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Abstract

The islets of Langerhans are critical endocrine micro-organs that secrete hormones regulat-

ing energy metabolism in animals. Insulin and glucagon, secreted by beta and alpha cells,

respectively, are responsible for metabolic switching between fat and glucose utilization.

Dysfunction in their secretion and/or counter-regulatory influence leads to diabetes. Debate

in the field centers on the cytoarchitecture of islets, as the signaling that governs hormonal

secretion depends on structural and functional factors, including electrical connectivity,

innervation, vascularization, and physical proximity. Much effort has therefore been devoted

to elucidating which architectural features are significant for function and how derangements

in these features are correlated or causative for dysfunction, especially using quantitative

network science or graph theory characterizations. Here, we ask if there are non-local fea-

tures in islet cytoarchitecture, going beyond standard network statistics, that are relevant to

islet function. An example is ring structures, or cycles, of α and δ cells surrounding β cell

clusters or the opposite, β cells surrounding α and δ cells. These could appear in two-dimen-

sional islet section images if a sphere consisting of one cell type surrounds a cluster of

another cell type. To address these issues, we developed two independent computational

approaches, geometric and topological, for such characterizations. For the latter, we intro-

duce an application of topological data analysis to determine locations of topological fea-

tures that are biologically significant. We show that both approaches, applied to a large

collection of islet sections, are in complete agreement in the context both of developmental

and diabetes-related changes in islet characteristics. The topological approach can be

applied to three-dimensional imaging data for islets as well.

Author summary

The pancreatic islets or islets of Langerhans are regions of the pancreas that contain endo-

crine or hormone-producing cells classified as alpha, beta, delta, PP, and epsilon. They are

responsible for regulating blood glucose levels, and their dysfunction leads to diabetes.

Differences in relative arrangement of alpha, beta, and delta cells has been observed

between species. For example, mouse islets predominantly contain beta cells in the central
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core with alpha and delta cells forming a mantle around them localized in the periphery.

Similar arrangement has been seen in small human islets, but larger islets have alpha and

delta cells also along the vessels penetrating inside the islet. These findings motivate the

debate of the functional significance of these structural patterns. In this work we mathe-

matically define and implement quantitation of ring-structures or cycles of alpha and

delta cells around beta cells (and vice versa) using two distinct methods, geometric and

topological, in 2D sections of islets. We analyze two different data sets of 2D sections of

human islets, one from different developmental stages and another from control and dia-

betic subjects. Further, we illustrate extension of the topological method to three dimen-

sional data sets.

Introduction

Described by Paul Langerhans as part of his medical dissertation in 1869, the islets of Langer-

hans [1] are endocrine micro-organs embedded in the acinar tissue of the exocrine pancreas.

While they comprise only about 1–4% of the total mass of the pancreas [2], they produce and

secrete hormones that are crucial for regulating blood glucose levels as well as levels of amino

acids, free fatty acids, keto acids, glycerol, and other energy-rich nutrients. There are several

cell types within islets, including beta cells, alpha cells, delta cells, and others, each of which

produces a specific hormone with complex counter-regulatory actions. These cells communi-

cate through a complex network of paracrine [3] and autocrine signaling pathways involving

hormones, neuropeptides, growth factors, and through electrical coupling via gap junctions [4,

5].

Beta cells are responsible for producing insulin, which promotes the uptake and storage of

glucose in muscle and adipose tissue and inhibits hepatic glucose production. Insulin also

affects the storage of glucose in the liver in the form of glycogen, as well as promotes storage of

lipids in fat tissue (inhibition of the hormone-sensitive lipase, promotion of lipoprotein lipase),

and amino acids in muscle tissue. Alpha cells produce glucagon, which increases blood glucose

levels by promoting the breakdown of glycogen stored in the liver and muscles, and by stimu-

lating gluconeogenesis, the production of glucose from non-carbohydrate sources such as

amino acids and fatty acids. Delta cells produce somatostatin, which helps regulate the secre-

tion of both insulin and glucagon. Electrical connectivity of delta cells is just being appreciated

in recent research and they play a central role in the regulation of both insulin and glucagon

[6]. Other cell types in the islets, such as epsilon cells, produce hormones that are involved in

appetite regulation and the overall metabolic response to food intake. These cells are not ran-

domly arranged in the islets of Langerhans, but instead form a complex three-dimensional

architecture. It is believed that islets have a core of beta cells (β), surrounded by mantles of

alpha cells and delta cells (αδ) that are close to the periphery, with the outer layer consisting of

pancreatic polypeptide (PP) cells. For example, [7] observed that small human islets (40–60μm

in diameter) in their study had β-cells in a core position, α-cells in a mantle position, and ves-

sels at the periphery. In bigger islets they observed α-cells in a mantle position as well as along

vessels that penetrated and branched inside the islets. There is some degree of variation in the

precise arrangement of the cells between islets, which themselves come in a variety of sizes,

and between species [2, 8, 9]. The precise arrangement of cells may play a role in the signaling

between cells and the regulation of hormone secretion [7, 10–13]. How this arrangement of

different cell types in islets [14] relates to innervation [15] of, and blood flow [16, 17] through

islets is still an area of active study [18, 19]. Motivated by the debate about the functional
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significance of core-mantle segregation of islet cells, our aim in this work is to quantitate ring-

structures or cycles of αδ-cells that surround β-cells and cycles of β-cells that surround αδ-cells

in 2D and 3D data sets of islet cell composition.

The development of islet cell populations and their numbers during the transition from

birth to adulthood is also a complex process that is not fully characterized in humans. How-

ever, studies have shown that there are dynamic changes in the numbers of different cell types

during this period [20, 21]. For example, the number of beta cells in the islets increases signifi-

cantly during the first few months after birth, then gradually increases until the age of about

5–6 years, after which it remains relatively stable until early adulthood. The numbers of other

islet cell types, such as alpha and delta cells, also change during this period, although the pat-

terns and magnitudes of these changes may differ from those of beta cells. There can be signifi-

cant individual variability in the numbers of islet cells during development, and

environmental factors such as diet and lifestyle also influence these processes. The relationship

between islets and acinar and ductal cells may also be different at different developmental

stages and in different species (e.g., islets are more intralobular in humans and more interlobu-

lar in mice).

In type 2 diabetes, it has been possible to quantitatively assess the decrease in the number

and function of different cell types in the islets of Langerhans [18, 22, 23]. Beta cell mass and

insulin secretion decrease, and delta cell number and somatostatin secretion also decrease.

Early during the development of diabetes there may be an adaptive increase in mass or func-

tion (or both) and in some people (non-progressors), this may be more functional or persistent

than in others (progressors) and is crucial for our understanding why some people do not

develop T2D despite insulin resistance and why some respond to dietary interventions while

others do not [24–29]. Glucagon secretion is inhibited by insulin but is also regulated by a

complex interplay of several other factors, including glucose levels, amino acids, and neural

inputs. Counterintuitively, the regulation of glucagon secretion is impaired, leading to an

increase in glucagon secretion. The mechanisms underlying this are not fully understood [30–

32], but it may be due to a combination of factors besides impaired insulin secretion, including

decreased sensitivity of alpha cells to glucose and altered gut hormone signaling. In addition,

inflammation and oxidative stress [33], which are known to be elevated in diabetes, can also

affect alpha cell function and contribute to increased glucagon secretion. This progressive loss

of cellular function ultimately leads to impaired glucose homeostasis and hyperglycemia in

type 2 diabetes.

Quantitative study of the arrangement of islet cells in health, disease and development has

been largely defined by the availability of data, both imaging and electro-physiological. The

majority of imaging data consists of immuno-fluorescence in two-dimensional (2D) sections

of islets which are then processed with image analysis software to determine nuclear locations

and cell types. Patch-clamp electro-physiological studies measure the electrical activity of indi-

vidual cells within isolated islets, and are used to investigate the functional connectivity of the

islets by recording the activity of cells in response to different stimuli [34–38]. Calcium imag-

ing using fluorescent dyes monitors changes in intracellular calcium levels in response to dif-

ferent stimuli and allows the measurement of the coordinated activity of cells within the islet

[39].

Given this data, the complex architecture of the islets of Langerhans has been described

quantitatively using a variety of methods. In the context of islets of Langerhans, structural con-

nectivity refers to the physical connections between different cell types within the islet, such as

gap junctions [35, 40] that facilitate direct communication and signaling between the cells.

Functional connectivity [36] refers to the coordination and synchronization of different cell

types within the islet. This is essential for proper regulation of glucose metabolism and insulin
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secretion. Spatial statistics, such as spatial auto-correlation functions which describe the degree

of similarity between nearby cells, describe the distribution and arrangement of cells within

islets quantitatively [19]. Network science [18, 21, 41, 42], going beyond spatial statistics by

computing centrality measures, clustering coefficients, and the modularity of the graph

defined by the cell-to-cell adjacency matrix obtained from images, has also been used to find

quantitative characteristics of islet morphology as evidenced in 2D sections. New imaging

techniques have been used to create detailed three-dimensional (3D) images of islets, which

have been used to quantify relationships between intraislet capillary density and islet size [43].

More recently, there has been significant activity combining network science with mathe-

matical modeling to understand how alterations in structural and/or functional connectivity

affect islet response to glucose-stimulated insulin secretion. The role of hub nodes in networks

[44–49] has been central to this activity with some conflicting reports. In this context, we set

out to investigate if there are quantitative topological characteristics distinct from the network

statistics that have been investigated for islet networks that may be relevant for dynamical islet

function. These nonlocal topological characteristics may, for example, implicitly incorporate

information about innervation and vascularization. They are also specific to the dimensional-

ity of the islet data, unlike functional network characteristics which can in principle be defined

without using any information about the spatial milieu of islet cells.

In this work, first, we develop a geometric quantitative characterization of the occurrence

of ring structures or cycles comprising of β cells (β-cycles) or αδ cells (αδ-cycles) that surround

cells of the other type(s) in 2D islet sections. We noted that this geometric approach was

unlikely to generalize robustly to 3D islet images that are becoming available. Therefore, to

check the results obtained via this intricate geometric quantitation, we developed a topological

data analysis approach that could be checked to agree with the geometric 2D results, and at the

same time generalize to 3D data. Specifically, persistent homology (PH) is a branch of topolog-

ical data analysis that computes topological invariants from networks by varying a minimal

edge-length threshold in a network. This allows PH to uncover non-local robust network fea-

tures. A 2D or 3D data set of locations of cells in an islet is a network of cells spatially embed-

ded in a Euclidean space. In this case, features computed by PH can be geometrically realized

as holes in the spatial embedding. Hence, αδ-cycles of interest can be computed as representa-

tive boundaries of holes in the embedded network of αδ-cells that contain β-cells inside. How-

ever, representative boundaries around these features are not unique by definition [50] so the

computed boundary may be geometrically imprecise. In [51] we developed technical tools for

finding tight representatives for topological features that improve geometrical precision of esti-

mation of their location. Here, we introduce a way to quantitate topological features that are

biologically significant, specifically, those features in the spatial embedding of the αδ-network

that contain β-cells inside and vice versa. With these tools in hand, we have investigated a large

number of islet sections in this paper in an attempt to approach the cytoarchitecture of the

islets of Langerhans in a computationally rigorous setting. We applied our computational

approach to both developmental changes in islet cytoarchitecture and to compare diabetic and

control islets.

Results

Two data sets of locations of beta (β), alpha (α), and delta (δ) cells in 2D slices of human pan-

creatic islets were analyzed. The first comprises islets in different developmental stages of ges-

tation (stage 0), 1–35 weeks (stage 1), 12–24 months (stage 2), and 28 months and later (stage

3). Changes in pancreatic islet cyto-architecture during development have been studied previ-

ously using this data set [21]. The second comprises islets from diabetic and non-diabetic
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human subjects. We call the former developmental data set and the latter the T2D data set.

Subject-wise demographics for the T2D data sets are shown in S4 Table. These details are not

available for the developmental data set. α and δ cells together will be denoted by αδ-cells.

Ring structures computed using the geometrical method will be called geometric cycles and

those computed using topological data analysis will be called PH-cycles. Fig 1 shows examples

of cycles around non-singular (NS) components (component of a network with more than

one node or cell in this case that were computed using both methods.

Cell composition of islets changes significantly during development

There were 6088, 4942, 3130, and 7203 islets with at least five β-cells and five αδ-cells in stages

0 to 3, respectively. Islets were characterized by their total number of cells (transformed to log

scale) and β-cell fraction. The resulting 2D distributions of islet characteristics for each stage

were compared between stages pairwise using the Kolmogorov–Smirnov test (KS-test). We

found that the distributions of islet characteristics are significantly different between every pair

of stages (p-values< 0.05, see S1 Table). For a more informative comparison, we used the Kull-

back–Leibler divergence (KL-divergence) to quantitatively assess the relative difference

between kernel density estimates (KDEs) of the 2D distributions of islet characteristics. Fig 2A

shows that the KL-div between stages 0 and 1 and between 2 and 3 are smaller than all other

pairwise comparisons. This indicates that islet cell composition changes more significantly

from stage 1 to stage 2. Peaks of the KDEs indicate that a higher proportion of islets have

higher β-cell fraction in the later developmental stages of 2 and 3. S10A Fig shows exemplary

2D sections (characteristics similar to the peak of the KDEs) for the developmental stages. We

next plot the KDE of the 2D distribution of islets characterized by the number of α and δ cells

in them. Only islets with at least 5 α and δ-cells were considered. Fig 2B shows that in the early

stages (0 and 1) majority of islets have the same number of α and δ-cells. However, in the later

stages of development clusters of islets appear that have more α than δ-cells. Moreover, almost

all of the control and diabetic islets (with at least 5 cells of each kind) have more α than δ-cells

(see S9 Fig). We note that control and diabetic islets are from older human subjects (see S4

Fig 1. Examples of geometric and PH-cycles. (A) αδ-cycle around a NS β-component. (B) β-cycle around a NS αδ-component.

https://doi.org/10.1371/journal.pcbi.1011617.g001
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Table). The distribution of ages of all subjects in the T2D data set has a minimum age of 15

years and themedian age of 64 years.

There is a correlation between changes in cycle formation around cores and

topology of the islets across developmental stages

Computing geometric cycles found 649, 463, 168, and 453 islets with at least one NS β-compo-

nent inside an αδ-cycle in stages 0 to 3, respectively. In contrast, there were 64, 88, 238, and

823 islets with at least one NS αδ-component inside a β-cycle in stages 0 to 3, respectively. Fig

3A plots the percentages with respect to the total number of islets. Albeit these percentages are

small, the trends in percentages of islets with αδ-cycles around β-cores and β-cores around αδ-

cycles are clearly different, with significant changes in both happening after stage 1. Further, a

similar pattern is observed in maximum dimension-1 (H1) topological persistence of all islets.

S1 Appendix gives an illustration of dimension-1 persistence applied to a point-cloud and an

intuitive interpretation of results. S8 Fig shows distributions of the maximum dimension-1

persistence for β-graphs (left panel) and αδ-graphs (right panel) in all 2D sections across devel-

opmental stages. Except for stages 0 and 1 all other pairwise comparisons (Mann-Whitney U

test) show that the distributions are significantly different. Fig 3B shows the median and 95%-

tile of distributions of maximum H1 of αδ-cells and of β-cells in all islets at different develop-

mental stages. Both the median and 95%-tile of β-cells increase after stage 1, suggesting that

there are holes with larger robustness that can wrap around NS αδ-components. Similarly,

both the median and 95%-tile of the maximum H1 persistence of αδ-cells decrease from stage

1 to 2 in accordance with a decrease in the percentage of islets with at least one NS β-compo-

nent inside an αδ-cycle. S1 Fig shows that distributions of maximum persistence are signifi-

cantly different after stage 1.

Fig 2. Comparing cell composition across developmental stages. (A) KDE plots of the distribution of islets characterized by the total number of cells and

β-cell fraction from stage 0 to stage 3. The number between every pair of plots shows the KL-divergence between respective KDEs. The KL-divergence

between stages 0 and 1 and between 2 and 3 are at most 0.07 as compared to at least 0.27 for every other pairwise comparison. The mode of the density

estimate is marked by a red star in each plot. Peaks are at (0.38, 3.27), (0.49, 2.95), (0.66, 3.27), and (0.75, 3.6) for stages 0 to 3. A higher proportion of islets

in the last two stages have a higher β-cell fraction. (B) KDE plots of distribution of islets characterized by number of α and δ-cells. In the later

developmental stages (2 and 3) there is a large proportion of islets with more α-cells than δ-cells (bright regions in the KDE under the y = x white dashed

line).

https://doi.org/10.1371/journal.pcbi.1011617.g002
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Islets with at least one NS β-cell component inside αδ-cycles have

differences in their cell composition between later stages

Fig 2A showed that the KL-divergence in the distribution of characteristics of all islets between

stages 2 and 3 is the smallest (� 0.07) amongst all pairwise comparisons. Further, the percent-

ages of islets with a NS β-component inside an αδ-cycle are similar in stages 2 and 3 (see Fig

3A). However, Fig 4A shows that distributions of characteristics of such islets have a larger

KL-divergence of 0.26 between stages 2 and 3. Specifically, a comparison of peaks of these

KDEs indicates that a higher proportion of such islets in stage 3 contain more cells. In contrast,

Fig 4B shows that islets with a NS αδ-component inside aβ-cycle have smaller KL-divergence

Fig 3. Changes in cycle around core formation during development correlate with changes in the topology of islets. (A) Percentages of islets with at

least one NS β-component in a αδ-cycle (blue) and those with at least one NS αδ-component in a β-cycle (red). The trends of the two are distinct. (B)

Percentiles of distributions of maximum persistences of αδ-cells (blue) and β-cells (red) in islets. Trends in (B) correlate with those in (A) from stage 1

onwards.

https://doi.org/10.1371/journal.pcbi.1011617.g003

Fig 4. Comparing KDEs of distributions of islets from developmental data set with (A) at least one NS β-comp inside an αδ-cycle and (B) at least one

NS αδ-comp inside an β-cycle. Stages 0 to 3 in clockwise from the left-most plot for stage 0. Peaks in (A) are at (0.31, 4.95), (0.26, 4.31), (0.27, 4.63), and

(0.29, 5.14) and in (B) are at (0.47, 5.53), (0.54, 4.95), (0.72, 4.63), and (0.66, 4.69), for stages 0 to 3.

https://doi.org/10.1371/journal.pcbi.1011617.g004
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of 0.10 between stages 2 and 3. For such islets, the largest KL-divergence is between stages 0

and 3, which might be attributable to the high KL-divergence between KDEs of all islets in

these stages (largest KL-divergence in Fig 2A is between stages 0 and 3). This is supported by

the observation that the changes in peaks of KDE are similar in both cases, a larger proportion

have higher β-fraction in stage 3 as compared to stage 0. KS-test estimates significant p-values

(less than 0.05) for all pairwise comparisons between developmental stages in both cases of

islets, with a NS β-component inside an αδ-cycle and a NS αδ-component inside a β-compo-

nent (S2 Table). S10B and S10C Fig show exemplary 2D sections (characteristics similar to the

peak of the KDEs) for the developmental stages for islets with at least one β-component inside

a mantle and islets with at least one αδ-component inside a mantle, respectively.

There are differences in islet cytoarchitecture between control and diabetic

subjects

There were 2038 and 1179 islets with at least five β-cells and five αδ-cells from control and dia-

betic subjects, respectively. Fig 5A shows that the KL-divergence between KDEs of islets with

at least one NS β-component in an αδ-cycle (middle row in the figure panel) and of those with

at least one NS αδ-component in a β-cycle (bottom row) is more than double the KL-diver-

gence between KDEs of all islets (top row), between control and diabetic subjects. We found

175 and 85 islets with at least one geometric αδ-cycle around a NS β-component in non-dia-

betic and diabetic subjects, respectively. 159 and 56 islets were found to have at least one geo-

metric β-cycle around a NS αδ-component. S2 Table shows that distributions of the islets

characteristics between control and diabetic are significantly different in both cases, p-values

from KS-test are<0.05. S11 Fig. shows exemplary 2D sections for each case. Fig 5B left panel

shows that percentages of islets with at least one NS component in a cycle are lower for diabetic

subjects. A similar trend is observed for maximum dimension-1 persistence (Fig 5B right

panel). This correlation between percentages of islets with NS components in cycles and per-

centiles of the maximum of dimension-1 persistence was also observed across developmental

Fig 5. Comparing features of islets between control and diabetic subjects. (A) KDEs for control (left column) and diabetic (right column) subjects for all

islets (top row), islets with at least one NS β-component in an αδ-cycle (middle row), and islets with at least one NS αδ-component in a β-cycle (bottom

row). Numbers show the KL-divergence. (B) The percentage of islets that have at least one cycle around a NS component is lower in diabetic subjects as

compared to non-diabetic subjects. Percentiles of maximum dimension-1 persistence of islets also are lower for diabetic subjects.

https://doi.org/10.1371/journal.pcbi.1011617.g005
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stages. S2 Fig shows that distributions of maximum persistences are significantly different

between control and diabetic subjects.

Cycles are closer to the islet’s periphery than its center

Minimal distances of each geometric cycle from its islet’s periphery and center were computed.

Fig 6A shows that the minimal distance of the computed cycles from the islet’s periphery is

less than their minimal distance from the islet’s center in the T2D data set. Similar was

observed for the developmental data set (see S5 Fig). Fig 6B shows that αδ-cycles in small islets

(estimated area<10000) are close to the periphery in both control and diabetic. However,

there exist β-cycles in small islets that are far from the periphery, as shown by large minimal

distances from the periphery. We also observe that larger islets have some cycles with a larger

minimal distance from the periphery. Moreover, only a few cycles (6% to 19%) contain the

islet center inside them. S6 Fig shows distance from periphery vs. islet area for the develop-

mental data set.

All results are consistent between geometric and PH-cycles

For all of the computed geometric cycles, proximal PH-cycles were computed. In at least

89.5% of the islets with at least one geometric cycle around a NS component, a PH-cycle proxi-

mal to that geometric cycle was found. Specifically, there were 629, 439, 165, and 440 islets

with at least one αδ PH-cycle around a NS β-component in stages 0 to 3, respectively. There

were 60, 79, 219, and 753 islets with at least one β PH-cycle around a NS αδ-component. For

the T2D data set, we computed 175 and 85 islets with at least one αδ PH-cycle around a NS β-

component in non-diabetic and diabetic subjects, respectively. 155 and 54 islets were com-

puted to have at least one β PH-cycle around a NS αδ-component. S3 Table shows that

Fig 6. Analysis of cycles with respect to islet periphery and center. (A) KDEs for a minimal distance of cycles from islet periphery vs. islet center. The

majority of the cycles are below the y = x line (white dashed) showing that their minimal distance from the periphery is less than that from the islet center.

(B) Minimal distances of cycles from islet-periphery vs. islet’s estimated area. αδ-cycles in small islets touch the periphery and very few cycles contain the

islet center inside them. There are cycles in larger islets that are far from the periphery.

https://doi.org/10.1371/journal.pcbi.1011617.g006
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distributions of islet characteristics in both cases are not significantly different for all different

categories in both data sets, p-values from KS-test are� 0.05 (at least 0.99). The maximum

KL-divergence between KDEs of islets with at least one geometric αδ-cycle around a NS β-

component and those with at least one αδ PH-cycle around a NS β-compoment across all

stages is 0.001. For islets with at least one β-cycle around a NS αδ-component, this number is

0.005. For the T2D data set, these numbers are 0 and 0.004. We note that these KL-divergences

are significantly smaller (by an order of magnitude) as compared to the divergences observed

in previous results. S3 and S4 Figs show all KDEs for developmental and T2D data sets, respec-

tively. KS-tests and comparison of KL-divergences of KDEs give evidence for agreement

between results from geometric and PH-cycles.

PH finds closed polyhedral structures in 3D islets consisting of αδ-cells (β-

cells) around multiple β-cells (αδ-cells)

We showcase the application of PH to 3D data sets. Structural information of mouse (n = 29)

and human (n = 28) islets were obtained from [52]. Fig 7 illustrates results for three of the

islets, two from humans and one from mice.

Methods

Data acquisition. The two data sets for human pancreatic islets in this study comprise of two-

dimensional coordinates of beta (β), alpha (α), and delta (δ) cells in islets. The data set with

islets at different developmental stages is from human pancreatic tissues that were obtained

from the University of Chicago Human Tissue Resource Center with an exemption from the

Institutional Review Board [21]. The different stages are gestation (stage 0), 1–35 weeks (stage

1), 12–24 months (stage 2), and 28 months and later (stage 3). The data set with diabetic and

non-diabetic human subjects is from [53]. Locations of endocrine cells were obtained as

described in the original studies, which we briefly summarize here. Two-dimensional sections

of tissue samples were stained for insulin, glucagon, somatostatin, and DAPI. Each section was

imaged, and two-dimensional coordinates for each cell nucleus were estimated based on high

Fig 7. Examples of closed polyhedral structures found by PH in 3D islets. (A) β-cycles that contain αδ-cells inside them in a human islet. β-cells are in

green and αδ-cells are in red. (B) αδ-cycles that contain β-cells inside them in a human islet. (C) β-cycles thet contain αδ-cells inside them in a mouse islet.

https://doi.org/10.1371/journal.pcbi.1011617.g007
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concentrations of DAPI. The cell type of each cell was recorded as β, α, or δ based on a high

concentration of insulin, glucagon, or somatostatin near its nucleus, respectively.

Defining β- and αδ-graphs for islets. Islets with at least five αδ-cells and five β-cells were con-

sidered. VI
ad

and VI
b

denote the sets of αδ-cells and β-cells, respectively, in islet I. Edges between

αδ-cells and between β-cells were defined as follows. First, neighborhood radii tI
b

and tI
ad

were

computed using the pair distribution function [18]. The pair distribution function is computed

as ratio of the number of cells at a radial distance of r to the number of cells expected if they

are randomly distributed. The thickness of the radial shells was chosen as 0.5. At r-values

where peaks occur in the curve of the pair distribution of function, it is expected that there is a

larger number of cell pairs within intercell distances than would be expected from a random

distribution [21]. The peak at the smallest value of r represents a primary correlation between

cells. Peaks of diminishing heights occur at higher r-values as a result of secondary correlations

between cells. A peak-finding algorithm was implemented to compute tI
b

as the smallest r-
value at which the pair distribution function for β-cells is minimal between the second and the

third peaks. tI
ad

is computed similarly. The area of an islet was defined as the area of the bound-

ing box around all of its cells. After tI
b

was computed, edges between β-cells are initially all the

β-cells that are at most with tI
b

distance apart. Edges between αδ-cells were initialized similarly.

Second, a shadow algorithm was implemented to account for obstruction in the interaction of

two cells due to the presence of a third cell between them [18]. All edges that are obstructed by

a cell were removed. The final sets of β-edges and αδ-edges are denoted by EI
b

and EI
ad
;

respectively.

Computing cycles using geometry. αδ-cycles around β-cells were computed as follows. The

αδ-graph of islet I is the discrete graph on its αδ-cells, denoted by GI
ad
� ðVI

ad
; EI

ad
Þ. GI

b
is

defined similarly. We drop the superscript I for notational convenience. A αδ-cycle is a simple

closed curve on Gαδ such that it partitions the graph into two disjoint sets, one inside the cycle

and one outside. It follows from the Jordan Curve Theorem that the graph has to be planar.

Gαδ was made planar using dummy vertices—if two edges, {v1, v2} and {v3, v4} intersect at p,

then they are removed from EI
ad
; a dummy vertex up located at p is added to Vαδ, and edges {vi,

up}, 1� i� 4, are added to EI
ad
: Geometric αδ-cycles around β-cells were computed using

three main steps. First, a list of all αδ-cycles was computed as follows. For each connected com-

ponent of ck of Gαδ, a spanning tree Tk is constructed on ck. Let Fk be the set of edges that are in

Eαδ but not in Tk. The weight of an edge between two cells is defined as the Euclidean distance

between the cells. For each edge {vi, vj} in Fk a shortest weighted path P between vi and vj in Tk
is computed. The set of edges {{vi, vj}} [ {edges in P} forms an αδ-cycle or a cycle of αδ-cells in

ck. αδ-cycles in all components of Gαδ were computed. Second, αδ-cycles that surround β-cells

were determined. For each β-cell, all αδ-cycles that contain it are computed using a winding-

number algorithm. A set of β-cells can be inside multiple cycles. Sets of β-cells were computed

that are inside the same set of αδ-cycles. Let B be the collection of such sets of β-cells. Third,

for each set S of β-cells in B; a minimal geometric cycle, PS, of αδ-cells is defined and com-

puted as follows.

1. Determine the closest pair of cells {βi, v*} for βi 2 S and v* 2 Vαδ. Initialize PS = [v*]. The

aim is to find path PS = [v*, v1, . . ., vn, v*] of αδ-cells that contains S inside it.

2. Let angðv;uÞ ¼ arctan vy � uy
vx � ux

; where vx and vy are x and y-coordinates of vertex v in the islet.

If ang(v, u)< 0, then define angðv; uÞ ¼ arctan vy � uy
vx � ux
þ 2p: In other words, it is the positive

or counter-clockwise angle that the horizontal line through u has to turn to be parallel to

the line through u and v. Let θ* = ang(βi, v*).
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3. For vj 2 Vαδ, let N(v) be the neighbors of vj in Gαδ. Let anglesðvjÞ ¼ ½angðvmj ; vjÞ� ¼

½ym�1�m�jNðvjÞj be the sorted list of angles in increasing order, where vmj 2 NðvjÞ:

4. The notion of minimality that we define is that the counterclockwise turn at every node

along the cycle should be minimal.

5. Hence, v1 2 PS is computed as v1 ¼ vk∗ 2 Nðv∗Þ such that θk is the smallest angle greater

than θ*. Once we have PS = [v*, v1], the next cells in the path are computed as follows. If vm
and vm+1 are two adjacent cells in PS, the next cell vm+2 2 PS is computed as vmþ2 ¼ vkmþ1

2

Nðvmþ1Þ such that θk is the smallest angle greater than ang(vm, vm+1). The next cells are com-

puted till we reach v*. Note that if no such θk exists at a step, then the minimal counterclock-

wise turn is for k = 1, hence, vmþ2 ¼ v1
mþ1
:

6. It is possible that the computed minimal path does not contain S inside it. Hence, we check

that every β cell in S is inside the computed path using the winding number algorithm. If

not true, then the pair {βi, v*} is marked as an incompatible pair and we begin with step 1 by

finding the closest pair but ignoring the ones that are marked as incompatible.

Sizes of components of S are determined using the Networkx Python package [54]. β-cycles

around αδ-cells are computed similarly.

An advantage of using angles to find geometric loops is that we can identify components

that are partially surrounded by cells of the other kind (see S7 Fig). However, analysis of partial

loops is not included in this work.

Kernel density estimation and Kullback-Leibler divergence. Islets are characterized by β-cell

fraction and the total number of cells in them. The number of cells in islets was transformed

by ln(1 + x). KDE was estimated using scipy.stats.gaussian_kde module of the

Scipy Python package [55], with the default method for bandwidth estimation. Two-dimen-

sional KDE was computed on a grid of resolution 100 over the space of (β-fraction, the number

of total cells in islets) coordinate pairs. KL-divergence between two KDEs was computed using

scipy.stats.entropy module with default settings.

Computing islet’s periphery and distance of cycle from its islet’s periphery and center. Since

the periphery of a 2D slice can be non-convex, it was estimated by computing an alpha shape

[56] for the set of all cells in the slice as follows. The alpha shape computation depends on the

hyperparameter called the shrink factor. Shrink factor set to 0 computes the convex hull of the

set of points as the alpha shape. To get a more accurate estimate of the non-convex periphery,

we first initialized the shrink factor as the multiplicative inverse of the maximum of gI
b

and gI
ad

for islet I. If the computed alpha shape was composed of multiple polygons, the shrink factor

was halved and the alpha shape was computed again. The periphery of the islet was defined by

the alpha shape that was composed of a single polygon at the largest possible shrink factor in

this iteration. The computation was done using the Python package alphashape v1.3.1.

The area of the islets and distances between cycles and the periphery were estimated using the

distance method from Python package Shapely v2.0.1. distance computes the

distance between two polygons as the distance between the closest pair of points. The islet cen-

ter was computed as the centroid of the periphery. Containment of the islet center inside a

cycle was computed using contains method of Shapely v2.0.1.

Computing dimension-1 persistent homology. Dimension-1 PH of αδ-cells was computed

using the standard column algorithm to reduce boundary matrices [57]. An introduction to

persistent homology with precise mathematical terminology can be found at [58]. Here we

provide a brief overview of the standard column algorithm to compute dimension-1 persis-

tence pairs using non-technical terminology that might be more accessible to non-experts.
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Total ordered sets of vertices, edges, and triangles are defined as follows. Vertices in Vαδ are

indexed aribitrarily. All possible edges on Vαδ are indexed by their length with longer edges

having a higher index. All possible triangles on Vαδ are indexed by order of the edge with the

largest order in their boundary. In both cases, ties are broken arbitrarily. Boundary matrix for

edges, De, is defined as a m by n matrix with, De[i, j] = 1 iff vi is in the boundary of ej and De[i,
j] = 0, otherwise. Similarly, boundary matrix for triangles, Dt, is defined as a n by k matrix

with, Dt[i, j] = 1 iff ei is in the boundary of tj and Dt[i, j] = 0, otherwise. Boundary matrices are

reduced using standard column reduction as follows. A column is non-empty if it has at least

one non-zero entry. Pivot-index of a non-empty column is defined as the maximum row

index with a non-zero element. If columns i and j have the same pivot-index and i< j, then

column i is replaced with its modulo 2 sum with column j. This is repeated till no two non-

empty columns have the same pivot-index. De and Dt are reduced independently, and the

resulting reduced matrices are denoted by Re and Rt. The reduction operations are denoted by

Ve and Vt, respectively. If (i, j) is a pivot of Rt, then there is a topological feature born at the spa-

tial scale of the length of edge ei and it dies at the spatial scale of the largest length of the edge

in the boundary of triangle tj. Persistence of each topological feature is the difference between

its death and birth. Dimension-1 PH of β-cells was computed similarly.

Computing an initial set of biologically significant cycles using persistent homology. We pro-

vide instructions to compute representative boundaries using non-technical language. See [59]

for an explanation of the algorithm using precise terminology. αδ-cycles containing β-cell(s)

and β-cycles containing αδ-cells(s) are classified as biologically significant. To compute αδ-

cycles around β-cells in an islet I, sets of vertices, edges, and triangles were defined as follows.

Vertices and edges are VI
ad

and EI
ad
; respectively. Triangles are those that have edges in EI

ad
and

do not contain (horizontal ray algorithm) any β-cell. Boundary matrices are defined as

described previously and PH is computed for this collection of vertices, edges, and triangles.

Since triangles containing β-cells are not in the boundary matrix, topological features in the

αδ-graph that contain β-cells will not die. If column i of Re is empty and i is not a pivot-index

of any column of Rt, then column i of Ve is a representative boundary of a topological feature

that does not die. From these representative boundaries we ignore the ones that do not contain

any β-cells inside them. This results in an initial set of αδ-cycles that contain at least one β-cell

inside them.

Greedy and stochastic shortening of PH-cycles before comparison with geometric cycles. Rep-

resentative boundaries around topological features are not unique by definition and can be

geometrically imprecise. To improve their precision before comparison with geometric cycles,

the boundaries in the initial set were shortened using greedy and stochastic shortening intro-

duced in previous work [51]. Technical details of stochastic shortening of αδ-cycles in an islet

are as follows. Locations of αδ-cells were perturbed 50 times in neighborhood disks centered

at the cells. Edge-lengths were rounded to the nearest integer. Since edges of the same length

can be ordered arbitrarily, at most 50 unique different total ordered sets of edges were con-

structed for each perturbation. PH-cycles for each permutation of every perturbation were

computed as described above. Moreover, this was done for ten different values of maximum

neighborhood disk radii of [0.1, 0.2, . . ., 1]. These ranges of values were chosen because they

are much less than (� 10%) the minimum neighborhood radius of 8 that was computed across

all islets in both data sets. This resulted in up to 25000 sets of representative boundaries for the

islet. For each boundary in a set of representatives, the set of β-cells inside it was computed.

For each set of β-cells that is inside some representative boundary, a list of those with the least

number of edges was constructed. Finally, we computed if any of the representative boundaries

in this list is proximal to a geometric cycle as described next.
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Comparing geometric cycles with PH-cycles. We say a geometric αδ-cycle matches an αδ PH-

cycle if they both contain the same set of β-cells inside them. Suppose L is the set of αδ-cells

that are computed to form a geometric cycle and L̂ is an αδ PH-cycle computed for an islet I.
The distance between them is defined as dðL; L̂Þ ¼
maxfmaxpi2Lfminp̂ j2L̂

fdðpi; p̂jÞgg;maxp̂ i2L̂fminpj2L
fdðpi; p̂jÞggg; where d(p, q) is the Euclidean

distance between cells p and q in the islet. We say that L and L̂ are proximal if cycle L matches

with L̂ and dðL; L̂Þ � tI
ad
: Otherwise, we say they are distant. Analogous definitions follow for

proximal β geometric and PH-cycles.

Computing cycles in 3D data sets using PH. To compute αδ-cycles around β-cells in an islet

I, sets of vertices, edges, and triangles were defined as before. Additionally, tetrahedrons on

αδ-cells are defined as those that have edges in EI
ad
; all faces as valid triangles, and do not con-

tain any β-cell. Containment was checked using barycentric coordinates. Tetrahedrons are

ordered by the length of the longest of the edges of their faces, also called their diameters.

Those with the same diameter are given a unique order arbitrarily. This results in a full-

ordered set of tetrahedrons. The boundary matrix for tetrahedrons is defined and constructed,

denoted by Dh. It is reduced as before to give the reduced matrix Rh and features that do not

die are computed using methods analogous to those defined for the 2D case. The threshold to

define edges on the graph was chosen as 25.

Tests for statistical significance. 1D distributions of maximum persistences were compared

using two-sided Mann-Whitney U rank test for two independent samples using scipy.
stats.mannwhitneyu module with default settings. 2D distributions of islet characteris-

tics were compared by computing p-value from KS-test using the ndtest Python package

from https://github.com/syrte/ndtest.

Discussion

Studies of the structure of islets of Langerhans have shown that the relative number and

arrangement of the individual cell types plays a critical role in regulating glucose metabolism

[60]. The arrangement is highly complex and heterogeneous, and has been investigated using

various experimental and quantitative approaches, including network science methods [41,

42]. Changes in the structural characteristics of islet cell types have been observed during the

progression of type 2 diabetes, with decreased beta-cell numbers and disrupted structural and

functional connectivity being key features of the disease. Quantification of islet structure has

typically been applied to 2D images of islet sections, but such 2D data is unable to capture

important aspects of islet physiology such as vasculature [61] and innervation [62], both of

which are known to play critical roles in islet function and in functional communication

between islets.

Our contribution here is two-fold. We have developed two distinct approaches to go

beyond functional network statistics or spatial descriptive or network statistics in the charac-

terization of islet cytoarchitecture. One, a geometric approach, is much easier to apply to, and

visualize in, 2D image data, and the other, a topological characterization, is applicable to 2D

and 3D data. Of note here is that in contrast to network characterizations, the topological fea-

tures we uncover are nonlocal by construction, and therefore are capturing a complementary

view of islet cytoarchitecture relative to network approaches. While there are other computa-

tional approaches to topological characterization, our approach is the only one that explicitly

gives the locations of the actual topological features in the image. Such location information is,

of course, the sine qua non for studies of the functional impact of any feature, see, for example
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[63]. We confirmed that results from our two distinct computational methods, geometric and

topological, completely agree for the 2D sections for the developmental and T2D data sets.

Our results showed that a low percentage of islets contained ring structures with a NS-com-

ponent of the other kind of cells. However, we observe changes in this percentage across devel-

opmental stages and between control and diabetic, that correlate with trends in persistence

homology of the islets in both cases. These differences in islet cytoarchitecture may affect para-

crine signaling between endocrine cells resulting in functional differences [7, 10–13]. For

example, NS-components of β-cells might be indicative of β-cells coupled via gap junction

linkages that may play a functional role in coordinated responses to endogenous insulin secre-

tagogues such as glucagon-like peptide-1 (GLP-1), but might not be significant for islet

dynamics involved in glucose-stimulated Ca2+ oscillations [64, 65]. Further, 3D structural

analysis of human islets has shown that α-cells are arranged along interiorly pervading vessels

[7]. Hence, studying the topology of the 3D islets taking into account the blood vessel informa-

tion, and comparing it between control and diabetic subjects might be important to study pos-

sible relations between morphological and functional changes.

The topological characterization [66] may be important for understanding disease suscepti-

bility of islets of different characteristics. It is obvious that 2D images provide a limited view of

the complex 3D architecture of the islet, and can result in under- or overestimation of cell sizes

and numbers. In addition, automated segmentation algorithms may not always accurately dis-

tinguish individual cells, particularly in cases where cells are tightly packed or have irregular

shapes. Finally, variations in staining or imaging conditions can affect the accuracy and repro-

ducibility of quantitative measurements. The topological characterization is robust to many of

these experimental uncertainties.

3D imaging techniques, including confocal microscopy, two-photon microscopy, and opti-

cal coherence tomography, are being developed to provide a more comprehensive understand-

ing of islet architecture [19, 43, 61, 67–73], including progress on visualization of vasculature.

Advances in image analysis algorithms allow the segmentation of individual cells from 3D

image stacks, allowing for the quantification of various structural and functional parameters.

Our topological approach can be applied without any changes to 3D imaging data, while the

geometric approach is difficult to generalize to 3D without mathematical assumptions. How-

ever, current 3D imaging of islets does have limitations, such as limited penetration depth and

imaging speed, which may result in incomplete imaging of large islets. Nevertheless, we illus-

trated application of PH to find αδ-cycles (closed polyhedral structures) in 3D data sets con-

taining β-cells inside (and β-cycles containing αδ-cells inside) for the limited data sets of

human and mice that were publicly available. It can be of interest to analyze the properties of

locations of the cycles found in 3D data sets. However, in the limited 3D data sets available, we

observed islets with highly convex shapes and some with multiple globules. Mathematically

sound definition and stable computation of geometrical properties of these 3D point-clouds,

for example equatorial plane and poles, might require a larger number of data sets for testing

and validation. It can be of further interest to compare the consistency of results between 3D

data sets and their 2D sections for different slicing schemes. These analyses of 3D islet

cytoarchitecture can be a future direction of research as data from many 3D islets becomes

available.

Mathematical models have been used to simulate the behavior of islets and predict how

changes in cell number, size, and arrangement will affect glucose metabolism. These models

can also be used to analyze the effects of different interventions, such as drug treatments, on

islet function. Applying this type of mathematical modeling [37, 47, 48, 74] to simulated islet

cell distributions with similar network characteristics but distinct topological characteristics or
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vice versa would be an interesting future direction to determine the relevance of nonlocal

topological features to islet function.

The contribution of this work to biology is to provide quantitation of structures that have

been controversial in terms of existence and/or functional significance. The results are correla-

tive and not causative. How these structures are related to glucose-stimulated insulin secretion

(GSIS) profiles is unclear. We hope that by providing multiple mathematical methods for

defining and computing such topological structures, the field can focus on the relevance of

these structures for function and understand how different features in the GSIS profile are

related to specific islet features.
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S1 Appendix. Persistent homology applied to discrete set of points. An illustration of

dimension-1 PH computed for a point-cloud and intuitive interpretation of the results.
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S1 Table. KS-test p-values for pairwise comparison of distributions of islet characteristics

for all islets.
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S2 Table. KS-test p-values for pairwise comparison of distributions of islet characteristics

for islets with cycles around NS components. Upper diagonal matrix shows comparison for

islets with a NS β-component in an αδ-cycle. Lower diagonal matrix shows comparison for

islets with a NS αδ-component in a β-cycle.
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S3 Table. KS-test p-values for comparison between geometric and PH-cycles, of distribu-

tions of islet characteristics for islets with cycles around NS components.
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S4 Table. Demographics of the subjects in the T2D data set.

(PDF)

S1 Fig. Comparing distributions of maximum dimension-1 persistence between develop-

mental stages. Top row is αδ-cells. Bottom row is β-cells. Left column shows box plots. Right

column shows the significance results from pairwise Mann-Whitney U tests. Black dotted

edges represent p-value >0.05 and solid thick red edges represent p-value <0.001. Only stages

0 and 1 are not significantly different.

(TIF)

S2 Fig. Comparing distributions of maximum dimension-1 persistence between control

(C) and diabetic (D) subjects. Left column is for topology of αδ-cells and right column is for

topology of β-cells. Both are significantly different since p-value <0.05.

(TIF)

S3 Fig. KDEs of features of islets with cycles around NS components are similar for geo-

metric and PH-cycles for developmental data set. KDEs of islets with (A) αδ-cycles around

at least one NS β-component, and (B) β-cycles around at least one NS αδ-component. In each

panel, left column is for geometric cycles and right column is PH-cycles. Rows are stages are 0

to 3 from top to bottom.

(TIF)

S4 Fig. KDEs of features of islets with cycles around NS components are similar for geo-

metric and PH-cycles for T2D data set. KDEs of islets with (A) αδ-cycles around at least one
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NS β-component, and (B) β-cycles around at least one NS αδ-component. In each panel, left

column is for geometric cycles and right column is PH-cycles. Top row is non-diabetic or con-

trol and bottom row is for diabetic subjects.

(TIF)

S5 Fig. Peripheral analysis for developmental data set.

(TIF)

S6 Fig. Distance of mantles from periphery vs. estimate of the islet area.

(TIF)

S7 Fig. Partial loop computed using geometric method. A component of β-cells (green) is

partially surrounded by αδ-cells (small red points). The red arcs around the β-cells show the

region surrounded and the black arcs show the region not surrounded.

(TIF)

S8 Fig. Comparing distributions of maximum dimension-1 persistences for developmental

data set. Except for developmental stages 0 and 1, all other pairwise comparisons showed sig-

nificant difference (p� 0.05) using Mann-Whitney U test.

(TIF)

S9 Fig. Characterizing ratio of α to δ cells in 2D sections for the T2D data set.

(TIF)

S10 Fig. Exemplary 2D sections for developmental data set. Examples of sections with char-

acteristics close to the peak in KDE for (A) all islets, (B) islets with at least one NS β-component

surrounded by a cycle, and (C) islets with at least one NS αδ-component surrounded by a cycle.

(TIF)

S11 Fig. Exemplary 2D sections for the T2D data set.

(TIF)
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