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CD3D and CD247 are the molecular targets of 
septic shock
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Abstract 
Septic shock is a serious systemic disease with circulatory failure and abnormal cell metabolism caused by sepsis. However, 
the relationship between CD3D and CD247 and septic shock remains unclear. The septic shock datasets GSE33118 and 
GSE142255 profiles were generated from the gene expression omnibus databases GPl570, GPl17586. Differentially expressed 
genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis 
of protein–protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. 
Gene expression heat map was drawn. Immune infiltration analysis was performed. Comparative toxicogenomics database 
(CTD) analysis were performed to find the disease most related to the core gene. Targets can was used to screen miRNAs 
regulating the hub DEGs. 467 DEGs were identified. According to the gene ontology analysis, they were mainly enriched in the 
regulation of immune response, cell activation, signaling receptor activity, enzyme binding. Kyoto encyclopedia of genes and 
genomes analysis showed that they were mainly enriched in the TCR signaling pathway, Fc epsilon RI signaling pathway. GSEA 
showed that the DEGs were mainly enriched in immune response regulation, cell activation, TCR signaling pathway, Fc epsilon RI 
signaling pathway. Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in 
go enrichment items in the enrichment items of metascape. PPI networks got 5 core genes. Gene expression heat map showed 
that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sepsis shock samples and highly expressed in 
the normal samples. CTD analysis showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were found to be associated with 
hemorrhage and necrosis. Low expression of cd3d, CD247 was observed in septic shock, and the lower the level of cd3d, 
CD247, the worse the prognosis.

Abbreviations: CTD = comparative toxicogenomics database, DEGs = differentially expressed genes, GO = gene ontology, 
GSEA = gene set enrichment analysis, IL = interleukin, KEGG = Kyoto encyclopedia of genes and genomes, PPI = protein–protein 
interaction, TCR = T cell receptor, TOM = topological overlap matrix, WGCNA = weighted gene co-expression network analysis.
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1. Introduction
Septic shock is a severe systemic inflammatory response syn-
drome.[1] The prevalence increases with age, and the elderly and 
immunocompromised patients are more likely to develop sep-
tic shock.[2] Mortality increases with the degree of multiorgan 
failure.[3] The pathogen may be any bacterium, fungus, virus, 
or parasite. Pathogen infection causes activation of the immune 
system, releasing a large number of inflammatory factors and 
mediators, leading to systemic inflammatory response syndrome 
and multiple organ dysfunction. Septic shock is characterized 
by systemic inflammatory response, hypotension, dysfunction 
of multiple organs, rapid progression and high mortality, and 
difficulties in treatment.[4,5] Systemic symptoms with rapid pro-
gression, the earliest symptoms include fever, chills, fatigue, etc, 

with consciousness disturbance, rapid heart rate, blood pressure 
and so on as the disease progresses. Hypotension and shock will 
appear dizziness, syncope, palpitations, shortness of breath, skin 
dampness, limbs syncope and other symptoms. Rgan dysfunc-
tion may be present. Symptoms of infection include diarrhea, 
vomiting, skin redness, etc.[6,7] Pathological features include 
inflammatory response, coagulopathy, tissue hypoxia, and mul-
tiple organ failure.[8–10] Septic shock is a severe infectious disease 
that causes unconsciousness, multiple organ failure, bleeding, 
infection, and has a high lethality. The cause of septic shock 
remains unclear, and genetic factors, chromosomal abnormali-
ties, and gene fusions may contribute to the disease. Therefore, 
it is particularly important to deeply investigate the molecular 
mechanisms underlying septic shock.
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Bioinformatics is an interdisciplinary field that involves 
computer science, mathematics, biology, and statistics. The 
development of bioinformatics technology has greatly assisted 
biological research, accelerating the interpretation and under-
standing of biomolecules such as genomes, proteins, and 

metabolomes. Bioinformatics technology includes sequence 
analysis, structure analysis, functional prediction, systems 
biology, genomics, and proteomics. With the development of 
high-throughput sequencing technology and the reduction 
of costs, a large amount of biological information is stored 

Figure 1.  Analysis of differentially expressed genes (DEGS). (A) GSE33118 (B) GSE142255 (C) The intersection of DEGs in the 2 data sets was taken by Venn 
diagram, and 467 DEGs were obtained.
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in public databases. Bioinformatics technology is constantly 
evolving, allowing for more efficient and accurate interpreta-
tion of biological information. The advantages of bioinformat-
ics technology are mainly reflected in its efficiency, accuracy, 
visualization, and reproducibility.

However, the relationship between cd3d, CD247 and septic 
shock is still unclear. Therefore, in this paper, we aimed to use 
bioinformatics techniques to mine the core genes between septic 
shock and normal tissues, as well as perform enrichment analy-
sis, pathway analysis. Public datasets were used to validate the 
significant roles of cd3d, CD247 in septic shock. And the basal 
cell experiment was applied to verify it.

2. Method

2.1. Septic shock dataset

In this study, the septic shock datasets GSE33118 and 
GSE142255 profiles were generated from the gene expression 
omnibus databases GPl570, GPl17586 (http://www.ncbi.
nlm.nih.gov/geo/) downloaded from. GSE33118 included 20 
septic shock and 42 normal blood samples, and GSE142255 
included 8 septic shock and 7 normal blood samples. 
Differentially expressed genes (DEGs) for identifying septic 
shock.

2.2. Screening of DEGs

We first log 2 transformed the GSE33118 and GSE142255 data-
sets, respectively, performed multiple linear regression using the 
lmfit function, and finally obtained the significance of difference 
for each gene by calculating the adjusted t-statistic, adjusted 
F-statistic, and log ratio of differential expression based on 
empirical Bayes adjustment with standard error approaching a 
common value. After that, the differential genes of GSE33118 
and GSE142255 were intersected to obtain DEGs.

2.3. Weighted gene co expression network analysis 
(WGCNA)

First, we calculated the median absolute deviation for each 
gene by using the gene expression matrix from GSE33118, 
excluding the top 50% of genes with the minimum mad, 
removing outlier genes and samples by using the good sam-
ples genes method from the R package WGCNA, and further 
used WGCNA to construct a scale free co expression network. 
Specifically, first, a Pearson correlation matrix and average 
linkage method were performed for all pairs of genes, and 
then, Using the power function a_ mn = |C_ mn|^ β A weighted 
adjacency matrix was constructed (C ð u Mn = Pearson cor-
relation between gene Þ m and gene Þ n; a Þ u Mn = adjacency 

Figure 2.  Functional enrichment analysis. (A) BP, (B) CC, (C) MF, (D) Kyoto encyclopedia of genes and genomes (KEGG).
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between gene m and gene N). β is a soft threshold parame-
ter that can emphasize strong correlations among genes and 
attenuate the effects of weak and negative correlations. After 
selecting a power of 10, the adjacency was converted to a topo-
logical overlap matrix (TOM) that can measure the network 
connectivity of 1 gene, defined as the sum of its adjacency to 
all other genes, for the network gene ratio, and calculate the 
corresponding dissimilarity (1-TOM). To classify genes with 
similar expression profiles into gene modules, average linkage 
hierarchical clustering was performed according to a TOM 
based dissimilarity metric with a minimum size (gene set) of 
30 for the gene dendrogram. Set the sensitivity as: 3. To further 

analyze the modules, we calculated the dissimilarity of module 
eigengenes, selected a cut line for the module dendrogram, and 
merged some modules. In addition, we incorporated modules 
with a distance of <0.25, and it is noteworthy that the gray 
module was considered as the set of genes that could not be 
assigned to any module.

2.4. Construction and analysis of protein-protein 
interaction (PPI) networks

String database (http://string-db.org/) is designed to col-
lect, score, and integrate all publicly available sources of 

Figure 3.  Gene set enrichment analysis (GSEA). (A–D) GSE33118, (E–H) GSE142255.
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protein-protein interaction information and complement these 
with computational predictions. In this study, the differential 
gene list was entered into the string database to construct a 
PPI network of predicted core genes (confidence level > 0.4). 
Cytoscape software can provide biologists with biological net-
work analysis and 2-dimensional (2D) visualization. In this 
study, the PPI network formed by string database was visual-
ized and predicted core genes by Cytoscape software. First, we 
imported the PPI network into Cytoscape software to calculate 
the best correlated ten genes by 3 algorithms, and after visual-
ization, we derived a core gene list by taking the intersection of 
the Venn diagrams.

2.5. Functional enrichment analysis

Gene ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) analysis are computational methods for eval-
uating gene functions and biological pathways. The list of dif-
ferential genes screened by the Venn diagram was entered into 
the KEGG rest API (https://www.kegg.jp/kegg/rest/keggapi.
html). The latest KEGG pathway gene annotations were acquired 
to map genes into the background set for enrichment analysis 
using the R package cluster profiler (version 3.14.3) to obtain the 
results of gene set enrichment. GO annotations of genes from the 
R package org.hs.e.g.db (version 3.1.0) were also used to map 
genes into the background set as background, setting a minimum 

Figure 4.  Metascape enrichment analysis. (A) Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in go 
enrichment items in the enrichment items of metascape. (B) Output the enrichment network colored by enrichment terms. (C) Output the enrichment network 
colored by P value.
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gene set of 5, a maximum gene set of 5000, P value of <.05 and 
a FDR of <.25 were considered statistically significant measures.

In addition, the metascape database can provide a com-
prehensive resource for gene list annotation and analysis and 
visualize exports. We used metascape (http://metascape.org/gp/
index.html) database, performed functional enrichment analy-
sis of the differential gene list described above, and exported.

2.6. GSEA

For the gene set enrichment analysis (GSEA), we selected can-
didate genes from the GSEA (DOI: 10.1073/pnas.0506580102, 
http://software.broadinstitute.org/gsea/index.jsp) website, 
GSEA software (version 3.0) was obtained. The samples were 

divided into 2 groups on the basis of septic shock and normal 
blood, and the molecular signatures database (DOI: 10.1093/
bioinformatics/btr260, http://www.gsea-msigdb.org/gsea/
downloads.jsp). The c2.cp.kegg.v7.4.symbols.gmt subset was 
downloaded to evaluate relevant pathways and molecular 
mechanisms based on gene expression profiles and phenotypic 
grouping, setting a minimum gene set of 5, a maximum gene set 
of 5000, 1000 resampling, P value of <.05 and a FDR of <.25 
were considered statistically significant. GO and KEGG analy-
ses were performed genome-wide. Formulated by GSEA.

2.7. Gene expression heatmap

We used the R package heatmap to visualize the expression dif-
ferences of core genes between septic shock and normal blood 

Figure 5.  Metascape enrichment analysis. Visualize the association and confidence of each enrichment item.
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samples by plotting the expression amounts of core genes in the 
gene expression matrix of GSE33118 and GSE142255, respec-
tively, which were found by the 3 algorithms in the PPI net-
work. Heatmap showing the expression of core genes in dataset 
GSE33118 and dataset GSE142255.

2.8. Immune infiltration analysis

CIBERSORT (http://CIBERSORT.stanford.edu/) is a very com-
monly used method to calculate immune cell infiltration, and the 
lm22 gene file was used to define 22 immune cell subsets. We applied 
an integrated bioinformatics approach to analyze the gene expres-
sion matrix of GSE33118 and GSE142255 using the cibersort pack-
age, respectively, and deconvoluted the expression matrix of immune 
cell subtypes using the principle of linear support vector regression to 
estimate the abundance of immune cells, while using confidence P < 
.05 as a cutoff criterion to select samples with sufficient confidence.

2.9. CTD analysis

The CTD (comparative toxicogenomics database) integrates 
data on the interaction between chemicals, genes, functional 
phenotypes, and diseases, which can greatly facilitate the study 
of disease-related environmental exposure factors and potential 
mechanisms of action of drugs. We entered the core genes into 
the CTD website to find the most relevant diseases to the core 
genes and drew an expression difference radar plot for each 
gene with Excel.

2.10. miRNA

Targetscan (https://www.targetscan.org/) is an online database 
for prediction analysis of miRNAs and target genes. In our 
study, targetscan was used to screen miRNAs regulating the hub 
DEGs.

Figure 6.  Weighted gene co-expression network analysis (WGCNA). (A) β = 6, 0.70. (B) β = 6, 163.48. (C) A hierarchical clustering tree of all genes was con-
structed, and 18 significant modules were generated. (D) The interactions between these modules were analyzed.
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3. Result

3.1. Analysis of differentially expressed genes

In this study, following the set cutoff values, we identified 
DEGs with gene expression matrices for GSE33118 (Fig. 1A) 
and GSE142255 (Fig. 1B), respectively, and then intersected the 
DEGs of the 2 datasets using a Venn diagram, finally resulting 
in a total of 467 DEGs (Fig. 1C).

3.2. Functional enrichment analysis

3.2.1. DEGs functional enrichment analysis.  We then 
performed GO and KEGG analysis on these DEGs, and 
according to GO analysis, they were mainly enriched in the 
regulation of immune response, cell activation, signaling 
receptor activity, enzyme binding (Fig.  2A–C), and KEGG 
analysis showed that they were mainly enriched in the T cell 

Figure 7.  Weighted gene co-expression network analysis (WGCNA). (A) Generated module to phenotype correlation heatmaps. (B–F) GS to MM correlation 
scatter plots for the associated hub genes.
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receptor (TCR) signaling pathway, Fc epsilon RI signaling 
pathway (Fig. 2D).

3.3. GSEA analysis

In addition, we performed GSEA enrichment analysis genome-
wide, aiming to find possible enrichment terms in non DEGs 
and validate the results for DEGs. Intersection of enriched 
terms with GO KEGG enriched terms of DEGs as shown in, the 
enrichment results of dataset GSE33118 (Fig. 3A–D) with those 
of GSE142255 (Fig. 3E–H) showed that the DEGs were mainly 
enriched in immune response regulation, cell activation, TCE 
signaling pathway, Fc epsilon RI signaling pathway.

3.4. Metascape enrichment analysis

Positive regulation of Fc receptor signaling pathway, PID IL12 
2 pathway, immune response was observed in go enrichment 
items in the enrichment items of metascape (Fig. 4A), meanwhile 
we also output the enrichment network colored by enrichment 
terms and P value to visualize the association and confidence of 
each enrichment item (Figs. 4B, C and 5).

3.5. WGCNA

The choice of soft threshold power is an important step in 
WGCNA analysis. Network topology analysis was performed to 
determine soft threshold power. The soft threshold power in the 
WGCNA analysis was set to 9, which was the lowest power for 
a scale-free topology fit index of 0.9 (Fig. 6A and B). A hierar-
chical clustering tree of all genes was constructed, and 18 signifi-
cant modules were generated (Fig. 6C). The interactions between 
these modules were then analyzed (Fig. 6D). And generated mod-
ule to phenotype correlation heatmaps (Fig. 7A) and GS to MM 
correlation scatter plots for the associated hub genes (Fig. 7B–F).

We also plotted and intersected the Venn diagram with the 
differential genes screened by WGCNA with DEGs (Fig. 8).

3.6. Construction and analysis of protein-protein 
interaction (PPI) networks

We selected the differential genes enriched on the most relevant 
enriched items from the enrichment analysis to be input into 
the string online database as a differential gene list to construct 
a PPI network, which was analyzed by Cytoscape software 
(Fig. 9A). Core gene clusters were obtained (Fig. 9B), then dif-
ferent algorithms were used to identify the hub genes and make 

a Venn diagram and obtain the union as the core genes (Fig. 9F), 
MCC, MNC, degree algorithm was adopted to identify the core 
genes (Fig.  9C–E), finally we got 5 core genes (CD247, Lck, 
cd3e, cd3d, ITK).

3.7. Gene expression heatmap

We visualized and made heat maps to visualize the expression of 
the core genes in the sepsis shock datasets GSE33118 (Fig. 10A) 
and GSE142255 (Fig.  10B), and we found that 5 core genes 
(CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sep-
sis shock samples and highly expressed in the normal samples, 
which led to the speculation that they may have inverse regula-
tory effects on sepsis shock.

3.8. Immune infiltration analysis

We used the cibersort package to analyze the gene expression matrix 
of GSE33118 and GSE142255, respectively, with GSE33118 
results in Figure 11 and GSE142255 results in Figure 12.

At 95% confidence, the proportion results of immune cells 
of the full gene expression matrix (Figs. 11A and 12A) and the 
immune cell expression heatmap in the dataset (Figs. 11B and 
12B) were obtained, and the correlation analysis was also per-
formed on infiltrating immune cells, resulting in a plot of co 
expression patterns among immune cell components (Figs. 11C 
and 12C).

3.9. CTD analysis

In this study, we input the hub gene list into the CTD website 
to search for diseases associated with core genes, improving 
the understanding of gene disease association. Five core genes 
(CD247, Lck, cd3e, cd3d, ITK) were found to be associated with 
hemorrhage and necrosis (Fig. 13).

3.10. Prediction and functional annotation of miRNAs 
associated with hub genes

In this study, we input the hub gene list into targetscan to 
search for relevant miRNAs, improving the understanding of 
gene expression regulation (Table 1). We found that the related 
miRNAs of CD247 gene were hsa-mir-330-5p, hsa-mir-326; 
The related miRNAs of Lck genes are hsa-mir-325-3p; The 
related miRNAs of cd3d gene are hsa-mir-7153-5p, hsa-mir-
146a-5p, hsa-mir-146b-5p; The related miRNAs of ITK gene 
are hsa-mir-155-5p

4. Discussion
Septic shock is a severe infectious disease that causes multiple 
organ failure, shock, impaired consciousness, bleeding, infec-
tious risk, poor prognosis, and is highly lethal and harmful. 
Septic shock is a systemic inflammatory response syndrome 
due to severe infection, in which invasion of infectious mate-
rial causes activation of the immune system and tumor necrosis 
factor release from immune cells- α (tumor necrosis factor- α). 
Inflammatory mediators such as interleukin-1 β (IL-1 β) and 
(IL-6), which will further activate immune cells and trigger 
more inflammatory responses.[11–13] The release of inflammatory 
mediators will activate immune cells such as macrophages and 
neutrophils, which will aggregate to the site of infection and the 
systemic circulatory system to release more inflammatory medi-
ators and oxygen free radicals, etc, leading to tissue damage and 
organ dysfunction.[14,15] Septic shock causes dysregulation of 
the immune system, including impaired T and B cell function, 
altered activity of macrophages, and aberrant activation of the 
complement system, which all contribute to decreased immune 

Figure 8.  WGCNA. Plotted and intersected the Venn diagram with the differ-
ential genes screened by WGCNA with differentially expressed genes (DEGs). 
WGCNA = weighted gene co-expression network analysis.
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function and exacerbated inflammatory responses.[16–18] Many 
bacterial infections produce endotoxins, such as lipopolysac-
charide, which activate immune cells, causing activation of the 
immune system and aggravation of inflammatory responses.[19] 
Septic shock causes dysfunction of vascular endothelial cells, 

including altered expression of cell adhesion molecules, altered 
function of vascular tone regulation, and so on, which can 
affect blood circulation and tissue perfusion and aggravate 
inflammatory responses and organ damage. Anti-inflammatory 
drugs such as glucocorticoids and NSAIDs can inhibit the 

Figure 9.  Construction and analysis of protein-protein interaction (PPI) networks. (A) The PPI network. (B) Core gene clusters were obtained. (C) MCC algorithm 
was adopted to identify the core genes. (D) MNC algorithm was adopted to identify the core genes. (E) Degree algorithm was adopted to identify the core genes. 
(F) Venn diagram and obtain the union as the core genes. 
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inflammatory response of immune cells and attenuate the release 
of inflammatory mediators and organ function damage.[20,21] 
Immunomodulators such as mitomycin and IL-10 can modu-
late the function of the immune system and inhibit the activity 
of immune cells and inflammatory responses.[22] Antioxidants 
such as vitamin C, vitamin E, and glutathione can alleviate the 
damage of oxygen free radicals to cells and tissues and protect 
cells from oxidative stress.[23] Vasoactive drugs such as nitrates 
and dihydroergotamine can modulate vascular tone, improve 
circulation and tissue perfusion, and attenuate organ dysfunc-
tion and tissue damage.[24] β-Antimicrobials such as lactams and 
macrolides can directly kill bacteria, prevent further spread and 
exacerbation of infection, and protect the organism from dam-
age due to infection.[25] The main results of this study were that 

cd3d, CD247 were abnormally expressed in sepsis shock, which 
may affect the development and progression of sepsis shock.

Cd3d is a human membrane-bound protein that is part of 
the TCE complex, and its encoding gene is located on human 
chromosome 11. Cd3d is a subunit in the CD3 complex, a com-
plex composed of the TCR and CD3 molecules, which includes 
CD3 δ, CD3 ε, CD3 γ, and CD3 ζ. The 4 subunits as well as 
the TCR α and the TCR β both strands. Cd3d, along with other 
subunits, is involved in processes such as signal transduction, T 
cell activation and proliferation.[26] CD247, also known as cd3z, 
is a human membrane-bound protein that is part of the TCR 
complex. Its coding gene is located in the human chromosome 
1q21.3 region. CD247 is a subunit of the CD3 complex, a com-
plex composed of the TCR and CD3 molecules, which includes 

Figure 10.  Gene expression heatmap. (A) Visualized and made heat maps to visualize the expression of the core genes in the sepsis shock datasets GSE33118. 
(B) Visualized and made heat maps to visualize the expression of the core genes in the sepsis shock datasets GSE142255.
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CD3 δ, CD3 ε, CD3 γ, and CD3 ζ. The 4 subunits as well as the 
TCR α and the TCR β both strands. CD247 is the only mole-
cule of the CD3 complex with a cytoplasmic domain that con-
tains multiple tyrosine phosphorylation sites and is involved in 

regulating the binding of the CD3 complex to intracellular sig-
naling molecules, thereby modulating T cell activation and func-
tion.[27] Researchers have suggested that the decrease in CD3 
expression may be related to the failure of antigen presentation 

Figure 11.  Immune infiltration analysis. Used the cibersort package to analyze the gene expression matrix of GSE33118. (A) The proportion results of immune 
cells of the full gene expression matrix. (B) The immune cell expression heatmap in the dataset. (C) The correlation analysis was also performed on infiltrating 
immune cells, resulting in a plot of co expression patterns among immune cell components.
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after septic shock.[28] It has also been shown that the CD247 
gene is mainly associated with upregulated inflammatory and 
metabolic responses and downregulated immune responses.[29] 
Another researchers indicated that Fyn and CD247 were at the 

center of a protein-protein interaction network, and survival 
analysis found that they positively correlated with sepsis sur-
vival.[30] Therefore, we speculate that cd3d, CD247 may play an 
important role in the development of septic shock.

Figure 12.  Immune infiltration analysis. Used the cibersort package to analyze the gene expression matrix of GSE142255. (A) The proportion results of immune 
cells of the full gene expression matrix. (B) The immune cell expression heatmap in the dataset. (C) The correlation analysis was also performed on infiltrating 
immune cells, resulting in a plot of co expression patterns among immune cell components.
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The above literature review is consistent with our results that 
cd3d, CD247 was low expressed in septic shock, and the lower 
the level of cd3d, CD247, the worse the prognosis.

Despite the rigorous bioinformatics analysis in this paper, 
there are still some deficiencies. No animal experiments of gene 
overexpression or knockout were performed in this study to fur-
ther verify its function. Therefore in future studies, we should 
conduct an in-depth exploration in this regard.

In conclusion, low expression of cd3d, CD247 was observed 
in septic shock, and the lower the level of cd3d, CD247, the 
worse the prognosis.
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