evaluable for training (n = 181) and internal validation
(n = 45). Among 193 scans allocated to the test set, there were 5 tech-
nical failures (missing ADC n = 2, corrupted DWI n = 1, failure of
NIFTI conversion and upload n = 2), leaving 188 evaluable scans
(117 colon, 71 lung, 50 cases with metastases).

Machine Learning Model
We investigated several ML algorithms and different training

strategies for the task of malignant lesion segmentation in multichannel
WB-MRI. Details about the tested alternatives can be found in the Sup-
plemental Digital Content 2, http://links.lww.com/RLI/A826. The final
ML model was based on deep convolutional neural networks (CNNs),
developed with a 2-stage strategy. We first leveraged an existing CNN
algorithm for the segmentation of healthy organs, developed in a previ-
ous healthy volunteer study.11 Running this multiorgan CNN segmenta-
tion algorithm on all the training data provided automatic organ maps
for all patient scans. This required an intermediate step of registering
phase 2 data with a rigid registration algorithm to a template subject
from the healthy volunteer data (Fig. 2). This was to compensate for
the different fields of viewof the healthy volunteer study and the current
patient study. Although the healthy volunteer WB-MRI data covered
the body from shoulders to knees, the patient study data included the
head, which affects the performance of the organ segmentation algo-
rithm. The registration was automatic and fast, and was only required
in order to obtain the organ masks. The organ masks were then mapped
back with the inverse transformation to the original patient training data.
For the patient training data set, there was no reference segmentation of
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 1. CONSORT diagram demonstrating distribution of cases to phase 2 training, with internal validation data set and phase 3 clinical test data set.
C = colon cancer, L = Lung cancer.

TABLE 1. Stage Distribution of the Cases Allocated to Radiology
Reads (Test Set, n = 188)

Number %

Colon cancer stage n = 117
T1 7 6
T2 25 21
T3 69 59
T4 16 14
N0 55 47
N1 35 30
N2 27 23
M0 87 74
M1 30 26

Lung cancer stage n = 71
T1a 10 14
T1b 9 13
T2a 18 25
T2b 8 11
T3 14 20
T4 12 17
N0 42 59
N1 10 14
N2 13 18
N3 6 8
M0 51 72
M1 20 28
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organs to compare with, so we assessed the quality of these segmenta-
tions visually, and they appeared to be sufficient for the second stage.

The automatically generated organ maps were then merged with
the manually segmented primary and metastatic malignant lesions on
T2WI andDWI training data (Fig. 2). This resulted in all scans allocated
to training having multiclass segmentation maps where the organ labels
were generated automatically using the previously developed CNN al-
gorithm, although the cancer lesions were labeled manually. We then
used the training set for training a CNN for joint organ and lesion seg-
mentation, using the DeepMedic architecture.15 This CNN model was
then capable of predicting jointly the organ labels and malignant lesions
on new unseen test data. The generated probability heat maps for the le-
sion class were postprocessed by applying Gaussian smoothing with a
kernel size of 5 mm, normalized to the range [0, 1], and thresholded
to reduce false-positive predictions. Parameters for the postprocessing
were selected based on visual assessment of the 45 internal validation
cases. The final lesion probability heat maps were converted to DICOM
and uploaded to PACS to enable overlay with the original WB-MRI
scans. Each WB-MRI scan was copied (one with and one without
ML heat map series) to allow masking.

Radiology Reads
Eighteen experienced readerswere Streamline radiologists (n = 7)

or those routinely reporting WB-MRI for tumor boards (n = 11). Seven
inexperienced readers included consultants who do not read WB-MRI
(n = 3) and board-certified senior radiology trainees (n = 4). All readers
were trained to use the Biotronics3D reading platform, including op-
tional superimposition of ML heat maps (see Supplemental Digital Con-
tent 3, http://links.lww.com/RLI/A827, which shows the reader training
manual with appearance of the PACS reading setup with heat maps).

Cases in the test set (n = 188) were randomly allocated to readers,
stratified by tumor type (colon or lung), presence of at least 1 metastasis
or none, and recruitment site from the Streamline study to ensure readers
had a similar set of reads, but not from their own institution. In addition,
93 randomly selected cases were allocated to be read by a second expe-
rienced reader, in order to evaluate interrater agreement (see Fig. 3 for
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
the reading flow diagram). Readers were blinded as towhich cases were
allocated for interrater agreement. Each of 18 experienced readers
therefore had 15 to 16 allocated cases, which they read twice over 2
reading rounds, separated by a minimum of 4 weeks to reduce recall bias.
www.investigativeradiology.com 825
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FIGURE 2. Data generation process for the 2-stage model training approach. Panel A: A, An example of a T2WI WB-MRI scans from a participant in
training set. B, After registration to a template scan from the healthy volunteer study. C, Output of the organ. Segmentation algorithm developed in
healthy volunteer study. D, After mapping the organ segmentations back to the original scan from training data. E, Manual lesion segmentation overlaid
on the T2WI scan. F, Merged organ segmentations and cancer lesion segmentation overlaid on the T2WI scan, which is used for training the final
multiclass segmentation algorithm. Panel B: Cancer lesion detection training. A, Input T2WI scan (different patient to panel A). B, Diffusion-weighted scan.
C, Manual lesion segmentation (based on reference standard) from T2WI image overlaid on diffusion scan. D, Postprocessed lesion probability map
from the convolutional neural network (CNN) algorithm (deep medic). E, Postprocessed lesion probability map from the classification forest (CF)
algorithm.

Rockall et al Investigative Radiology • Volume 58, Number 12, December 2023
In a similar method, 7 inexperienced readers were allocated ei-
ther 10 or 14 reads per read round, based on capacity of the reader, 4
of which were included to evaluate interrater agreement.

To prevent any training bias, the case order (with or without ML
support for read round 1, then reversed for read 2) was balanced to al-
low equivalent number of cases with ML in each round (Fig. 3).

Intrarater assessments performed by any readers available for a
third reading round were randomly allocated 6 colon and 4 lung cases
selected from their original allocation and then assignedwith or without
ML (1:1).

Radiologists reporting their findings to a trained scribe who
filled case report forms, including detailed identification of the primary
tumor, metastatic sites, and staging questions for readers (see Supple-
mental Digital Content 4, http://links.lww.com/RLI/A828, which pro-
vides the case report forms used for the data capture). The reader could
choose to use or ignore the ML heat map (if available) to inform their
opinion. Read-time was recorded from time images were loaded on
screen to completion of the diagnostic read.

Statistical Analysis
Sample size for detecting a significant difference (superiority) be-

tweenML and non-ML in the primary outcome (per-patient sensitivity)
required 141patientswithout and51withmetastases (seeSupplementalDigital
Content 5, http://links.lww.com/RLI/A829, which provides the full sta-
tistical analysis plan, including power calculation). Two-sidedMcNemar
test for paired proportions, with 95% confidence intervals (CIs), was
826 www.investigativeradiology.com
used to measure differences in sensitivity and specificity between reads
with or without ML. Significance testing was based on the binomial
distribution of the discordant pairs with results deemed statistically sig-
nificant at P < 0.05. Regression analysis was used to investigate the
paired difference in read-time based on ML usage. Fixed effects for
read type (colon/lung) and read round of ML assistance (1/2) were in-
cluded alongside a clustering effect for reader experience. SAS v9.4
(SAS Institute Inc, Cary, NC) was used for all analyses.
RESULTS

Results of Model Training

Results for Machine Learning Model Development
The results for the comparison of different ML models and training

strategies are provided in the Supplemental Digital Content 2, http://links.
lww.com/RLI/A826. The final model that was used by the readers was se-
lected based on a quantitative analysis of voxel-wise lesion segmentation
performance and using visual assessment on the 45 internal validation cases.
When applied to the clinical test set, 70% of ground truth segmented cancer
lesions had recall scores above 50%,meaning that, in 70% of malignant le-
sions, at least 50% of the voxels were considered to be malignant by the
algorithm. It is important to note that precision and recall in the valida-
tion set (see Supplemental Digital Content 2, http://links.lww.com/RLI/
A826) are on a voxel-level, whereas in the human-in-the-loop reader
study, sensitivity and specificity were evaluated on a lesion-level.
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. Flowchart for blinded sequential readsmethodology for 18 experienced readers. Final test set of 188 reads togetherwith randomly selected 93
cases to be read by 2 radiologists provided a total of 281 reads for each of 2 reading rounds. Stratification of cases was performed to ensure a reasonable
equivalence of cases with lung and colon cancer, with or without metastases and by institution, to ensure that readers had a range of cases and that a
reader did not get allocated cases from their own institution. A mixture of cases with and without machine learning (ML) support was available at each
reading round in order to avoid training bias. A minimum of 4 weeks was scheduled between reading rounds to reduce recall bias.
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Results of Reader Performance

Per-Patient Sensitivity and Specificity for Detection of
Metastatic Disease

Experienced Readers
Among a total of 562 reads (281 with and 281 without ML sup-

port) by experienced radiologists, 186 (93 with and 93 without ML)
were read by 2 experienced radiologists. The sensitivity and specificity
for identifying patients with and without metastatic disease, according
to reader experience, is shown in Table 2.

Of the 138 patients without metastatic disease, readers correctly
identified 119 (specificity, 86.2%) and 121 (specificity, 87.7%), with and
without ML, respectively, a difference in proportions of −1.5% (95% CI,
−6.4%, 3.5%; P = 0.39). It should be noted that, in expecting 141 cases
originally, the loss of power from the missing data is marginal (0.894).

Of the 50 patients withmetastatic disease, readers correctly iden-
tified 33 (sensitivity, 66.0%) and 35 (sensitivity, 70.0%) with and
without ML, a difference of −4.0% (95% CI, −13.5%, 5.5%; P = 0.34).

Inexperienced Readers
Among a total of 161 reads by inexperienced radiologists, 56

were read by 2 inexperienced radiologists. For inexperienced readers,
per-patient specificity was 76.3% (29 of 38) with or without ML, a dif-
ference of 0% (95% CI, −15.0%, 15.0%; P = 0.613), with sensitivity of
73.3% (11 of 15) and 60.0% (9 of 15), respectively, a difference
of 13.3% (95% CI, −7.9%, 34.5%; P = 0.313).
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
Per-Site Sensitivity and Specificity for Detection of
Metastatic Disease

A breakdown of the specificity and sensitivity rates per site of le-
sion can be found in Table 3 for experienced readers. Specificity was
not affected based on usage of the ML algorithm with the difference
in proportions ranging from 1.6% down to −0.5%. In all cases,
per-site specificity remained above 95%.

Investigating per-site sensitivity was hindered as only 2 sites
(liver and lung) had 10 or more positive cases based on the reference
standard. Liver produced a sensitivity difference of −8.7% (95% CI,
−20.2, 2.8) in metastatic tumor detection when using ML while lung
provided very low sensitivity rates with 10.0% (95% CI, 0.5, 45.9) in
theML arm and 0% (95%CI, 0.0, 34.5) withoutML (Table 3). It should
be noted that these intervals are wide due to small sample sizes.

Please refer to Supplemental Digital Content 6, http://links.lww.
com/RLI/A830, for table of per-site sensitivity for inexperienced readers.

Per-Patient Sensitivity and Specificity for Detection of
Primary Tumor

There was no significant difference in detection of the primary
tumor with or without ML. Of 71 primary lung cancers (70 of which
were visible for ground truth segmentation), 70 were detected by expe-
rienced readers with or without ML (sensitivity, 98.6%), a difference of
0.0% (95% CI, −2.0%, 2.0%; P = 1.00). Twenty of 20 lung tumors vis-
ible for ground truth segmentation were detected by inexperienced
readers (sensitivity, 100%; difference, 0.0%; 95% CI, −0.0%, 0.0%;
www.investigativeradiology.com 827
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TABLE 2. Detection of Metastases by Radiologists Reading With or Without ML Support Against Reference Standard

All Reference
Standard Positive,

n = 50

All Reference
Standard Negative,

n = 138

n TP FN TN FP Specificity % Sensitivity %

Experienced readers 18
Reads without ML support 188 35 15 121 17 87.7 70.0
Reads with ML support 188 33 17 119 19 86.2 66.0
Difference in proportions −1.5 (95% CI, −6.4, 3.5; P = 0.387) −4.0 (95% CI, −13.5, 5.5; P = 0.344)

Subset Reference
Standard Positive,

n = 15

Subset Reference
Standard Negative,

n = 38
Inexperienced readers 7
Reads without ML support 53 9 6 29 9 76.3 60.0
Reads with ML support 53 11 4 29 9 76.3 73.3
Difference in proportions 0.0 (95% CI, −15.0, 15.0; P = 0.613) 13.3 (95% CI, −7.9, 34.5; P = 0.313)

Per-patient sensitivity and specificity for experienced and inexperienced WB-MRI readers.

ML, machine learning.
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P = 1.00). Of 118 primary colon cancers, 116 were identified for
ground truth segmentation. All 118 cases were read by experienced ra-
diology readers, 105 were detected with ML support, and 107 were
detected without ML, respectively (sensitivities of 89.0% and 90.6%;
difference, −1.7%; 95%CI, −5.6%, 2.2%; P = 0.65). Of 33 primary co-
lon cancers evaluated by inexperienced readers, 31 and 29 were de-
tected with and without ML (sensitivities of 93.9% and 87.9%; differ-
ence, 6.1%; 95% CI, −1.0%, 13.1%; P = 0.39).
TABLE 3. Sensitivity and Specificity of Detection of Metastases by Radiol

Specificity Difference in Propor

Site n ML No ML Δ LCI

Liver 165 98.2% 98.2% 0.0% −2.4
Lung 178 95.5% 95.5% 0.0% −2.7
Adrenal 184 98.4% 96.7% 1.6% −0.2
Kidney 187 100.0% 100.0% 0.0% 0.0
Brain 182 98.9% 98.9% 0.0% 0.0
Pleura 187 97.3% 97.9% −0.5% −2.9
Spleen 188 100.0% 100.0% 0.0% 0.0
Pancreas 188 100.0% 100.0% 0.0% 0.0
Peritoneum 185 97.8% 98.4% −0.5% −1.6
Bowel 188 99.5% 99.5% 0.0% −1.5
Chest 188 100.0% 100.0% 0.0% 0.0
Pelvis (nonskeletal) 186 99.5% 100.0% −0.5% −1.6
Skull 187 100.0% 100.0% 0.0% 0.0
Cervical spine 188 100.0% 100.0% 0.0% 0.0
Thoracic spine 184 99.5% 100.0% −0.5% −1.6
Lumbar spine 184 99.5% 98.9% 0.5% −0.5
Sternum 187 100.0% 100.0% 0.0% 0.0
Pelvis (skeletal) 186 99.5% 100.0% −0.5% −1.6
Clavicle NA
Ribs 188 100.0% 100.0% 0.0% 0.0
Other skeletal 188 100.0% 100.0% 0.0% 0.0

Per-site, for experienced WB-MRI readers.

ML, machine learning.
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Results of Time to Complete Reads

Combining rounds 1 and 2, the overall mean (SD) reading time
for experienced readers with ML was 560 (260) seconds. The time in-
creases to 595 (610) seconds without ML (Table 4), thus using ML, the
unadjusted mean reading time fell by an average of 35 seconds (95%
CI, −60, 140), an average percentage reduction of 6.2% (95% CI,
−10.0%, 22.8%). Round 2 read-times were markedly lower regardless
ogists Reading With or Without ML Support

tions Sensitivity Difference in Proportions

UCI n ML No ML Δ LCI UCI

2.4 23 60.9% 69.6% −8.7% −20.2 2.8
2.7 10 10.0% 0.0% 10.0% −8.6 28.6
3.5 4 50.0% 50.0% 0.0% 0.0 0.0
0.0 1 0.0% 0.0% 0.0% 0.0 0.0
0.0 6 66.7% 50.0% 16.7% −13.2 46.5
1.8 1 0.0% 0.0% 0.0% 0.0 0.0
0.0 NA
0.0 NA
0.5 3 0.0% 33.3% −33.3% −86.7 20.0
1.5 NA
0.0 NA
0.5 2 0.0% 0.0% 0.0% 0.0 0.0
0.0 1 0.0% 0.0% 0.0% 0.0 0.0
0.0 NA
0.5 4 25.0% 0.0% 25.0% −17.4 67.4
1.6 4 25.0% 0.0% 25.0% −17.4 67.4
0.0 1 100.0% 100.0% 0.0% 0.0 0.0
0.5 2 0.0% 50.0% −50.0% −119 19.3

NA
0.0 NA
0.0 NA

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 4. Reading Times Analysis: Mean (SD) and Median [IQR] Read-Time in Seconds by Arm (With or Without ML Support), Reader
Experience, and Read Round—All Cases, Colon Cases, and Lung Cases

Experienced Readers Inexperienced Readers

Without ML With ML Without ML With ML

Read Round n Mean (SD) Median [IQR] n Mean (SD) Median [IQR] n Mean (SD) Median [IQR] n Mean (SD) Median [IQR]

All reads* 188 595 (610) 480 [300–720] 188 560 (260) 540 [360–720] 53 691 (412) 600 [420–900] 53 645 (329) 600 [360–840]
Round 1 92 715 (824) 600 [360–780] 96 663 (259) 600 [450–810] 26 842 (476) 630 [540–1020] 27 736 (382) 660 [360–840]
Round 2 96 481 (236) 420 [300–600] 92 453 (216) 390 [300–570] 27 544 (275) 540 [300–660] 26 552 (235) 480 [360–720]
Round 3 21 454 (206) 420 [300–540] 20 411 (156) 390 [300–510] 7 351 (112) 360 [240–480] 6 410 (158) 360 [300–420]

Experienced Readers Inexperienced Readers

Colon Without ML With ML Without ML With ML

Read Round n Mean (SD) Median [IQR] n Mean (SD) Median [IQR] n Mean (SD) Median [IQR] n Mean (SD) Median [IQR]

All reads* 117 597 (357) 540 [360–780] 117 560 (257) 540 [360–720] 33 758 (481) 600 [360–1020] 33 705 (368) 660 [360–840]
Round 1 58 703 (417) 600 [360–840] 59 655 (249) 600 [420–840] 13 1057 (559) 960 [600–1320] 20 756 (423) 600 [420–840]
Round 2 59 492 (249) 480 [300–600] 58 463 (228) 390 [300–660] 20 564 (303) 540 [300–780] 13 626 (259) 660 [420–720]
Round 3 12 455 (161) 450 [330–570] 10 432 (162) 420 [300–600] 5 396 (100) 420 [360–480] 3 460 (227) 360 [300–720]

Experienced Readers Inexperienced Readers

Lung Without ML With ML Without ML With ML

Read Round n Mean (SD) Median [IQR] n Mean (SD) Median (IQR) n Mean (SD) Median [IQR] n Mean (SD) Median [IQR]

All reads* 71 593 (885) 420 [300–720] 71 559 (268) 540 [360–720] 20 579 (229) 570 [450–630] 20 546 (228) 510 [360–660]
Round 1 34 736 (1253) 540 [360–720] 37 675 (276) 660 [480–780] 13 628 (243) 600 [480–660] 7 677 (249) 600 [540–840]
Round 2 37 462 (213) 420 [300–660] 34 434 (195) 390 [300–540] 7 489 (181) 540 [360–600] 13 475 (189) 420 [360–600]
Round 3 9 453 (265) 420 [300–480] 10 390 (156) 330 [300–420] 2 240 (0) 240 [240–240] 3 360 (60) 360 [300–420]

*Not including intrarater round 3 reads; ML, machine learning; SD, standard deviation; IQR, interquartile range.

TABLE 5. Estimated Fixed Effects for Difference in Paired ML and
Non-ML Reads From RegressionModel in Seconds and as Percentage

Effect Value Effect Estimate (95% CI)

Secs Intercept 226 (−250, 702)
ReadRound Round 2 −486 (−760, −213)*
Package Colon −51 (−626, 524)

%age Intercept 64% (−32%, 160%)†
ReadRound Round 2 −77% (−113%, −41%)*
Package Colon −9% (−43%, 25%)

Model investigating difference in ML and non-ML reading time in seconds
and percentage adjusted for fixed effects Read round (when ML is applied, first
or second round) and read package (lung or colon cancer). Additional clustering
effect applied for reader experience.

Value estimates relate to the overall estimated effect adjusted for all other co-
variates within the model. Intercept refers to value at reference standards round
1 and lung packages.

*P < 0.05.

†P < 0.1.
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of ML assistance or read type, dropping from 689 (604) to 467 (226),
an average of 222 seconds (95% CI, 129, 314) or 32.2% (95% CI,
18.7%, 45.6%).

Two read-timeswere recorded at over 2 hours, hence Table 4 also
displays median interquartile range (IQR) read-times as well as addi-
tional subgroup output by reader ability (experienced/inexperienced),
read order (round 1 and 2), and read type (colon and lung). On average,
experienced readers completed their reads 100 seconds (95% CI, −75,
274) faster (or 12.6%; 95%CI, −9.6%, 34.8%) than their inexperienced
counterparts for round 1 reads, and 81 seconds (95% CI, 10, 152) faster
(or 14.8%; 95% CI, 1.2%, 27.8%) for round 2.

To investigate ML versus non-ML difference in read-time, a re-
gression analysis was carried out using paired data comparing ML
against their respective non-ML read. The regression model was ad-
justed for fixed-effect covariates: read tumor type (lung and colon)
and read round (whether ML was used in the first or second round of
reading). A clustering effect for reader experience was also included.
Assumptions for regression modeling held and residuals were found
to be normally distributed. Table 5 contains regression estimates (in sec-
onds and as a percentage) for estimated effects of ReadRound andRead
Package when investigating paired ML versus non-ML difference in
read-time. Although package typewas not found to influence difference
in read-time, the output indicated read round to have a significant
(P = 0.0281) effect. The estimated effect onML/non-ML difference be-
tween rounds 1 and 2 is −486 seconds (95% CI, −760, −213). Post hoc
testing difference of least-square means to estimate the subsequent ef-
fect on read-time specifically when using ML at round 2 is −286
(95% CI, −370, −201) seconds. Similar post hoc testing of percentage
difference estimated ML to reduce round 2 read-times by −11% (95%
CI, −61%, 26%).
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
INTERREADER AND INTRAREADER ANALYSIS
Based on pairing 93 reads among 18 readers, Cohen κ for the in-

terobserver variance among experienced readers with ML was 0.64
(95% CI, 0.47, 0.81). Without ML, the interobserver variance was un-
affected with κ statistic of 0.66 (95% CI, 0.47, 0.81). This can be
interpreted as moderate agreement between readers.
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For intrarater reads, based on a sample of 30 tests, the corre-
sponding κ statistics when comparing round 3 experienced reads with
their counterpart in round 1 or 2 was 0.61 (95% CI, 0.13, 1.00) and
0.46 (95% CI, 0.10, 0.74) with and without ML, respectively, which
are too imprecisely estimated in this current study sample.
DISCUSSION
Whole-body MRI is an emerging imaging modality for staging

lung and colon cancers, with similar accuracy to standard of care path-
ways, but with reduced staging time and cost.1,2 However, WB-MRI
has not been widely translated into staging pathways. The perceived
need for specialist expertise and the time needed to read WB-MRI
may be a barrier to clinical translation.

We developed an algorithm to detect malignant lesions on
WB-MRI, which generated heat maps for sites of lesions for review
by radiologists, with the aims of improving detection of disease by ra-
diologists and the speed of the radiology read. Machine learning sup-
port did not conclusively affect reader performance, with nonsignificant
results when investigating differences in specificity (95% CI, −13.4%,
5.5%) and sensitivity (−6.4%, 3.5%) for detectingmetastases. However,
the data indicate that ML may not hinder the read process. When con-
sidering all reads from rounds 1 and 2, for all readers, reading timewith
ML had an average percentage reduction of 6.2% (95% CI, −10.8%,
22.8%). A 32% decrease in reading time between the first and second
reading rounds is likely to indicate that radiologists took the first round
to become familiarized with the reading environment on the
cloud-based PACS, with the addition of ML heat maps, despite ensur-
ing that each reader had been given prior training on the platform. Once
familiarized with the reading environment, a potential benefit of ML in
reading time may exist as round 2 reads were modeled to be 286 (95%
CI, 201, 370) seconds (11%) faster with ML, when considering read
round, reader experience and tumor type in regression analysis. It may
be speculated that readers could more rapidly find lesions on the
WB-MRI scan with ML heat map indicating sites to review, although
higher detection rate was not achieved.

Radiology read-times overall were lower than anticipated, despite
readers being allocated ample time. This may be due to reading with the
scribe, who directed questions concerning particular aspects of the scan
thereby creating an efficient reading system, particularly as the reader
knew they were being timed. The stitched stacks for T2WI, DWI, and
ADCmay havemeant that some other available sequenceswere not fully
reviewed, as the available number of unprocessed sequences in many
cases was very large. Unlike in the Streamline study, the generated scan
report was not used for clinical decision-making, potentially reducing
time spent on the read. The slightly shorter mean reading times using
ML of approximately 6% overall would be unlikely to affect daily prac-
tice. All readers were inexperienced in reading with ML output in
WB-MRI and the need to check appearances on the ML heat maps
might have slowed down reading, particularly during the first round.
However, ML output did not make overall reading times significantly
longer. Once readers were familiarized with using the heat maps, there
was a statistically significant drop in reading times by 11%, which could
be meaningful clinically.

To our knowledge, no publication has investigated the diagnostic per-
formance of human-ML radiology reading for detection of lung or colon can-
cer metastases inWB-MRI.Machine learning has been applied toWB-MRI
in chronic nonbacterial osteitis, lymphoma, and characterization of mye-
loma bone lesions9,16,17 but with noML-human-in-the-loop reader outputs.

Change in reading time when using ML or DL has been evalu-
ated in other studies, with different imaging modalities and tumor types.
A decrease in reading time of 11% has been reported in the detection of
lung nodules, using DL.18 The use of DL support in breast tomosynthesis
resulted in a mean decrease in reading time from 41 to 36 seconds, a
mean decrease of 11%, with a range of reported decreases of between
830 www.investigativeradiology.com
14% and 52.7%.19–21 In prostate MRI, DL support reduced reading time
by 21%, from a median of 103 to 81 seconds.22

Strengths of this study include the fact that WB-MRI scans were
obtained from a prospective multicenter multivendor study, with
multiparametric sequences. A relatively large number of independent
radiologists took part in the study. The use of a scribe for CRF filling
ensured homogeneity of reading methods, technical support to use the
ML heat maps (a first for all the readers), and independent reading time
measurement. The PACS cloud-based reading platform allowed blinded
worklists, and all readswere done in a normal radiology reporting room,
in an attempt at replicating daily work.

There were several challenges. Limited numbers of cases with
metastatic lesions and the variety of scanners and slight differences in
protocols all impacted on algorithm training. Because of time and re-
source constraints, it was not feasible to establish larger estimates of
interrater and intrarater agreement. We did not attempt to train a model
for automated disease diagnosis, but we focused on high sensitivity for
lesion detection for review by radiologist. Performance for detection of
metastases on a per-patient basis did not reach the high specificity of the
Streamline studies (95% colon, 93% lung cohorts) but sensitivities were
more similar (67% colon, 50% lung cohort).1,2 Speculative reasons for
this could be that readers were allocated scans from a multitude of hos-
pitals and vendors, with variable sequence appearances. Also, results
were not being used for clinical care potentially changing reader behav-
ior, whereas in Streamline, radiologists read WB-MRI from their site
and results were used in treatment planning. In both the current and
Streamline studies, the readers were blinded to other clinical data that
may impact on diagnostic interpretation.

CONCLUSIONS
A 2-step approach was developed to train a model for cancer le-

sion detection in WB-MRI of lung or colon cancer. Clinical validation
by radiologists demonstrated equivalent performance for the detection
of metastatic lesions on WB-MRI with or without ML support. There
was a modest decrease in reading timewhenMLwas used for later read
rounds, although additional research is required to ascertain whether
ML provides an overall time benefit. The study highlights the important
impact of read round when analyzing read-time in the evaluation of
ML applications.
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