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Abstract

The use of consumer wearable devices (CWDs) to track health and fitness has rapidly expanded 

over recent years because of advances in technology. The general population now has the 

capability to continuously track vital signs, exercise output, and advanced health metrics. 

Although understanding of basic health metrics may be intuitive (eg, peak heart rate), more 

complex metrics are derived from proprietary algorithms, differ among device manufacturers, 

and may not historically be common in clinical practice (eg, peak V
.
O2, exercise recovery 

scores). With the massive expansion of data collected at an individual patient level, careful 

interpretation is imperative. In this review, we critically analyze common health metrics provided 

by CWDs, describe common pitfalls in CWD interpretation, provide recommendations for the 

interpretation of abnormal results, present the utility of CWDs in exercise prescription, examine 

health disparities and inequities in CWD use and development, and present future directions for 

research and development.
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The 21st century has witnessed an explosion in the availability and use of consumer 

wearable devices (CWDs) capable of providing health and fitness metrics directly to the 

end user.1,2 While competitive athletes have utilized CWD metrics to measure, monitor, 

and improve their exercise performance for decades, these data are increasingly extending 

from the niche realm of elite-athlete training into the broader arena of monitoring 

health and wellness in the general population. Although this trend represents a profound 

democratization of access to physiological data, it also presents unique challenges for 

practicing clinicians, because patients frequently seek medical advice regarding the 

accuracy, interpretation, and therapeutic applications of CWD health metrics. These 

challenges are compounded by the rapid evolution of CWD technology, the diverse array 

of reported metrics, the frequent use of proprietary calculations and algorithms, and the lack 

of normative data for most CWD-derived parameters.

This review seeks to provide a tangible primer on CWD metrics for the practicing 

cardiovascular clinician with an emphasis on the following: 1) measurement techniques and 

accuracy of common health metrics; 2) pitfalls in CWD interpretation; 3) recommendations 

for interpretation of abnormal results; 4) the use of CWDs in exercise prescription; 5) 

important considerations pertaining to health disparities and inequity in the use of CWDs; 

and 6) future considerations for CWD development.

HISTORY OF WEARABLE DEVICES

CWDs capable of heart rate monitoring and the derivation of related health metrics have 

their origins in early work from Norman Holter. Holter’s first creation was an 85-pound 

device capable of radio transmission of electrocardiography (ECG) waves that he wore 

on his back while riding a stationary bicycle.3 This technology formed the basis of the 

eponymous ambulatory Holter monitor, which ultimately reached commercial production in 

the 1960s.4 The first wireless heart rate monitors, designed as a training aid for competitive 

endurance athletes, were developed in the late 1970s by the Finnish company Polar Electro. 

These CWDs, available for purchase by 1982, measured heart rate using 2 diodes embedded 

in an adjustable fabric chest strap which communicated with a wristwatch-based output. 

Although similar chest-strap technology remains an accurate CWD method of heart rate 

monitoring, newer generated CWDs more frequently rely on optical photoplethysmography 

(PPG) measured at the wrist or finger, with which a wide variety of health and fitness 

metrics can be generated.

HEALTH METRICS

The following sections summarize common cardiac and extracardiac health and wellness 

metrics reported by CWDs with an emphasis on measurement technique, accuracy, and 

normative data (Central Illustration). A detailed search strategy for this review can be found 

in the Supplemental Appendix.
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CARDIAC HEALTH METRICS.

Heart rate.—Heart rate is provided by most CWDs and is used to derive many secondary 

variables. Normal resting heart rate ranges between 60 to 100 beats/min, but habitual 

exercise training often results in marked reductions of resting heart rate in the absence 

of pathology. Maximal obtainable heart rate is determined by age, sex, and genetics, and 

cannot be increased by exercise training. This parameter is commonly used as a reference 

value to prescribe and to gauge the intensity of exercise and can be measured during exercise 

testing in both laboratory and field settings. Maximal predicted heart rate (MPHR) is often 

calculated as 220 - age (years), although this approach produces highly variable estimates on 

an individual basis.

CWDs measure heart rate using either PPG or ECG. PPG relies on the use of light-emitting 

diodes, which emit light at specific wavelengths toward the skin. The intensity and 

pulsatility of light reflected from blood vessels is then measured by a photodetector and 

converted into estimates of blood flow and heart rate (Figure 1). PPG has the ability to 

provide continuous heart rate data (depending on the CWD software and device sampling 

rate) and is most commonly used by wrist and finger-worn CWDs.5 Commercial chest 

straps most commonly use electrode-based ECG methods to measure heart rate, which is 

consistently more accurate in heart rate measurement than wrist-worn PPG-based devices.6,7 

Although some wrist-worn CWDs possess ECG capabilities, they typically require on-

demand activation and thus do not offer continuous heart rate measurements. Alternative 

heart rate measurement methods include smartphone camera-based PPG measurement and 

standalone ECG devices that connect wirelessly to a smartphone.6

Numerous studies have examined the validity of PPG-based heart rate measurements 

by CWDs. These data are challenging to interpret and implement in clinical practice 

because of the variety of CWDs studied, testing conditions, and gold-standard comparators. 

In one systematic review assessing the accuracy of wrist-worn CWD heart rate data 

provided by 9 different manufacturers, PPG-based heart rate measurement demonstrated 

±3% measurement error in controlled settings compared with reference standard devices 

(conventional ECG, electrode-based chest straps, pulse oximetry) among the majority of 

studies.8 One wrist-worn CWD also met accuracy recommendations in free living settings 

(measurement error ±10%) when compared with an electrode-based chest strap.8 Although 

these data are compelling, the gold-standard technique to assess heart rate remains the use of 

conventional clinically approved ECG, because electrode-based chest straps and finger pulse 

oximeters have variable accuracy. Studies assessing popular wrist-worn CWDs compared 

with ECG have found that CWDs may slightly underestimate heart rate,5 but interestingly 

may be more accurate than research-grade CWDs.9 Wrist-worn CWDs utilizing PPG for 

heart rate measurement have also been found to be less accurate during activity, with one 

study suggesting a 30% reduction in accuracy.9 This therefore remains an area in need of 

future innovation. With the rapid growth of finger-worn CWDs, further studies should look 

to include both wrist- and finger-worn devices in a variety of different patient demographics 

and environmental settings.10
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CWDs can detect abnormally low and high heart rates, which may suggest pathology and/or 

abnormal heart rhythms (Table 1). In general, we recommend interpreting CWD heart rate 

data based on the circumstances that prompted data collection and considering individual 

patient-level trends over time, because heart rate measurements may be affected by patient-

specific, environmental, and device-related factors (see section, “Pitfalls in Interpretation 

of Wearable Devices”). If a patient wants to closely monitor heart rate during exercise, a 

chest strap is recommended because accuracy is improved compared with current wrist-worn 

CWD technology.6 Follow-up testing may be warranted if a patient has a higher or lower 

than expected heart rate (based on patient-level trends) associated with cardiopulmonary 

symptoms (eg, palpitations, shortness of breath, chest pain, lightheadedness/dizziness) or if 

there is a significant unexplained deviation from baseline heart rate trends in the absence of 

device-related quality issues (Table 1).

Heart rate recovery.—Heart rate recovery (HRR) is an increasingly popular fitness-

related metric derived from raw heart rate data. HRR reflects cardiac autonomic function 

and is defined as the difference between heart rate at the immediate cessation of exercise 

and heart rate at a later time interval.11,12 For example, HRR at 60 seconds (often designated 

HRR60) is the difference between heart rate at exercise cessation and heart rate 60 seconds 

later. HRR after exercise is conventionally divided into “fast” and “slow” phases that 

correspond to HRR following the first minute of exercise cessation and subsequent HRR 

during the more prolonged period of time required to reach baseline heart rate.11,12 The 

fast phase of HRR is primarily mediated by rapid vagus nerve reactivation, whereas the 

slow phase represents the more gradual withdrawal of sympathetic tone and decline in 

catecholamine levels.11-13

There are no universally accepted normative values for HRR. Key factors that influence 

HRR include measurement time interval of data acquisition; variability of the exercise 

stimulus preceding HRR acquisition (ie, mode, intensity, and duration); subject position 

during recovery (upright vs supine); ambient temperature; and patient demographics, 

training, hydration, and recent sleep quality.11,12,14-16 The vast majority of published HRR 

data has focused on its prognostic utility. Numerous studies examining mortality among 

people referred for clinically indicated exercise testing have used failure to achieve a 12 

beats/min reduction at 1 minute as a cutpoint for risk stratification.11,12 Alternative HRR 

cutpoints for mortality prediction have in general ranged from 12 to 30 beats at 1 minute to 

22 to 42 beats at 2 minutes.11,12,17 Similar data in healthy populations are limited. Among 

healthy, active men ages 20 to 65 years, a median HRR60 of 13 beats/min (IQR: 9-20 

beats/min) has been reported.18 Numerous studies have also demonstrated greater (ie, faster) 

HRR among trained athletes compared with untrained or less trained people.12,13

At the present time, there are sparse primary data examining the accuracy of HRR derived 

from CWDs. Given that HRR is calculated as the difference between 2 discrete heart rate 

measurements, factors that influence CWD heart rate measurement are broadly applicable to 

HRR (see section “Pitfalls in Interpretation of Wearable Devices”). Any clinical utilization 

of HRR must be interpreted relative to the specific time interval used by a given CWD. 

Given the paucity and heterogeneity of normative data, intraindividual changes over time 

likely represent the most meaningful use of CWD HRR data. Future research should assess 
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the effect of intraindividual changes in HRR on outcomes and the response to therapeutic 

interventions. If a patient presents with a sustained significant reduction from prior HRR 

values, a careful history and physical examination (H&P) may diagnose the majority 

of causes (eg, physical deconditioning, systemic illness, medication effect), and exercise 

testing with ECG may be considered if there is a high suspicion for exercise-associated 

tachyarrhythmia (Table 1).

Heart rate variability.—Heart rate variability (HRV) broadly reflects the temporal 

magnitude of beat-by-beat variability over a specified time period. Historically, HRV 

has been examined in research contexts for prognostication in cardiovascular disease. 

For example, lower time-domain HRV indices are associated with increased mortality 

after myocardial infarction19 and among patients with heart failure.20 HRV is affected 

by numerous factors that modulate the autonomic nervous system independently of 

cardiovascular disease, including age, sex, mental stress, infection, caffeine and nicotine use, 

sleep quality, recent exercise training patterns, hydration, and time of day (Figure 2).21-23 

Despite its prognostic value in research settings, challenges related to interpretation and 

utilization of HRV data have limited use of HRV in clinical practice.

HRV calculated by CWDs is typically derived from raw heart rate data measured using PPG. 

HRV can be calculated using time-domain metrics (ie, differences between specific heart 

rate interval in ms) and frequency-domain metrics (ie, differences in heart rate frequency 

over specific intervals in ms2). Common examples of time-domain HRV metrics provided 

by CWDs include the following: the mean normal-normal interval (NN) (ie, the interval 

between consecutive sinus beats), the standard deviation of NN intervals (SDNN), the 

standard deviation of NN intervals averaged over a short duration (SDANN), the root mean 

square of differences in successive NN intervals (RMSSD), and the percentage of successive 

NN intervals that are >50 ms from the prior interval (pNN50) (Supplemental Table 1).24,25 

In contrast, frequency-domain HRV metrics calculate how much of a heart rate signal lies in 

specific frequency bands or ranges. Frequency-domain measurements are commonly divided 

into high-frequency power bands (activity in the 0.15- to 0.4-Hz range), which have been 

proposed to reflect parasympathetic nervous system activity, and low-frequency power bands 

(activity in the 0.04- to 0.15-Hz range), which have been proposed to reflect sympathetic 

nervous system activity (Supplemental Table 1).25 Because HRV is a metric of variance, 

it must be derived from heart rate measurements over a discrete period of time, which are 

classified as ultra-short-term (<1 minute), short-term (typically <5 minutes), and long-term 

(typically >24 hours) and are not directly comparable to one another.24,25

Exercise exerts a profound influence on HRV. During the first few days following high-

intensity exercise, vagal-related HRV indexes (eg, RMSSD) will usually decrease from 

baseline values.26 However, over weeks of exercise training in untrained or recreational 

athletes, HRV tends to increase.25 Interpretation of HRV among competitive athletes is both 

common and complex. Despite the myriad of factors delineated in the previous text that 

influence HRV, it is commonly utilized as a guide for training.26 Consistent reductions in 

HRV during training, in the absence of alternative explanatory factors, have been proposed 

to reflect accumulated physiological stress (ie, overtraining) and may be used as a rationale 

to decrease training loads. In contrast, high HRV values have been proposed to indicate a 
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well-recovered physiological state reflective of an appropriate balance of training stress and 

recovery.25,26

HRV metrics derived from CWDs are subject to the same sources of error and bias 

as heart rate measurement (see section “Pitfalls in Interpretation of Wearable Devices”). 

Additionally, HRV assessment requires continuous data acquisition over a defined period, 

which increases susceptibility to inaccuracy introduced by motion artifact. Measurement 

of frequency-domain HRV metrics, which require longer durations of continuous data 

collection, is particularly difficult using CWDs. Accordingly, many CWDs only report HRV 

during sleep, even for time-domain metrics.27-29 One study examining the effect of missing 

data on CWD HRV measurements found that mean NN and RMSSD were the metrics 

least affected by missing data.27 An additional caveat to PPG-based HRV calculation is that 

many HRV metrics are sensitive to ectopic beats, which can be difficult to identify without 

simultaneous ECG data.26

PPG-derived HRV may correlate strongly with measurements derived from gold-standard 

techniques such as ECG under optimal conditions. Specifically, HRV (measured from 

PPG of the earlobe) performed well (r > 0.95) in healthy subjects in ideal conditions in 

comparisons with ECG for the measurement of both time and frequency domain HRV 

metrics.30 A study of 6 CWDs (wrist, finger, and forehead locations) in the setting of 

polysomnography sleep testing found that CWDs generally show good correlation but tend 

to underestimate ECG-derived RMSSD.10 Several other studies of wrist- and finger-worn 

CWDs have found variable correlation of time-domain HRV metrics with ECG or chest-

strap reference standards, which in some cases were sensitive to beat filtering methods, the 

choice of HRV metric, and/or the time period over which measurements were averaged.31-33 

Importantly, most prior studies assessing the efficacy of CWD-derived HRV were performed 

in carefully controlled research settings. The accrual of more robust device- and disease-

specific normative data needed to refine clinical use will require future studies in real-world 

settings.

At present, normative HRV values accounting for age and sex that can be broadly applied 

across all people and all CWDs do not exist. Supplemental Table 2 provides selected 

examples illustrating both the general ranges of 2 common HRV metrics (SD of NN 

intervals and RMSSD) and the variability that results from different measurement durations, 

sex, age, and time of day. In this context, interpretation of HRV data using absolute values 

is discouraged. Instead, HRV trends for a given individual should be assessed and integrated 

with a careful history assessing for the common sources of HRV fluctuation (Figure 2). We 

therefore recommend that if a patient presents with a lower-than-expected HRV from their 

baseline, focus should be on a comprehensive H&P to assess for a possible underlying cause 

(Table 1). Follow-up testing should only be considered if there is a strong suspicion for a 

secondary cause that requires risk stratification or treatment.

Heart rhythm.—Several popular CWDs have received regulatory approval for the 

detection of atrial fibrillation (AF).6 Available AF-detection algorithms utilize PPG data 

to detect an irregular pulse and increase detection specificity by requiring the detection of 

multiple periods of irregular pulse before notifying the user of possible arrhythmia.34-36 
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Although PPG-based irregular rhythm detection algorithms operate in the background while 

the device is worn, they rely on periodic measurements and are susceptible to motion 

artifact, often requiring periods of relative inactivity before they will alert users of an 

irregular rhythm.35 As a result, they do not provide truly continuous screening. Notably, 

these algorithms were initially designed for AF screening and not to detect other arrhythmias 

or to quantify arrhythmia burden in patients with known AF. There have, however, been 

studies assessing the potential utility of the detection of non-AF arrhythmias,37 and 

estimation of AF burden is of active interest.

If an irregular pulse-detection algorithm alerts a patient of a possible arrhythmia, it does 

not diagnose AF. If the patient’s device has ECG capabilities, the patient may record a 

single-lead ECG tracing, but this requires user interaction. The ECG tracing can be shared 

with a physician who may provide an interpretation of whether AF may be present or 

not. Several popular CWDs have received regulatory approval for ECG acquisition and 

accompanying algorithms for rhythm classification based on ECG data.6

Automated AF classification algorithms are proprietary to each manufacturer and vary in 

performance depending on the target audience of the CWD.6,38-40 Notably, in a recent study 

of 5 different CWDs, sensitivity of AF detection ranged from 58% to 85% and specificity 

between 69% and 79%.39 CWD algorithms were not able to determine the heart rhythm in 

17% to 26% of tracings, but the rhythm was determined upon manual review in 99% of the 

single-lead ECGs.39 These findings support previous data that demonstrate an improvement 

in diagnostic performance when single-ECGs from CWDs are over-read by physicians.38,40 

There are several other technologies for AF detection through smartphone-based methods 

such as PPG assessment using the smartphone camera, connection of external electrode-

based devices to a smartphone, or mechanocardiography (detection of irregular cardiac 

motion through accelerometers/gyroscopes),41-43 all of which represent other frontiers for 

mobile AF detection. A comprehensive overview of CWD heart rhythm detection is out of 

the scope for this review and can be found elsewhere.6,44

CWDs therefore may lead to the diagnosis of AF or non-AF arrhythmias. If a patient 

receives a CWD alert for a possible abnormal heart rhythm or has symptoms concerning 

for an arrhythmia, the patient should be instructed to record a single-lead ECG, if the CWD 

is ECG capable. After reviewing the CWD ECG and taking a thorough history, providers 

should consider a 12-lead ECG and/or ambulatory rhythm monitoring as dictated by the 

clinical circumstance (Table 1).

Blood pressure.—Blood pressure (BP) measurement by CWDs is an area of active 

interest, but few mainstream consumer wearables currently offer this feature. Several 

methods of wearable BP measurement exist or are under development, including wrist or 

finger cuff CWDs, radial artery tonometry, bioimpedance, and PPG-based methods with or 

without incorporation of ECG data.45,46

One brand of wrist-worn CWDs possesses a BP measurement feature via a proprietary 

algorithm. This feature requires manual recalibration every 28 days, and a validation study 

found that BP measurements were systematically biased toward the calibrated value.47 
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In contrast, a currently available and regulatory-approved watch utilizes an integrated 

wrist cuff to measure BP, and demonstrated good correlation with manually measured 

BP (mean absolute difference ≤2.4 mm Hg, SD ≤7.6 mm Hg).48 Finally, a third device 

employing a machine learning model incorporating PPG and ECG data demonstrated similar 

performance (mean absolute difference ≤2.2 mm Hg, SD ≤6.1 mm Hg) in a research 

setting.49 There are also multiple finger-based rings with BP capabilities in development, 

which represents another exciting new frontier.46 Although emerging technologies have 

shown promise in the estimation of BP, careful validation studies in diverse cohorts of 

patients and clinical contexts will be needed to ensure safety and efficacy of devices before 

widespread use. At present, we are unaware of any robust large-scale data defining use of 

CWD-derived BP measures in the setting of exercise.

Although there are currently limited BP capabilities among CWDs, if a patient consistently 

has elevated baseline BP under resting conditions above guideline recommendations of 

≥130/80 mm Hg,50 they should consider home blood pressure monitoring with a regulatory-

body approved blood pressure cuff to assess for clinically relevant HTN.

EXTRACARDIAC HEALTH METRICS.

Step count and global positioning system data.—Daily step count has emerged as a 

popular index of physical activity that enables data-driven exercise training and quantitative 

exercise prescription. In addition, the use of CWDs to track step count has been shown 

to increase physical activity and improve body composition and fitness.51 Contemporary 

physical activity guidelines recommend exercise dose as a function of time and intensity 

(ie, 150-300 minutes of moderate intensity or 75-150 minutes of vigorous intensity exercise 

weekly) for health and longevity.52 However, higher step count is also associated with lower 

all-cause mortality and cardiovascular events.53 CWDs offer a direct and user-friendly way 

of tracking time spent on exercise or other physical activity. A recent meta-analysis of 

15 international cohorts found a progressively lower risk of mortality among adults age 

≥60 years who achieve up to 6,000 to 8,000 steps/d and among adults age <60 years who 

achieve up to 8,000 to 10,000 steps/d.54 Therefore, CWDs have the possibility to promote 

physical activity and improve longevity, which may be extremely beneficial to high-risk 

populations.55-57

Most contemporary CWDs provide step count estimates either using accelerometers, which 

are electromagnetic sensors that measure acceleration in a linear plane, or gyroscopes 

which measure angular velocity. There is a wide variability in the accuracy of step count 

measurements based on the CWD manufacturer, CWD model, speed of movement, testing 

environment, and body location of CWD.8,58,59 Although some CWD models consistently 

overestimate and others consistently underestimate step count, there can also be significant 

heterogeneity in intradevice reliability when testing and retesting the same CWD.8 The 

accuracy of CWDs also depends on the reference standard used as a comparator. Numerous 

studies use research-grade accelerometers as a reference standard,8 although the gold 

standard remains video-recorded step count,59 because research-grade accelerometers can 

also vary in accuracy. Therefore, caution should be utilized in interpretation of total step 

count based on the accuracy of each individual CWD.
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Consumer wearable devices utilizing global positioning system (GPS) are often used to track 

the distance, velocity, and altitude changes during endurance exercise. Studies assessing the 

accuracy of wrist-worn GPS activity monitors have found that total distance travelled is 

often underestimated in urban and forested areas where GPS signals can be obstructed by 

nature or buildings (mean absolute percentage error −1.2% to −8.9%).60,61 In contrast, GPS 

data typically overestimate distance and velocity at track and field venues (mean absolute 

percentage error +0.9% to +4.1%).60 These findings are most relevant among individuals 

who rely on precise measures of training data to optimize fitness and performance.

In aggregate, patients whose CWD shows a low step count (<6,000-8,000 steps/d for age 

≥60 years, 8,000-10,000 steps/d for age <60 years) or those who do not meet guideline 

recommendations for physical activity (150-300 minutes moderate or 75-150 minutes 

vigorous intensity activity) should be counseled to increase activity levels in accordance 

with contemporary guidelines to optimize health and longevity.52,54

Oxygen saturation.—Oxygen saturation (SpO2) can be used to establish hypoxemia in 

patients with cardiovascular, pulmonary, and hematologic disorders. The normal SpO2 in 

the general population at sea level is ≥95%, while lower SpO2 goals (88%-92%) may be 

clinically targeted in certain disease states such as chronic obstructive pulmonary disease.62 

Among healthy competitive athletes, mild to moderate exercise-induced arterial hypoxemia 

at high workloads is common. Theorized explanatory mechanisms include rapid pulmonary 

capillary red blood cell transit time, extravascular lung water accumulation, increased 

blood viscosity, cytokine release, and pulmonary capillary stress failure.63 Competitive male 

runners (age 18-39 years) at sea level have a reported exercise-induced arterial hypoxemia 

prevalence of ranging from 70% to 84% depending on the trait definition (SpO2 ≤91% vs 

≤93%), rendering this a normal finding in otherwise healthy asymptomatic athletes.64

Consumer wearable devices measure SpO2 using PPG by emitting light-emitting diode 

lights of 2 different wavelengths and then measuring subsequent light absorption, which 

differs based on the oxygenation status of hemoglobin.65 Current guidance from the U.S. 

Food and Drug Administration stipulates that the variability between SpO2 measurement 

from a clinically approved PPG device and an invasive arterial blood gas (ABG) should have 

a root mean square error ≤3.5%.66 Several studies have reported that select commercially 

available wrist-worn CWDs may meet these U.S. Food and Drug Administration thresholds 

at rest or during sleep.67-69 However, the majority of these studies compared CWDs to 

medical-grade pulse oximeters rather than the gold standard invasive ABG, and definitive 

studies assessing the accuracy of SpO2 during exercise are lacking.

Evaluation of the accuracy of wrist-worn CWDs with simulated altitude (normobaric 

hypoxia),70 as well as actual high altitude,71 has shown poor correlation between resting 

SpO2 measured by a wrist-worn PPG measurement and commercial pulse oximetry and/or 

ABG. Data documenting the tendency of wrist-worn PPG to overestimate SpO2 are 

of particular concern,70 because commercial wrist-worn CWDs are often marketed for 

mountaineering during which hypoxemia may predict the onset of high altitude illness. 

Further rigorous evaluation comparing CWD SpO2 to gold standard ABG in diverse cohorts 

of patients, conditions, and levels of exertion are needed before recommendations for 
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clinical use.72 Data also suggest that individuals with darker skin tones may be particularly 

susceptible to inaccurate measurement of SpO2 (discussed in depth in the following text—

see section “Health Equity and Disparities in the Use and Accuracy of Wearable Devices”). 

Heterogeneity in the accuracy of SpO2 measurements across available CWDs necessitates 

that users determine the performance of their own device in specific environments.

Given limited data on the accuracy of CWD-derived SpO2 during exertion, results 

during exercise and/or physical activity should be interpreted with caution. However, an 

abnormal resting or exercise SpO2 from a CWD associated with significant cardiopulmonary 

symptoms may warrant further work-up to assess for underlying pathology (Table 1).

Respiratory rate.—Respiratory rate, a fundamental vital sign that largely drives minute 

ventilation (the product of respiratory rate and tidal volume), is a sensitive predictor of 

clinical deterioration.73 Normal respiratory rate for an adult at rest is defined as 12 to 20 

breaths/min. Physiological increases in respiratory rate occur in the setting of increased 

metabolic activity such as stress and exercise.

Respiratory rate can be measured using chest straps with biosensors to detect chest 

wall movement (elastomeric, impedance, or respiratory inductive plethysmography),74 or 

indirectly using algorithms that detect alterations of PPG and/or ECG signals with breathing. 

Wrist-worn CWDs can estimate respiratory rate by assessing several different types of cyclic 

variation in PPG and ECG waveforms. The 3 major variables assessed as part of respiratory 

rate algorithms include the following: 1) baseline wander; 2) amplitude modulation; and/or 

3) frequency modulation (also known as respiratory sinus arrhythmia) (Figure 3).75 These 

changes result from respirophasic cardiac motion within the thoracic cavity, hemodynamic 

changes, and alterations in vagal tone.75

Chest straps that estimate respiratory rate using heart rate data have been shown to be 

more accurate than wrist-worn CWDs among healthy subjects at rest.76 Data examining 

wrist-worn CWDs are limited but suggest that respiratory rate during sleep can be reliably 

obtained (bias −0.24%; 95% limits of agreement: −1.5 to +1.0/min in 1 study).77,78 We are 

unaware of large-scale published data examining respiratory rate accuracy among common 

CWDs during movement or exercise where increased error from artifact is anticipated. 

Accordingly, estimations of respiratory rate from widely available CWDs obtained during 

conditions other than prolonged quiet rest and sleep should be interpreted with caution.

Given the limitations described in the previous text, we recommend only considering 

targeted secondary testing based on the suspected etiology among those with symptoms and 

corollary abnormalities of respiratory rate during wakened hours under resting conditions 

(Table 1).

Peak V
.
O2.—Peak oxygen consumption (V

.
O2) is the gold standard objective measure of 

functional capacity and is an integrative metric reflecting the precise coordination and 

health of the cardiovascular, pulmonary, hematologic, and musculoskeletal systems. Peak 

V
.
O2 is utilized in the clinical setting in the assessment of exertional symptoms of unclear 

etiology, prognosis and risk stratification in the setting of established pathology, and the 
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assessment of response to specific therapeutic interventions.79 Given the robust association 

between peak V
.
O2 and exercise performance, this metric is also commonly utilized to assess 

the response to exercise training. Habitual endurance exercise can lead to more efficient 

oxygen utilization and can increase peak V
.
O2. Improvements in peak V

.
O2 are also related 

to an individual’s baseline activity level, because sedentary patients may see much greater 

improvement in peak V
.
O2 with habitual exercise training than patients who are starting from 

a higher baseline of physical activity.

Direct quantification of peak V
.
O2 is performed using measurements of metabolic gas 

exchange during maximal effort cardiopulmonary exercise testing (CPET). Peak V
.
O2 is 

estimated by CWDs using a variety of different, typically proprietary methods which rely on 

some combination of age, sex, body size, heart rate metrics (resting heart rate, peak heart 

rate, HRV), and physical activity level. Estimates of peak V
.
O2 using CWDs are derived both 

under resting conditions (utilizing resting heart rate and HRV) and by the user exercising 

with CWD monitoring (utilizing physical activity levels and heart rate metrics).80 Peak 

V
.
O2 estimated by exercise-based algorithms demonstrates higher accuracy but generally 

underestimates true peak V
.
O2 (bias −0.1, 95% limits of agreement: −9.9 to +9.7 mL/kg/

min). Peak V
.
O2 estimated based on resting conditions has lower accuracy and tends to 

overestimate peak V
.
O2 (bias +2.2; 95% limits of agreement −13.1 to +17.4 mL/kg/min).80 

Regardless of the estimation technique, there is significant error at the individual level 

when compared with CPET-derived measurements.80 Further quality improvement is needed 

before confident use of peak V
.
O2 derived by CWDs in the clinical or performance setting, 

and the gold standard remains direct measurement through CPET. CWDs also do not often 

provide estimation of submaximal exercise parameters such as the ventilatory threshold, 

which can have an important prognostic and therapeutic role, particularly in the use of a 

customized exercise prescription.

A low peak V
.
O2 can be found among those with low cardiac output (CO = stroke 

volume × heart rate) or low peripheral O2 extraction (Ca-VO2; per the Fick Equation 

V
.
O2 = CO × Ca − VO2). As there is significant intraindividual variation in peak V

.
O2

estimation by CWDs, we recommend assessing trends over time rather than absolute 

values. A patient presenting with estimated peak V
.
O2 newly reduced from their baseline 

should undergo a thorough H&P to assess for physical activity level (eg, deconditioning), 

cardiopulmonary symptoms suggestive of pathology, excessive muscle fatigue suggestive of 

myopathy, and signs/symptoms of anemia (Table 1). Follow-up testing should be guided by 

the clinical scenario, and definitive measurement with a CPET is only recommended if it 

will change clinical management or prognosis.

Assessment of sleep.—Sleep quality and duration are increasingly recognized as 

vital contributors to overall health and wellness.81 Current guidelines from the National 

Sleep Foundation and American Academy of Sleep Medicine recommend at least 7 hours 

of sleep per night for adults but highlight that heterogeneity of optimal sleep duration 

exists at the individual level.82,83 The gold standard method for assessing sleep quality 

is polysomnography (PSG) in a sleep laboratory. PSG integrates brain waive signals 

(electroencephalography), eye movement signals (electrooculography), muscle activity 
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(electromyography), cardiac tracings (ECG), and finger PPG to monitor hemodynamics and 

determine the duration of different stages of sleep. However, PSG is not practical outside of 

a sleep laboratory and is associated with high costs, specialized training for interpretation, 

and significant time required to perform the studies.

Given these limitations, techniques have been developed to estimate sleep and wake 

information from actigraphy, which utilizes accelerometers similar to those in CWDs to 

measure direct limb movement (typically worn on the wrist or ankle).84 Actigraphy is more 

readily available and more easily performed than PSG and has revolutionized sleep medicine 

because measurements can be made at home over extended periods of time (days to weeks). 

However, actigraphy has numerous limitations compared with PSG: 1) overestimation of 

sleep time if patients do not have robust limb movements; 2) underestimation of sleep time 

in patients with movement disorders; and 3) inability to robustly identify stages of sleep.85

CWDs estimate sleep quality and duration through proprietary algorithms, which often 

integrate accelerometry and PPG-derived data (eg, heart rate). As modern CWDs leverage 

multiple physiological parameters for this assessment, most CWDs tend to perform better 

than actigraphy, which solely relies on accelerometer data.86 Modern CWDs have also been 

shown to improve patient-reported sleep quality.77 In studies comparing CWDs to PSG, 

CWDs demonstrate good performance in detecting sleep (sensitivity 93%-99%), including 

defining sleep duration, but are less accurate at both detecting periods of wakefulness and 

differentiating stages of sleep.86 Therefore, novel algorithms are being created to improve 

the efficacy of combined accelerometer/PPG data to better approximate PSG data in a 

variety of sleep disorders.87 Given the rapid growth in CWDs and clinical devices to 

assess sleep, the American Academy of Sleep Medicine has released a framework for the 

evaluation of future sleep technologies that should be considered in the assessment of 

CWDs.88 Future research and technological advances are required to optimize CWDs for the 

differentiation of sleep stages and to validate efficacy in diverse demographic cohorts and 

disease states.

CWDs may accurately detect sleep duration. If a patient is consistently not meeting 

contemporary recommendations for sleep duration (>7 hours),82,83 a thorough H&P should 

be performed to assess sleep hygiene and to rule out common reversible causes (eg, 

medication effect, stress/anxiety, toxins) (Table 1). If there are clinical concerns for sleep 

apnea, PSG should be considered.

Other proprietary metrics.—An overview of other proprietary health metrics (eg, 

“recovery,” “stress,” “readiness”) is presented in the Supplemental Appendix.

PITFALLS IN INTERPRETATION OF WEARABLE DEVICES

As previously described, PPG is the primary method used by CWDs to measure various 

health metrics, particularly in the wrist- and finger-worn categories. Therefore, errors in PPG 

measurement will affect a significant number of measured and estimated variables. Common 

factors affecting the accuracy of PPG measurements are presented in Table 2.9,89 Although 

advances in technology have led to numerous techniques to mitigate measurement error (eg, 
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high pass filters, improved calibration, optical shielding, secondary sensors),89 there is still 

significant error in PPG measurements provided by some CWDs.9

A primary determinant of PPG accuracy is the anatomic location of measurement. The PPG-

based biosensors worn on the posterior distal wrist, the common location of “wrist-watch” 

CWDs, have among the largest median error rate at rest and during exercise.90 Wrist motion, 

in combination with protuberance of the ulnar styloid, may shift CWD position relative to 

the skin surface, thereby transiently or permanently distancing sensors from their intended 

measurement site. Error observed during the use of wrist-worn CWDs may be reduced by 

the addition of an electrode-based or PPG compatible chest strap.7,90 Improper CWD fit is 

another common source of error. Wrist-worn CWDs that are too loose may not accurately 

detect PPG signals, and those that are too tight may result in impaired cutaneous blood flow, 

thereby impairing PPG measurements. An additional source of error is artifact stemming 

from movement. Artifact can be produced by movement of the CWD in relation to the skin 

surface, an issue that is common among devices worn loosely. Improper fit leading to device 

movement applies not only to PPG but other methods of tracking health data including 

electrode-based chest straps. Motion artifacts are particularly problematic for PPG-based 

algorithms for AF detection, which has led some CWD producers to rely on measurements 

primarily during episodes of inactivity.35 CWD error may be particularly pronounced while 

tracking data during swimming, because water coupled with recurrent arm movements may 

reduce measurement accuracy.91

Activity tracking using accelerometers or GPS can also be prone to error. Wrist-worn CWDs 

utilizing accelerometer data may misclassify sedentary time with physical activity (eg, 

increase step count) when somebody is moving their arms even while seated or alternatively 

not detect significant movement when someone’s upper body is primarily still (eg, cycling). 

The accuracy of GPS activity tracking is dependent on the strength and consistency of 

the GPS signal. Accordingly, activity tracking may be underestimated in locations subject 

to poor signal strength (eg, urban areas with tall buildings, highly forested recreational 

areas).60,61

There are also significant limitations among CWDs with single-lead ECG capability. 

The majority of CWDs require user interaction to record a single-lead ECG. Therefore, 

asymptomatic paroxysmal arrhythmias may not be diagnosed if the user does not activate 

the ECG function or if the CWD fails to generate a PDF for a provider to confirm the 

underlying rhythm.40 Current rhythm diagnostic algorithms from single-lead ECGs also will 

frequently classify ECGs as “inconclusive.”38-40 This may translate into an increased burden 

on providers who are asked to review abnormal or inconclusive results. Differentiation of 

regular tachyarrhythmias (eg, atrial flutter vs atrioventricular nodal re-entrant tachycardia) 

also remains difficult with single-lead ECG.6 This remains an area of active interest with 

respect to product development and refinement.

INTERPRETATION AND RECOMMENDATIONS FOR ABNORMAL TESTING

The clinical assessment of all CWD data should begin with careful consideration of 

possible failure of the CWD to acquire data attributable to the device/patient interface 
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and motion artifact (Figure 4). A differential diagnosis and considerations for subsequent 

diagnostic testing for common forms of “abnormal” CWD data are presented in Table 1. We 

recommend that all abnormal testing should be put into clinical context during the decision-

making process regarding the role of follow-up testing. Given the lack of device-specific 

normative data for many CWDs, there should also be a particular emphasis placed on 

intraindividual changes in a specific health metric over time when evaluating the necessity 

for secondary testing.

UTILITY OF CWDs FOR EXERCISE PRESCRIPTION

Routine exercise is an effective strategy for primary and secondary prevention of 

cardiovascular disease.52 Accordingly, exercise prescription is an essential element of 

comprehensive cardiovascular care. Effective exercise prescriptions are typically developed 

using the “FITT” principle (Frequency, Intensity, Time, and Type of exercise).92,93 

CWDs enable clinicians and patients to monitor all components of a FITT-based exercise 

prescription and are more accurate, reproducible, and prognostic than traditional self-

reported data, which may improve adherence and corollary clinical outcomes.94,95

Among patients with cardiovascular disease, CWD heart rate monitoring offers the ability 

to modulate exercise intensity with the goal of optimizing the safety of therapeutic and 

recreational exercise. Graded-effort exercise tests can be used to establish workloads, 

coupled with corollary heart rates, that precipitate myocardial ischemia, malignant 

arrhythmias, or undesirable symptoms. Such disease- and patient-specific thresholds can 

subsequently be utilized by practitioners to prescribe exercise intensity ceilings that can be 

monitored using CWDs during exercise training, with the goal of ultimately improving 

exercise safety and compliance. Examples of potential utilities of CWDs for exercise 

prescription are presented in Figure 5.

HEALTH EQUITY AND DISPARITIES IN THE USE AND ACCURACY OF 

WEARABLE DEVICES

Emerging health care technology necessitates continuous assessment of disparities in 

quality, education, and access to care. Although the rapid expansion of CWDs has provided 

exciting new opportunities for remote diagnostics and physiologic monitoring, technological 

advances have often outpaced the rigorous scientific research needed to ensure efficacy and 

safety across all patient populations. CWD users are more likely to be younger, White, 

wealthier, and of higher educational status compared with people without devices.96,97 

This ownership imbalance has perpetuated disparities in the participant demographics of 

scientific studies examining CWD performance. Many of these studies, attempting to 

increase participant enrollment and thus statistical power, have relied on “bring your own 

device” participant recruitment strategies.98 The clinical impact created by these structural 

inequities remains incompletely understood, underscoring the need for future study across 

more diverse populations and environmental conditions.9,89

A growing body of literature documents technological limitations of PPG among people 

with darker skin tones.89 Mechanistically, PPG sensors using a green light-emitting diode 
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light source have been shown to have decreased accuracy in those with darker skin 

tone because of increased light absorption by cutaneous melanin. Multiple studies have 

shown that PPG-derived SpO2 measurements may be inaccurate among people with darker 

skin.99,100 This phenomenon may have led to significant clinical consequences during 

the COVID-19 pandemic, during which wearable-derived SpO2 was commonly used to 

determine the need for in-person clinical evaluation and potential hospitalization, and studies 

have suggested that there may have been delays in treatment for those with darker skin 

tone.101 In summary, CWDs using PPG to measure health metrics have the potential to 

exacerbate existing structural health disparities and contribute to structural racism by failing 

to account for differences between patients like skin pigmentation. As our society continues 

to embrace CWDs, ongoing focus on equity concerns will be required in efforts to close 

the existing digital divide and to avoid the risk of access to CWDs becoming another social 

determinant of health.

FUTURE CONSIDERATIONS

A major feature of the CWD market remains the significant heterogeneity in device 

accuracy, capabilities, and measurement techniques. Although rapid technological advances 

have led to many clinically relevant innovations, CWDs often come to market before 

rigorous scientific testing to fully define CWD efficacy and safety with regard to 

measurement of common health metrics. This leaves patients and clinicians with the 

challenge of interpreting CWD data in the absence of definitive measures of CWD accuracy. 

As previously emphasized, some commonly reported health metrics (eg, heart rate) 

demonstrate significant heterogeneity across CWD manufacturers and patient populations.8 

In addition, more complex variables (eg, peak V
.
O2) are often derived from proprietary 

algorithms that lack standardization and rigorous comparison with clinically-accepted gold 

standards.80 Other innovative health metrics provided by CWDs (eg, stress scores, daily 

readiness scores) have no clear gold-standard of measurement, rendering clinical validation 

extremely difficult. As CWDs continue to grow in popularity and clinical use, it is 

imperative that practicing medical professionals and CWD technology industries collaborate 

together to refine and innovate the most clinically-useful data. A comprehensive list of 

future considerations for CWD design, research, and implementation is presented in Table 3.

CONCLUSIONS

Recent decades have seen rapid growth in the availability and use of CWDs that provide 

a wide range of cardiopulmonary metrics directly to the consumer. As the use of CWDs 

has expanded from athletes seeking performance gains to the general public, clinicians 

are increasingly asked to interpret CWD data and to integrate these metrics in diagnostic 

evaluations and therapeutic planning. This review seeks to assist the broad cardiovascular 

community with the integration of CWD data into clinical care. The consumer reach, 

number of health and disease-related metrics, and scientific data documenting accuracy of 

CWDs will only continue to grow over the coming years, and we anticipate that competency 

in these topics will become invaluable for the cardiovascular clinician.
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APPENDIX

For supplemental Methods as well as tables, please see the online version of this paper.

ABBREVIATIONS AND ACRONYMS

CPET cardiopulmonary exercise test

CWD consumer wearable device

ECG electrocardiogram/electrocardiography

GPS global positioning system

HRR heart rate recovery

HRV heart rate variability

NN interval the mean normal-normal interval

PPG photoplethysmography

PSG polysomnography

RMSSD root mean square of differences in successive NN intervals

SpO2 oxygen saturation

V
.
O2 oxygen uptake
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HIGHLIGHTS

• CWDs have proliferated, but the heterogeneous health metrics they generate 

makes interpretation challenging.

• To optimize their value for patient assessment and management, physicians 

should become familiar with the measurement techniques, accuracy, clinical 

relevance, and potential pitfalls inherent in these devices as they continue to 

evolve.

• Along with technological development, clearer delineation of the indications 

for and appropriate use of monitoring technologies is needed to ensure safety 

and accurate application of the information provided by devices.
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FIGURE 1. Basic Methodology of PPG
Schematic of a wrist-worn consumer wearable device (A) and basic methodology of 

photoplethysmography (PPG) for a consumer wearable device (B). PPG signals are 

integrated over time to derive common clinical metrics such as heart rate (C).
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FIGURE 2. Common Factors Affecting HRV and Data Quality Checklist
Data quality checklist for interpretation of heart rate variability (HRV) results from 

consumer wearable devices and common factors leading to high baseline/increased HRV and 

low baseline/decreased HRV. *See Supplemental Table 1. PPG = photoplethysmography.
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FIGURE 3. Waveform Analysis to Estimate Respiratory Rate From PPG and ECG
Diagram depicting natural physiological changes in photoplethysmography (PPG) (left) and 

electrocardiography (ECG) tracings (right) with normal respiration that can be utilized to 

estimate respiratory rate. Adapted with permission from Charlton et al.107
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FIGURE 4. Algorithm for Interpretation of Abnormal Testing from CWDs
Flowchart for the interpretation of abnormal consumer wearable device (CWD) health 

metrics (A) and checklist to assess for data quality from consumer wearable device health 

metrics (B). PPG = photoplethysmography.
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FIGURE 5. Potential Clinical Applications for CWDs in Cardiovascular Health
Three potential applications for the use of consumer wearable devices (CWDs) (A) in 

general cardiovascular health and (B) in exercise prescription for cardiovascular disease.
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CENTRAL ILLUSTRATION. Common Health Metrics Provided by Consumer Wearable 
Devices
Top left show common cardiac health metrics provided by consumer wearable devices, 

while top right highlights common extracardiac health metrics provided by consumer 

wearable devices. Clinical applications and future considerations are additionally presented. 

HRR = heart rate recovery; HRV = heart rate variability; SpO2 = oxygen saturation; VO2 = 

oxygen uptake.
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TABLE 2

Common Factors Affecting the Accuracy of Photoplethysmography Signals

Obesity

Darker skin tone

Tattoos

Decreased skin perfusion

Cold body temperature

Wrist body location

Inadequate skin contact

Motion

Ambient light
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TABLE 3

Future Considerations for Consumer Wearable Device Design, Research, and Implementation

Promote studies comparing CWD technology with gold-standard reference devices in diverse cohorts of patients and environmental 
conditions.5,72,99

Assess the safety and outcomes of CWDs for telemonitoring in patients with established forms of cardiovascular disease.108,109

Optimize and study the accuracy of CWD technology in the measurement of health metrics during exercise (eg, exercise-induced 
arrhythmias).110

Assess how intraindividual alterations in CWD-derived health metrics affect outcomes in those with and without cardiovascular disease.

Study the effect of artificial intelligence on health metric measurement and interpretation.109

Involve HCPs in CWD design and implementation to ensure clinically relevant health metrics and data reporting.2,109

Prioritize data security for patients and accessibility to CWD data for HCPs in electronic health records.2,6

Promote transparency surrounding medico-legal liability for HCPs being sent and interpreting data from CWDs.6,44

Ensure equitable distribution of CWDs with consideration of incentives to alleviate costs for CWDs following medical approval.44,111

Promote equitable compensation for HCPs in the interpretation of data from CWDs.111,112

Develop ongoing CME for providers on interpretation of current and emerging CWD technology and to design and study the effect of 
educational tools to promote digital health literacy.6,44,109

CME = continuing medical education; CWD = consumer wearable device; HCP = health care provider.
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