Skip to main content
. 2023 Nov 8;14:1283155. doi: 10.3389/fendo.2023.1283155

Table 5.

Accuracy of predictive equations for resting energy estimation compared to Resting Energy Expenditure by indirect calorimetry in the validation group (n: 382).

Method for energy estimation Absolute bias (kcal) Relative bias (%) p-value RMSE Under<90% Accurate 90-110% Over>110%
Predictive equations based on anthropometric measurements
New equation 10 ± 221 0.6 0.379 221 18 62 20
Harris-Benedict et al. (34) -32 ± 219 -1.9 0.001 221 22 60 18
Mifflin-St Jeor et al. (35) -145 ± 221 -8.5 0.001 264 39 54 7
FAO/WHO/UNU (33) 20 ± 221 1.2 0.073 222 16 55 29
Pavlidou (15) -47 ± 221 -2.8 0.001 226 24 59 17
Schofield (36) -64 ± 221 -3.7 0.001 230 25 60 15
Luhrmann et al. (3) 71 ± 223 4.1 0.001 234 10 53 37
Fredrix et al. (37) 92 ± 221 5.4 0.001 239 9 51 40
Predictive equations based on body composition measurements
New equation 12 ± 221 0.7 0.280 221 16 63 21
Cunningham (38) -21 ± 225 -1.2 0.065 226 23 57 21
Mifflin-St Jeor et al. (35) -232 ± 222 -13.6 0.001 321 60 37 3
Korth (39) -13 ± 233 -0.8 0.263 233 22 55 23
Owen (40) -249 ± 229 -14.6 0.001 338 63 35 3
Weigle (41) -363 ± 223 -21.2 0.001 425 85 14 1
Batista (14) 149 ± 328 8.7 0.001 360 14 40 46

p-value: Paired t-test comparing predictive equations with the reference method (indirect calorimetry).

RMSE, Root mean square error.