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Genomic profiling of subcutaneous patient-
derived xenografts reveals immune con-
straints on tumor evolution in childhood
solid cancer

Funan He 1,2,12, Abhik M. Bandyopadhyay1,12, Laura J. Klesse 3,4,5,
Anna Rogojina1, Sang H. Chun6, Erin Butler3,4,5, Taylor Hartshorne 3,
Trevor Holland1, Dawn Garcia1, Korri Weldon1, Luz-Nereida Perez Prado1,
Anne-Marie Langevin7,8, Allison C. Grimes1,7, Aaron Sugalski7, Shafqat Shah7,
Chatchawin Assanasen7,8, Zhao Lai1,8,9, Yi Zou1, Dias Kurmashev1, Lin Xu 3,4,10,
Yang Xie4,10,11, Yidong Chen1,2,8, Xiaojing Wang 1,2,8, Gail E. Tomlinson1,7,8,
Stephen X. Skapek3,4,5, Peter J. Houghton1,8,9, Raushan T. Kurmasheva 1,8,9 &
Siyuan Zheng 1,2,8

Subcutaneous patient-derived xenografts (PDXs) are an important tool for
childhood cancer research. Here, we describe a resource of 68 early passage
PDXs established from 65 pediatric solid tumor patients. Through genomic
profiling of paired PDXs and patient tumors (PTs), we observe low mutational
similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show
an aggressive PT minor subclone seeds the major clone in the PDX. We show
evidence that this subclone is more immunogenic and is likely suppressed by
immune responses in the PT. These results suggest interplay between intratu-
moral heterogeneity and antitumor immunity may underlie the genetic dis-
parity between PTs and PDXs.We further show that PDXs generally recapitulate
PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion
LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and
our study highlights the role of immune constraints on tumor evolution.

Childhood cancers represent about 1% of newly diagnosed cancer
cases in the US. Though rare, cancer is the leading cause of disease-
related death in children1. More than 60% of childhood cancer cases
are solid tumors. The average five-year survival rate for children with
solid cancers exceeds 80%, but survival for patients with metastatic or
refractory tumors is still poor. Further, multimodality treatments
cause long-term health problems and increase the risk of secondary
cancer2,3. Molecularly targeted therapies and immunotherapy can
improve overall patient outcomes, but their development requires
faithful preclinical models and a better understanding of antitumor
immunity.

Patient-derived xenografts (PDXs) are an important model in
cancer research. They are crucial for preclinical and mechanistic stu-
dies of rare cancers such as pediatric solid tumor because they can
preserve tumor tissue in vivo4–7. PDXs are established by engrafting
tumor tissue either subcutaneously or orthotopically into immuno-
compromised mice. Compared with orthotopic PDXs, subcutaneous
PDXs are easier to establish andmonitor tumor size. Preclinical testing
studies with subcutaneous PDXs showed that they can robustly inform
drug activity in patients8,9.

A fundamental question about PDXs is how well they recapitulate
the patient tumors (PTs). In adult cancers, PDXs were found to
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recapitulate PTs in histology, genetics, and pharmacokinetics10–13.
However, genomic profiling of large PDX cohorts found evidence of
clonal evolution during engraftment and passaging, leading to debates
over model fidelity14–16. In childhood solid cancers, similar genomic
profiling efforts were undertaken, but often without matched PTs or
germline samples17. Other studies were focused on single cancer
types18–20, or orthotopic models21,22, or with a limited sample size23–25.
Moreover, many rare childhood cancers such as hepatoblastomawere
often not included. Importantly, both adult and childhood cancer
studies have found PDXs that showedpoormutational similaritieswith
PTs18,21,26, but the underlying mechanism leading to the disparity
remains obscure.

Here, we report genomic profiling of 68 solid childhood cancer
subcutaneous PDXs. These models were established from 65 pediatric
solid tumors across 16 cancer types.

Results
Overview of patient samples, PDXs, and genomic data
We generated 90 subcutaneous PDXs from 194 fresh solid tumor
samples using a previously published protocol27 (“Methods”). All

patients were younger than 18 years old at the time of tumor collec-
tion,with bothbiological sexes represented (Male:Female, 1.2:1). Of the
patients with treatment information available, 38% received prior
treatment, primarily chemotherapy.

We observed high engraftment rates in clear cell sarcoma (100%)
and Wilms tumor (85%), and lower rates in neuroblastoma (26%) and
brain tumors (23%) (Fig. 1a). The engraftment rates for neuroblastoma
and Wilms tumor were similar to that of previously published ortho-
topic models21, but the rate for osteosarcoma in our cohort was higher
(67% vs. 48%). The average time from tumor implantation (P0) to PDX
harvest (P1) also varied from 30 weeks for neuroblastoma to 13 weeks
for hepatoblastoma (Fig. 1b).

We performed low pass whole genome sequencing (WGS),
whole exome sequencing (WES), and mRNA sequencing (RNAseq) on
68 PDXs (Fig. 1c). Among the 68 PDXs, 27 (40%) had the matched
patient tumor (PT) and 40 (59%) had normal germline DNA. Isogeneity
of the matched samples was confirmed using DNA and RNA sequen-
cing data (Supplementary Fig. 1). The PDX cohort comprised 14 Wilms
tumors, 13 hepatoblastomas, 12 osteosarcomas, 10 germ cell tumors,
and 19 others. These PDXs were derived from tumor tissues of 65
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Fig. 1 | Overview of PDXs and sequencing data. a Engraftment rate across
cancer types. The number above each bar indicates the number of PDXs
analyzed in this study. b Average engraftment time. The error bar indicates
standard error of the mean. c Overview of clinical and molecular data. The
top panel shows clinical data including cancer type, stage, sex, age, race,

ethnicity, and treatment. The bottom panel summarizes the sequencing data.
Samples with an asterisk were removed from data analyses because of high
mouse tissue contamination. RNAseq, RNA sequencing; WES, whole exome
sequencing; WGS, low pass whole genome sequencing. Source data are
provided as a Source data file.
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patients, all younger than 18 years (median 6.5; mean 7.7). Male to
female ratio (1.3:1) was similar to the overall patient cohort (n = 90,
1.2:1). Thirty patientswereofHispanic ancestry, and thiswas confirmed
using ancestry informative markers28 (Supplementary Fig. 2). Treat-
ment information was collected for 62 patients, 23 of whom received
prior treatment (37%). Sixty-two models were derived from primary
tumors and five from metastatic tumors. Clinical data of the samples
were summarized in Supplementary Data 1. To help disseminate this
resource, we have built an intuitive online portal (pediatric solid tumor
PDX portal, https://pstPDX.streamlit.app). Requests for PDX materials
can also be made on the site.

We observed higher tumor purity in PDXs than in PTs
(p = 2.1 × 10−3, two-sided t test; Supplementary Fig. 3a, b). Immune and
stromal cell signature scores were lower in PDXs (Supplementary
Fig. 3c–e). Interestingly, the signature scores of stromal cells in PDXs
were positively correlated with those in PTs, suggesting early passage
PDXs still retained some stromal cells from the PT (rho =0.66,
p =0.003; Spearman correlation). We did not observe significant cor-
relation for immune scores (Supplementary Fig. 3f).

Mutational similarity between PT and PDX
We used multiple tools to detect somatic mutations and indels
(insertions and deletions) (Methods). In total, we identified 1786
mutations and 161 indels from WES data. Ninety-two percent of the
point mutations were validated in RNAseq or low pass WGS. The
unvalidated mutations had lower variant allele fractions (VAFs, mean
0.13 vs. 0.34 for validated mutations). Deep sequencing of a PT/PDX
pair yielded a 100% validation rate on60mutations thatwere captured
in the assay (Supplementary Data 2). We did not observe significant
differences in mutation rate between PTs and PDXs except in Wilms
tumor, or tumors with and without a germline control except in germ
cell tumor (Supplementary Fig. 4a, b). Across the cancer types, Wilms
tumor showed the lowest mutation rate (median: 0.18 mutations/Mb),
and osteosarcoma showed the highest (median: 0.56 mutations/Mb)
(Fig. 2a). These mutation rates agree with results from recent pan-
pediatric cancer analyses29,30.

Few cancer genes showed recurrent mutations across the cohort,
consistent with the overall low mutation rate of childhood cancers
(Supplementary Fig. 4c). The exception was CTNNB1, which was
mutated in 7 of 11 (64%) hepatoblastomas with exome sequencing
data. Mutation rates of known driver genes from our dataset were
generally consistent with the literature (Supplementary Data 3). Pan-
cancer analysis with MutsigCV31 identified only CTNNB1 and TP53 as
significant mutated genes across the PDXs (FDR <0.1) (Supplemen-
tary Data 4).

We observed significantly higher mutation rates in prior treated
PTs or their derived PDXs than in treatment-naïve samples
(p = 2.3 × 10−4, Wilcoxon rank sum test; Fig. 2a). To corroborate the
association between higher mutation rates and chemotherapy, we
deconvoluted mutations into mutational signatures. Such deconvolu-
tion can identify mechanisms that cause mutations in the cancer
genome32. We in total analyzed 14 samples with at least 20 mutations
(Fig. 2b). Among the 10 samples that were derived from patients who
had received chemotherapy, we found evidence of chemotherapy
relatedmutational signatures in 8 (2 PTs and 6 PDXs), seven associated
with the platinum drug related signatures SBS31 and SBS35, and one
with SBS86, a signature currently associated with unknown che-
motherapy treatment. The samples demonstrating signature SBS31 or
SBS35 were derived from six patients. Except for an osteosarcoma
patient (560-LM) who received unspecified chemo-treatment, all the
other five patients received cisplatin, a platinum-based drug. This data
supports the mutational signature analysis. The sample not exhibiting
chemotherapy signatures (1981_PDX) showed SBS15, a signature
associated with microsatellite instability (MSI). Consistently, the sam-
ple showed a high MSI score (42.4% vs. average of all others, 1.6%).

For the two PTs that exhibited high mutation rates and che-
motherapy signatures (1792_PT, 1957_PT), their corresponding PDXs
also exhibited the same signatures (Fig. 2b). Another PT sample,
585_PT, was dropped frommutational signature analysis due to its low
mutation count (n = 6); however, the matched PDX exhibited SBS31
and SBS35. The consistency in demonstrating chemotherapy sig-
natures was not necessarily driven by shared mutations between PTs
and PDXs. For 585 and 1957, PTs and PDXs had little overlap in somatic
mutations (Fig. 2c). Using PDX-specific mutations yielded the same
chemotherapy signatures for the two samples (Supplementary
Fig. 4d). Thus, these data suggest the related mutations in these PDXs
were inherited from the seeding PTs.

Next, we examinedmutational similarities between PTs and PDXs
using 25 PT/PDX pairs (Fig. 2c).We definedmutational similarity as the
fraction of shared mutations over all mutations found in each pair.
Overall, 78% of mutations were shared between PTs and PDXs. The
median mutational similarity was 0.52, higher than those observed in
recently publishedpediatric cancer PDXcohorts18,21 but lower than that
in adult tumors26. Limiting the comparison to cancer genes (Supple-
mentary Data 5) increased the median mutation similarity to 0.95 for
the 20 pairs where at least one cancer gene mutation was observed
(Supplementary Fig. 4e, f). Oncogenic or likely oncogenic mutations
demonstrated a high level of overlap (28/30, 93%) between PTs and
PDXs. Five pairs showed lowmutational similarity (<0.2), including two
(1959, 1979) with no shared mutations. To test if the low mutational
similarity was due to sequencing coverage, we performed capture
enrichment and deep sequencing on a pair of PT and PDX samples
(585_PT and 585_PDX). By WES, six mutations were found in 585_PT,
and 58 mutations were found in 585_PDX, 56 of which were not found
in 585_PT. Deep sequencing captured 54 mutations found in 585_PDX,
all validated. Similarly, all sixmutations found in 585_PTwere validated
by deep sequencing (Supplementary Data 2). None of the PT or PDX
specific mutations were found in the matched sample in the deep
sequencing data, suggesting limited impact by sequencing depth on
the observed PT/PDX mutational similarity in this case.

To understand how intratumoral heterogeneity can impact PT/
PDX mutational similarity, we obtained seven additional PDX samples
that matched four PTs. Six of the seven PDXs were established from a
distinct patient tumor block, and the remainder was a second block of
the originally sequenced PDX. Comparison of these additional PDXs
with matched PTs demonstrated generally consistent mutation simi-
larities in these samples (Supplementary Fig. 4g).

Distinct evolutionary patterns during engraftment
To explore the clonal dynamics in tumor engraftment, we inferred
mutation clonality using a consensus approach for the 25 PT-PDX pairs
(“Methods”). Overall, 82% of mutations in PTs and 84% of mutations in
PDXs were clonal, but this percentage was highly case specific (Sup-
plementary Fig. 5). While 88% of PT clonal mutations were observed in
the PDX, only 22% of PT subclonal mutations were observed in the
PDX. This result was consistent with the expectation that clonal
mutations more likely pass on than subclonal mutations. To further
validate mutation clonality, we examined presence of PT clonal and
subclonal mutations in the additional PDXs. For the four PTs with
multiple PDXs, all PT clonal mutations (n = 30) that were observed in
theoriginal PDXwere alsoobserved in the additional PDXs. In contrast,
only two of the 17 PT subclonal mutations were observed in the addi-
tional PDXs. Notably, 33% of PDX clonal mutations were not found in
the PT, suggesting clonal expansion during engraftment (Supple-
mentary Fig. 5a).

We next classified paired samples into distinct evolutionary
patterns based on changes in mutation clonality from PTs to PDXs.
For this analysis, we excluded the two PT/PDX pairs (1959 and 1979)
that showed no mutational overlaps. We observed three patterns. In
the first pattern, PDXs retain clonal mutations from the PT and
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exhibit a similar clonal composition. We call this pattern ‘clone
retention’ (Fig. 3a and Supplementary Fig. 5b). This pattern con-
stituted 70% (16/23) of the pairs classified. The second pattern was
characterized by expansion of PT subclones in the PDX (Fig. 3b and
Supplementary Fig. 5c). This pattern, termed “clone sweeping,” was
observed in four pairs (17%). The last pattern was characterized by
loss of PT clonal mutations and retention of early mutations in the
PDX (Fig. 3c and Supplementary Fig. 5d). This pattern, termed
‘branch seeding’, was observed in three pairs (13%). The loss of PT
clonal mutations was not due to copy number deletion in the paired
PDX. One example of this pattern was a hepatoblastoma sample
(1957); only two of the 41 PTmutations were found in the PDX, one of
which was in CTNNB1, an early driver of the cancer type33 (Fig. 3c).

The evolutionary patterns appeared to be reproducible across
multiple PDXs. In two samples (1913,1932) that were classified as clone

sweeping, the evidence for these classifications were that in both
cases, a PT subclonal mutation became a clonal mutation in the PDX
(LRP2 for 1913, and BMP4 for 1932). Interestingly, the same LRP2
mutation was also identified in the two additional 1913 PDXs where the
mutation appears to be clonal (VAF 0.44 and 0.45, vs. 0.09 in PT).
Similarly for 1932, the BMP4 mutation was observed in the two addi-
tional PDXs, also withmuch higher VAFs in the PDXs (0.37 and 0.38 vs.
0.12 in PT).

Both patterns of clone sweeping and branch seeding indicate that
a subclone in the PT seeds the PDX, likely by outcompeting other
clones. For simplicity, we lump them together as one group (group 2),
to compare with samples showing the clone retention pattern (group
1). Unlike continuedexpansionof themajor PT clone in the PDX (group
1), clonal selectionobserved in group 2would take longer to establish a
major clone. Consistent with this idea, the median time for group 2
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models to reach the harvest tumor volume after implantation was
22 weeks, compared to 13 weeks for group 1 models (p = 0.03, Wil-
coxon rank sum test; Fig. 3d).

The longer engraftment time could explain the increased number
of PDX specific mutations in group 2 (Fig. 4a). To test this possibility,
we correlated the two and found no significant correlation (p =0.18,
Spearman correlation test; Supplementary Fig. 5e). This lack of cor-
relation remained after controlling for the PT mutation rate for each
PDX (p = 0.13; Supplementary Fig. 5f).

To provide further evidence for the distinct evolutionary paths,
we analyzed tumor telomere lengths. Telomeres progressively shorten
along cell divisions34; thus, continued growth of the same clones from
PT to PDX such as in group 1 would likely result in shorter telomeres in
the PDX. We estimated average tumor telomere lengths using both
WGS and WES data (Methods). The two data types yielded consistent
telomere length estimates in PDXs, PTs, and germline samples (Sup-
plementary Fig. 6a and Supplementary Data 6). Across the cancer
types, germ cell tumor showed the longest telomeres (Fig. 3e and
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Article https://doi.org/10.1038/s41467-023-43373-1

Nature Communications |         (2023) 14:7600 5



Supplementary Fig. 6b), likely due to its origin from telomerase-
competent germ cells. Among non-germ cell cancers, osteosarcoma
showed the highest telomere length, consistent with a recent report35.

PDXs showed overall shorter telomeres than matched PTs
(p = 1.5 × 10−3, paired t test; Fig. 3f and Supplementary Fig. 6c). The
pattern of telomere shortening was more pronounced in group 1 than
in group 2 tumors (p =0.033, Wilcoxon rank sum test; Fig. 3g and
Supplementary Fig. 6d). These data provide additional evidence that
group 2 tumors underwent a distinct evolutionary path from group 1
tumors.

Clonal selection during engraftment associates with genetic
heterogeneity and antitumor immunity in the PT
To provide insights into the three evolutionary patterns, we correlated
them with PT/PDX mutational similarity, prior treatment, and tumor
genetic heterogeneity defined as the fraction of subclonalmutations in
a sample. ‘Clone retention’ tumors showed an average mutational
similarity of 0.73, compared to 0.42 for ‘clone sweeping’ and 0.06 for
‘branch seeding’ (group 1 vs. group 2, p = 0.0012, Wilcoxon rank sum
test). The decreasing mutational similarity was associated with PT
(p = 0.034, Spearman correlation; Supplementary Fig. 7a) but not PDX
genetic heterogeneity (p =0.38, Fig. 4a). Thus, PTs withmore complex

clonal structures tend to generate genetically more distinct sub-
cutaneous PDXs. We did not find a significant association between
chemotherapy and the evolutionary patterns (p = 1, chi-square test).

We next asked what drove the clonal selection in group 2
tumors. For these pairs, we denote the major clone in the PT as Cpt

and the major clone in the PDX as Cpdx. Based on their evolutionary
pattern, clone Cpdx was a minor clone in the PT. We hypothesized
that Cpdx had a growth advantage so that it could overtake Cpt during
engraftment. To test this hypothesis, we compared proliferation
markers and cell cycle signatures between PTs and PDXs, assuming
expression of bulk tumor reflected themajor clone’s. Consistent with
the hypothesis, expression of proliferation markers and cell cycle
signatures was higher in PDXs than in the matched PTs for group 2
tumors, suggesting the PDX major clone was indeed more pro-
liferative in these pairs. In contrast, the opposite pattern was
observed in group 1 tumors (Fig. 4b).

If Cpdx was more proliferative, why was it not the major clone in
the PT?We reasoned that its expansion could be constrained in the PT,
but such constraint was weakened or even nullified in the PDX.
Because PDX-host mice have no functional immune system, immune
surveillance may contribute to this constraint by preferentially tar-
geting Cpdx.
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To test this hypothesis, we first compared mutational load. For
both groups, no significant difference inmutational loadwasobserved
between PTs and PDXs (Group 1, p =0.2; Group 2, p = 0.3, paired t test;
Supplementary Fig. 7b). We next compared neoantigens (Supple-
mentary Data 7; “Methods”). In group 1, no difference was found in
clonal neoantigen load between PTs and PDXs (p = 0.87, paired t test).
However, in group 2, PDXs showed significantly more clonal neoanti-
gens than their matched PTs (p =0.03, paired t test; Fig. 4c). This
pattern remained after controlling for the total number of clonal
mutations (p =0.03, paired t test; Supplementary Fig. 7c). Thus,
despite being more proliferative, Cpdx also expressed more
neoantigens.

There was evidence that subclonal neoantigens are more immu-
nogenic than clonal ones36. Because Cpdx was a subclone in the PT, we
sought to find signs of antitumor immunity in group 2 PTs. We com-
pared their expression with those from group 1 PTs. Pathway analysis
with GSEA identified inflammasomes as the second highest pathway
ranked by normalized enrichment score in group 2 PTs (p =0.03;
Fig. 4d and Supplementary Data 8). Inflammasomes are the receptors
and sensors of the innate immune system37. They are assembled in
professional antigen-presenting cells (APCs), which are constituents of
the innate immunity and bridge the innate and adaptive immune
systems38. High inflammasome activity suggests possible activation of
the innate immunity. Consistently, gene signatures related to natural
killer cells, a major effector cell of the innate immune system, were
higher in group 2 PTs (Supplementary Fig. 7d). Expression of HLA
genes, which encode major histocompatibility complexes (MHCs) on
the surface of APCs, was significantly higher in group 2 PTs than group
1 PTs (p = 0.02, Wilcoxon rank sum test; Fig. 4e). We next examined
tumor microenvironment using multiple deconvolution tools (“Meth-
ods”). Interestingly, the abundance of cancer associated fibroblast, a
known immunosuppressive cell population39, was consistently repor-
ted lower in group 2 PTs (Supplementary Fig. 7e).

Taken together, these results suggest in group 2 PT/PDX pairs, a
more proliferative but also more immunogenic PT subclone was
selected to seed the PDX. In the context of immune deficiency in the
host mice and activated immune responses in the PT, these data
implicate a role of immune environment changes in fostering this
selection during engraftment.

PDXs retain somatic copy number alterations
Whether somatic copy number alterations (SCNAs) undergo PDX
specific evolution has been recently debated in adult cancer14–16. To
examine SCNA conservation in our PDXs, we inferred copy number
profiles using low pass WGS data (Methods). This data provides better
resolution than exome sequencing-based estimates. Using these data,
we identified 15 amplification and 19 deletion peaks (Supplementary
Fig. 8a). Genes located in the amplification peaks included MYC, cell
cycle genesCCND3 andCCNE1, chromatin regulators SETDB1 and EZH2,
and DNA repair gene XRCC2. Genes located in deletion peaks included
TP53, PTEN, DNA repair genes RAD51, FANCA, ATM, CHEK1, POLD1,
apoptosis regulators BAX and BCL2, hypoxia regulator HIF1A, and
interestingly PD-L1.

On the cancer type level, SCNA profiles were similar between PTs
and PDXs, and were consistent with the literature (Supplementary
Fig. 8b). For instance, we observed frequent gain of chr1q (57%) and
loss of chr11 (30%) in Wilms tumor at a rate similar to previous
reports40,41. Few SCNAs were observed in hepatoblastoma except arm-
level gains of 1q (46%), 2q (41%), 20 (41%), and 8q (24%), as previously
reported42. We observed frequent gain of chromosome 12p (85%), 21
(62%), 7p (54%), and loss of chromosome 4 (46%) and 5 (38%) in germ
cell tumor. These rates were also consistent with previous studies43,44.

To quantify SCNA conservation, we first compared tumor ploidy,
a measure of genome wide SCNA. We found high tumor ploidy, likely
driven by whole genome doubling (WGD), in 77% of germ cell tumors

and 67% of osteosarcomas (Fig. 5a). Tumor ploidy was highly similar
between PDXs and PTs, including the group 2 tumors (rho = 0.98,
p = 3.2 × 10−15, Spearman correlation; Fig. 5b), suggesting conservation
of karyotype in the PDX. However, we did observe two exceptions (8%,
patients 1959 and 1979) where drastic change in ploidy was found in
the PDX. Consistent with this result, the PT and PDX of the two pairs
did not show any overlap in mutations.

Next, we compared global chromosomal instability using a
genomic instability (GI) score (“Methods”; Supplementary Data 9).
Osteosarcoma, a cancer characterized by high chromosomal
instability45, showed the highest scores (Supplementary Fig. 9a).
Tumors with relatively quiet genomes like neuroblastoma, clear cell
sarcoma, and hepatoblastoma showed the lowest scores. GI scores
were positively correlated between PTs and PDXs (rho =0.75,
p = 1.7 × 10−5, Spearman correlation; Supplementary Fig. 9b).

Finally, we correlated copy number profiles for each PT/PDX pair
(Methods). After excluding samples with few SCNAs (total GI score
<0.1), we found strong pairwise correlations between PTs and PDXs
(Fig. 5c). Limiting this analysis to cancer genes yielded a similar result
(Supplementary Fig. 9c). These strong correlations remained between
PTs andmultiple PDXs that were derived from the same patient tumor
(Supplementary Fig. 9d). The correlations were similar between group
1 and group 2 tumors (p =0.6, t test; Supplementary Fig. 9e), sug-
gesting SCNAs were primarily clonal. We then asked if focal events
were retained in the PDX. In total we identified 292 focal events in nine
samples, seven of which were sarcomas. The aggregated length of
these events ranged from 2Mb to 462Mb (Supplementary Fig. 9f).
Overall, the overlap of focal events was better than that of mutations,
with 86% of them shared between PTs and PDXs (Fig. 5d). Unlike
mutations, conservation of PT focal events in the PDX was observed in
each pair analyzed. Only one PDX (2035) showed notablymore private
focal events. Taken together, these data show strong conservation of
SCNAs in early passage PDXs.

Transcriptomic analysis shows tissue effect and identifies
fusions
Wenext examined how the PDXs recapitulated PTs in gene expression.
Unsupervised clustering grouped samples into tissues of origin except
clear cell sarcoma (Fig. 6a). Close analysis showed that clear cell sar-
comas were divided into two groups, one consisting of samples col-
lected from the kidney (1754 and 2324), and the other consisting of
samples collected from the bone (529). This tissue-of-origin domi-
nated pattern was previously observed in adult cancers46.

We observed highly correlated expression profiles of thematched
PTs andPDXs (rho range0.92–1, Spearman correlation; Fig. 6b). Toput
these correlations in context, we compared PDXs that were derived
from two metastatic lesions of the same patient (560 lung and skin
metastases), and PDXs derived from different blocks of the same
tumor (1939). The correlation between the two PDXs of patient 560
was 0.94, and the correlation between the two PDXs of patient 1939
was 0.97. The high correlation was similar across the three evolu-
tionary patterns (p =0.87, t test; Supplementary Fig. 10a). Hepato-
blastoma and Wilms tumor samples showed significant intra-lineage
correlations, corroborating results from unsupervised clustering.
These results show that gene expression is highly conserved in PDXs
and is dictated by both cancer genetics and tissue of origin.

To identify molecular alterations, we called gene fusions using
RNAseq data. We identified 161 high-confidence gene fusions (Sup-
plementary Data 10; “Methods”), including disease-defining fusions
such as reciprocal EWSR1-ATF1 in a clear cell sarcoma (patient 529) and
BCOR-CCNB3 in a Ewing-like sarcoma (patient 2197).Mostof the fusion
events (n = 125, 78%) were found in osteosarcoma and clear cell sar-
coma, and their distribution across cancer types was generally con-
sistent with that of chromosomal instability (Supplementary
Fig. 10b, c).

Article https://doi.org/10.1038/s41467-023-43373-1

Nature Communications |         (2023) 14:7600 7



Paired PTs andPDXs showed significant overlaps in fusions.Of the
18paired sampleswith RNAseqdata, we identified at least one fusion in
six pairs, and 97% (29/30) of the fusions detected in the PT were also
found in the PDX (Supplementary Fig. 10d).

Next, we mapped the fusions to kinases and clinically actionable
genes (Supplementary Data 10). Of the fusions identified in PDXs, 14
involved a kinase gene and 12 involved a clinically actionable gene,
including TAOK1-NTRK3 (Fig. 6c). Inhibition of NTRK fusions showed
promising clinical benefits in patients47,48. Importantly, we observed a
fusion, LRPAP1-PDGFRA, in a glioblastoma and a germ cell tumor. The
fusion preserved the protein kinase domain of PDGFRA and was
associated with high PDGFRA expression (Fig. 6c and Supplementary
Fig. 10e). Exon-level expression aligned with the fusion breakpoints.
We further validated the fusion in both samples usingRT-PCR (Fig. 6d).

Discussion
Solid tumors are rare in children; the rarity poses a significant chal-
lenge for building resources at scale. Preserving tumor tissue in
rodents is essential for preclinical and mechanistic studies and for
resource sharing. Here, we have built a resource of 68 subcutaneous
xenografts derived from pediatric solid tumors, including several very
rare cancer types. All the PDXs have been molecularly characterized,
and the tissue materials are ready to be distributed upon request.

With this resource, we determined conservation of mutations,
SCNA, and expression profiles in PDXs. We found that early-passage
PDXs faithfully retain expression profiles of the PT, suggesting gene
expression is tumor-intrinsic. The conservation of gene expression is
not dependent onmodelmutational similarity; thus, expression can be
amore robust tool to transfer preclinical insights fromPDXs toPTs.We
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observed that PDXs generally conserve the SCNA profiles of the PT.
The conservation of SCNAs was also observed in adult cancer PDXs14.
These observations are consistent with results from single cell
sequencing that suggested most SCNAs are early events during
transformation49. Further insights in SCNA stability can be gleaned
through its characterization over serial PDX passaging19,50.

We found significant mutation disparity in ~30% of the PDXs, and
this disparity was associatedwith high genetic heterogeneity of the PT.
Thus, more heterogenous tumors tend to generate genetically more
different PDXs. The association could result from sampling bias, where
a tumor block distinct from the PT seeds the PDX. Alternatively,
engraftment disrupts the clonal equilibrium of the cancer ecosystem
and a subclone outcompetes other clones to become the dominant
clone in the PDX. Both mechanisms are possible, but sampling bias is
unlikely the major force as it cannot explain the longer engraftment
time and higher proliferation of the PDXs that we observe in nearly
every genetically disparate pair. Supporting this concept, additional

PDXs established from distinct tumor tissue of patients 1913 and 1932,
where significant mutation disparity between the PT and the original
PDX was observed, demonstrated similar subclonal expansion.

Cancer heterogeneity fosters evolution51, but evolution is driven
by environmental changes. Implantation of cancer cells in immuno-
compromisedmice removes antitumor immunity for cancer cells, thus
potentially allowing previously constrained, more immunogenic
clones to grow. In support of this idea, we show that genetically dis-
parate PDXs express significantly more clonal neoantigens than their
matched PTs. For example, in patient 1957, we found two shared
mutations between the PT and PDX. Of the 39 PT-specific mutations,
none were predicted to encode a clonal neoantigen. In contrast, 10
clonal neoantigens were predicted out of the 32 PDX-specific muta-
tions. The bulk of these PDX-specific neoantigens were unlikely
acquired during PDX production. In mutational signature analysis,
when chemo-related mutational signatures were identified in PTs, the
same signatures were also identified in the PDXs with all PDX
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mutations or PDX specificmutations, even though themicewere never
treated. Moreover, seven PDX specific clonal mutations from patient
1913 were also found in the two additional PDXs that were established
fromdistinct patient tumor tissue. This observation provides evidence
that these mutations preexist in the primary patient tumor, because it
is virtually impossible for PDXs grown in different mice to acquire
several identicalmutations. Thepreexistence of PDX-specificmutation
is also consistent with the low mutation rate of childhood cancers.

Recently, PDX co-clinical trials have been proposed to guide
therapy at the time of tumor relapse52. Our data suggest such co-trials
could misinform treatment when the tumor is highly heterogeneous.
In addition,we show in somepatients, the immune system, particularly
the innate immune system, might have suppressed the more aggres-
sive cancer subclones. Thus, leveraging this antitumor immunity in
combination with surgical resection may benefit these patients.

In summary, we build a PDX resource for pediatric solid cancer
research and describe evidence that the interplay between intratumor
heterogeneity and immune constraints on tumor evolution may
underlie the genetic disparity between PTs and PDXs. More studies
with larger cohorts are warranted to further validate and extend this
finding, including in adult cancers.

Methods
Sample collection and patient consent
This study complies with all relevant ethical regulations. It was
approved by the Institutional Review Board (IRB) and the Institutional
Animal Care and Use Committees (IACUC, protocol #15015) of Uni-
versity of Texas Southwestern Medical Center (UTSW), Dallas, TX and
UT Health San Antonio (UTHSA), TX. The human aspect of this study
was deemed minimal risk by the approving IRB. No specific ethics
reviewwas therefore required. Individualswith identified solid tumors,
both benign and malignant, were approached and offered enrollment
on an institutional, IRB approved biorepository prior to standard of
care surgical procedures. For patients less than 18 years of age, parents
or legally authorized representatives provided consent. Assent of the
patient was required for those participants 10–17 years of age. All
anatomic sites of diseasewere eligible and individualswere considered
eligible if they were under 30 years of age at the time of consent.
Patient race and ethnicity was self-reported. Biorepository consent
included collection of medical waste for research, including the tumor
utilized here, and consented for the generation of patient derived
xenografts. Patients also consented to the collection of germline DNA,
collection of basic demographic information and outcome data as part
of the biorepository. Tissue from the surgical procedure which was
considered excess or not necessary for diagnosis was collected, de-
identified, and prepared for shipment and/or injection for develop-
ment of patient derived xenografts. Tissue samples were kept at 4 °C
until prepared for shipment and/or injection. All study procedures
were completed after initial consent was obtained. Patient sex was not
considered in the study design.

Establishment of solid tumor PDX model
Patient-derived Xenografts (PDX) were generated from childhood
cancer patients as described earlier27 with minor modifications
described here. Subcutaneous human xenografts frompatient derived
tumors were generated in a highly immunodeficient NSG (NOD.Cg-
Prkdc IL2-Rgnull/Szj) mouse model (Jackson Laboratories, Bar Har-
bor, ME, USA).

Tumor specimens were collected immediately after biopsy/sur-
gery in antibiotic (2% penicillin/streptomycin) containing M199 med-
ium. The specimens were transported same day to GCCRI from
University Hospital or Methodist Hospital, San Antonio or shipped
overnight from other institutions (UTSW and APEC14B1 project hos-
pitals) to GCCRI using cold shipping containers and transplantation
was performed the same day specimens were received.

FemaleNSGmicewere received at 6–8weeks of age and allowed a
7–10 day acclimation period. Animal cages are changed out once a
week or every other week depending on housing type, e.g., micro-
isolator or individually ventilated cages. The cages are maintained in
animal rooms equipped to provide 10–15 air changes per hour. The
room temperature is maintained at 21–26 °C, relative humidity
between 30 and 70%with a 14:10 day:night light cycle. Transplantation
was performed oncemice gained an average body weight of 20 g. Hair
was removed at the site of incision (above the base of tail over the
spine). The transplantation was performed under a biological laminar
flow cabinet, under anesthesia (in an induction chamber with the flow
of 5% isoflurane at 4 L of oxygen per minute) until mice were unre-
sponsive to a toe pinch.

The tumor fragments (made about 2 × 2mm) were kept in fresh
medium until the mouse was ready for transplantation. The site was
swabbedwith 70% ethanol, an incisionwasmade (approx. 4mm) and a
pocket was created under the skin using scissors. Using forceps, a
tumor piece was dipped briefly into Matrigel (supplemented with
VEGF, 100 ng/ml, to enhance angiogenesis) and placed inside the
pocket followed by irrigation with a drop of penicillin/streptomycin
and the incision was closed by using a small drop of tissue glue
(Vetbond).

Collection of PDX passages as viables and snaps
Mice were monitored for xenograft growth and healing of the inci-
sion. When tumors reached a size of about 1 × 1 cm, mice were ter-
minated and tumors were collected as viables (in 7.5% DMSO/50%
FBS) and kept frozen in a liquid nitrogen vapor tank and also snap
frozen in liquid nitrogen to get Snaps for genomic analysis and
preserved at −80 °C. Tumors were also further transplanted into
additional mice (typically 5 mice) as donors for passaging of PDX.
The maximal tumor size permitted by IACUC (800–1600mm3) was
not exceeded.

DNA and RNA sequencing
GenomicDNAwasextractedwithDNeasyBlood&TissueKit (QIAGEN).
KAPA HyperPrep kit was utilized to construct DNA libraries for whole
genome sequencing and whole-exome sequencing. Approximately
250–500 ng genomic DNA were sheared with Covaris S220 Ultra
Sonicator to the average of 200–400bp fragments for DNA-seq library
preparation. Then one proportion of DNA-seq libraries was quantified
and pooled together for whole genome sequencing using 150 bp
paired end sequencing; other proportion of DNA-seq libraries (around
250ng) were quantified and pooled to go through two rounds of
hybridization to enrich the DNA fragments of exome regions by using
IDT xGen Exome Research Panel (V1 and V2). The final WES library was
amplified, quantified, and loaded for 100bp paired end sequencing at
UTHSA Genome Sequencing Facility. On average, WES was sequenced
to 300× and low-pass WGS was sequenced to 4×.

RNA was isolated using RNeasy Mini Kit (QIAGEN). The quality of
Total RNA was checked by Agilent Fragment Analyzer (Agilent Tech-
nologies, Santa Clara, CA), and only high-quality RNA samples
(RQN> 7) were used for mRNA-seq library preparation and sequen-
cing. Following the Illumina TruSeq stranded mRNA sample prepara-
tion guide, we used approximately 500ng Total RNA for RNA-seq
library preparation. After RNA-seq libraries were quantified, they were
pooled and subsequently loaded for 100 bp paired read sequencing
run on the Illumina HiSeq 3000 platform. An average of 80 million
reads were obtained per sample.

Target enrichment and deep sequencing
Based on the mutation calling result from WES data, we designed the
probes for unique somatic point mutations found in 585_PT and
585_PDX. Approximate 100ng whole genome DNA was used for DNA-
seq library preparationwith Twist Library Preparation EF2.0 Enzymatic
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Fragmentation Kit (104206, Twist bioscience, San Francisco, CA). The
whole genome DNA was sheared by enzymatic fragmentation and the
fragmentation time has been optimized to generate the mode frag-
ment length about 200–300 bps. Then following end repair & A-tailing
and adapter ligation, SPRI beads size selection was used to ensure the
library insert size uniform. After PCR amplification, the final DNA-seq
library is cleaned up with SPRI beads and quantified with Qubit and
Fragment Analyzer. Then target capture libraries were prepared by
following Twist Custom Panel Hybridization Capture of DNA libraries
protocol (Twist bioscience, San Francisco, CA), and final libraries were
quantified with Qubit and Fragment Analyzer. Final libraries were then
loaded on NovaSeq 6000 System with 150 bp paired end sequencing.
After the sequencing run, sample demultiplexing is performed to
generate FASTQ files for each sample. The average depth of sequen-
cing is 5000–7000×.

Target-capture-based deep sequencing was often used in PT/PDX
comparisons. While it can improve detection sensitivity of mutations
with low allele fractions, it does not and should not be used to identify
mutations that are not detected by whole exome or genome sequen-
cing data. The results from deep sequencing data should also be
interpreted with caution. Whereas the detection of a PDX-specific
mutation in the PT by deep sequencing suggests pre-existence of the
mutation in the parental patient tumor, the absence of themutation in
the PT does not prove the mutation is acquired de novo by the PDX
because the PT sample, where the deep sequencing is done, is not the
tissueoriginof the PDX. Sequencing coverage in this context shouldbe
also considered for data interpretation.

Sequencing data preprocessing and quality control
Trim Galore53 (v0.6.7) was applied to raw sequencing data to remove
the adapter and poor-quality reads. BWA-MEM54 (v0.7.17) and STAR55

(v2.7.9a) were used to align DNA and RNA sequencing data to the
reference genome. To remove mouse-derived reads in PDXs, we
mapped the sequencing data to the human (GRCh38, GENCODE v29)
and mouse (GRCm38, GENCODE vM19) reference genomes from
GENCODE56. Disambiguate57 (v1.0) was then employed on the BAM
files to remove mouse reads. Notably, for RNA sequencing data, we
converted the BAM file of human reads to FASTQ format using
Samtools58 (v1.14), so that we can merge them with the unmapped
reads for gene fusion detection. GATK59 best practice workflow was
used to deduplicate and recalibrate the aligned BAM files for DNA
sequencing data.

PDXs with a mouse contamination rate >50% were excluded from
further analyses. Samples with this high contamination rate included
one RNA-seq (1853), three WES (1796, 1853, 512) and two WGS PDXs
(1796, 1853).We further excluded twoWES PDX samples (560-SM, 707)
that had low coverage after mouse read removal. NGSCheckMate60

(v1.0.0) was applied to ensure matching between PTs and PDXs using
both DNA and RNA sequencing data. In addition, RNA-seQC61 (v2.3.5)
and Samtools were applied to RNA and DNA sequencing data to assess
mapping quality.

Mutational analysis
MuTect2 (GATK v4.2.3.0), VarScan (v2.4.4), Strelka (v2.9.10) and
Pindel (v0.2.5b9)62–65 were utilized to identify somatic mutations
and indels from the WES data. To filter false positives, DKFZ’s bias
filtering (https://github.com/DKFZ-ODCF/DKFZBiasFilter) was
used to filter mutations with strand bias or bias toward PCR tem-
plate strand. We used fpfilter.pl (https://sourceforge.net/projects/
varscan/files/scripts) to remove false positives from VarScan out-
put. We excluded mutations in intergenic, intron, or outside cap-
ture regions. To remove potential germline variants, we annotated
the remaining mutations using population databases (including
1000 genome phase 3, ESP6500, non-TCGA ExAC and gnomAD
3.0)66, and only kept variants with MAF < 0.001. We further

removed variants that were found in either TCGA panel of normal
or the panel of normal generated from this dataset. Then, we fil-
tered out multiallelic mutations and double/triple nucleotide
polymorphisms (DNP and TNP), and only included insertions or
deletions shorter than 50 bp. Next, we required mutations to have
at the minimum tumor depth ≥ 14, normal depth ≥ 8, tumor
VAF ≥ 0.05, normal VAF ≤ 0.01 and tumor mutant allele reads ≥ 4.
High confidence somatic mutations were identified as those that
were called by at least two callers. Notably, for PT-PDX paired
sample, if a mutation was detected only in one sample, we rescued
the mutation in its paired sample if this mutation was found by any
of the tools in the raw outputs. To test if this rescue strategy would
miss any mutations, we used bam-readcount67 to examine all the
294 PT or PDX private mutations in the matched sample. This
supervised approach only found 2 PDX private mutation (<1%) with
very low VAFs (0.024 and 0.014) in the matched PT, and found no
evidence of PT private mutations in the matched PDX.

Several adaptions were made for tumors without a matched
normal. For these tumors,we usedMuTect2 tumor-onlymode, and the
40 normal samples in our dataset were used as the panel of normal.
Pindel was not used because it requires the matched normal. Muta-
tions were considered high confidence if they were detected by all
three tools. After rescuingmutations in paired samples, we used SGZ68

to predict if a variant was somatic or germline. We excluded the pre-
dicted germline or probable germline variants unless the variant is
cataloged by the COSMIC database or located in cancer genes69, and
kept those predicted as somatic or likely somatic. If an identified
germline variant was found in one of PT-PDX paired samples, we
removed it in both samples.

To test if themulti-caller approachwouldmiss hotspotmutations,
we compared mutations downloaded from the MSKCC hotspot data-
base with the mutations that have been filtered out. Of the
3554 somatic mutations that were called by only one caller, only one
point mutation (NUP93, E14V) and two indels of CTNNB1 were docu-
mented in the MSKCC hotspot database. Thus, the number of missed
mutations is negligible. Since CTNNB1 harbors frequent indels in
hepatoblastoma, we applied a supervised approach to identify them,
see ‘other mutation related analyses’.

To validate the mutation calling, we examined mutations called
from WES in RNAseq and low pass WGS sequencing data. Of the 388
mutation sites with coverage ≥10 in either RNAseq or low pass WGS,
356 mutations showed at least one read covering the mutant allele,
resulting in a validation rate of 92%.

We used oncoKB-annotator to determine functional con-
sequences of the mutations. In total we identified 46 oncogenic or
likely oncogenic mutations, 30 of which were found in PT/PDX pairs.
Among the 30, 28 were shared between matched PTs and PDXs.

Tumor purity and ploidy prediction
For samples with a paired normal, tumor purity and ploidy were esti-
matedusing Sequenza70 (v3.0.0). For sampleswithout a paired normal,
tumor purity and ploidy were estimated using PureCN71 based on CNV
segmentation by CNVkit72 (v0.9.9). Tumor purity was also estimated
from RNAseq data using ESTIMATE73.

Consensus clonality analysis
We applied four methods to characterize mutation clonality. The first
method was described by McGranahan et al.74. Using the method, we
estimated cancer cell fraction (CCF) for each mutation and classified
mutations as clonal if their CCF confidence interval overlaps 1, or as
subclonal if otherwise. We additionally used PyClone-VI (v0.1.1), CliP
(v1.2.1) and Ccube (v1.0)75–77. These methods cluster mutations and
then estimate the corresponding CCF of each cluster. Based on the
outputs of these methods, we identified clonal and subclonal muta-
tions by the following criteria:
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– If only one cluster was found, all mutations within the cluster were
regarded clonal.

– Ifmore thanone clusters were found,mutations of the cluster with
the highest mean CCF were regarded clonal. For the remaining
clusters, if the mean CCF was larger than 0.9, mutations within
those clusters were also regarded clonal. This relaxed criterionwas
used to accommodate uncertainties associated with CCF esti-
mates. The others were regarded subclonal.

The consensus mutational clonality was built on votes from these
four approaches. A mutation was identified as consensus clonal if it
was identified as such by at least two methods, and similarly for sub-
clonal mutations. Other mutations were treated as ambiguous. Muta-
tions without the needed copy number information to infer clonality
were not classified. The clonality flow between PTs and PDXs was
plotted by R package ggalluvial78 using the consensus calls. We also
manually examined VAFs and copy number status of those mutations
between each paired PT and PDX to corroborate the evolutionary
pattern.

Neoantigen prediction
The 4-digit HLA typing of each sample was predicted using Optitype79

(v1.3.5). Based on the non-synonymous mutations and HLA typing,
pVACseq80 (pVACtools suite v3.0.0)was applied to identify peptides of
8–11 amino acids. The peptide binding affinity to MHC was predicted
using NetMHCpan (v4.1), PickPocket (v1.1), SMM (v1.0) and
SMMPMBEC (v1.0)81–84. Neoantigens were identified as peptides with
best MT IC50 ≤ 500 nM. We in total identified 305 neoantigens in PT-
PDX paired samples, of which 239 were clonal.

Mutation signature analysis
The known mutational signature matrix (v3.2, GCRh38) was down-
loaded from COSMIC32. We determined mutation signatures using the
R package deconstructSigs85 (v1.8.0). For signature analysis, we
required a sample to have at least 20 somatic mutations. For visuali-
zation, signatures with weight less 0.25 across all samples were
excluded. We did not exclude any signatures during deconvolution,
and no signature scaling was applied.

Other mutation-related analyses
To calculate microsatellite unstable (MSI) scores, we used
MSIsensor86 for tumors with a matched control and MSIsensor286 for
tumors without a matched control. To identify large in-frame
CTNNB1 deletions in hepatoblastoma, we used MANTA87 (v1.6.0) to
identify the structural breakpoints in exon 3 or 4 of CTNNB1, fol-
lowing a previous study29. By this approach, we further added 4
CTNNB1 deletion back to our mutation calling result. We applied
Telseq88 (v0.0.1) to both WGS and WES data to estimate the average
telomere length of each sample.

Somatic copy number alterations (SCNA)
Copy number (CN) segmentation was calculated fromWGS data using
CNVkit72 (v0.9.9) with default parameters. For tumor-only cases, we
generated the copy number reference from 40 normal samples.
Absolute copy number was estimated using PureCN71 (v2.2.0) best
practice pipeline with segmentation generated by CNVkit. GISTIC289

was used to call recurrent peaks of all samples with parameter “-conf
0.99 -armpeel 1 -ta 0.3 -td 0.3.”

To compare the copy number profiles between PTs and PDXs, we
first divided the genome into 1Mb window bins using BEDTools90

(v2.30.0). After removing segments located in centromeres or telo-
meres,we calculated theweightedmeanof eachbin across all samples.
Copy number similarity was quantified by Pearson correlation based
on the weighted mean matrix. Similarly, for CN similarity of cancer
genes, the similaritywas calculated using Pearson correlation based on

theweightedmean of each gene. The cancer gene list was downloaded
from Cancer Gene Census69. Here, we only used genes identified as
oncogenes or tumor suppressors (listed in Supplementary Data
“Cancer genes”).

Focal copy number variations were identified with segment
length <50% of the chromosome arm and with copy number ratio
>0.3 or <−0.3. Given the potential inconsistency of focal SCNAs
breakpoints in PTs and PDXs, if a focal event was amplified or deleted
in both PT and PDX samples and the breakpoints of these two seg-
ments were within +/−10 kb range, this event was regarded as a
shared focal event. Finally, for paired PT or PDX samples, we also
rescued focal SCNAs with breakpoints within +/−10 kb range andwith
copy number ratio >0.1 (for amplification) or <−0.1 (for deletion) in
its paired sample. We in total rescued 65 focal SCNAs (22% of all focal
events).

The genomic instability (GI) of each chromosome arm was cal-
culated as the proportion of gains (>0.3) or losses (<−0.3). The total
CIN of each sample was defined as the mean of arm-level GIs.

Gene expression analysis
Kallisto91 (v0.46.0) was used to calculate transcript per million
(TPM). For unsupervised clustering analysis, UMAP was used based
on the top 1500 variable genes identified by median absolute
deviation of TPM after removing immune-related, mitochondrial,
and ribosomal genes. The immune-related genes were identified as
those whose gene expression was positively correlated with ESTI-
MATE immune score (p < 0.05, Pearson correlation). We removed
immune genes because these genes are either low or absent in our
PDXs. Including themwould bias the clusteringof PDXs and PTs.We
used theUMAP function implemented in the pythonpackage umap-
learn (v0.5.1) with parameters “n_neighbors=15,min_dist=0.15”. The
similarity between PTs and PDXs was calculated with Spearman’s
correlation after excluding immune-related, mitochondrial, and
ribosomal genes. HTseq-count92 (v0.13.5) was used to generate
exon expression of each gene with parameters “-s no -t exon -m
union --nonunique all”. RSEM93 was used to estimate raw read
counts.

Gene fusion identification
To detect fusions in PDXs, we merged unmapped reads with human-
only reads from Disambiguate. The unmapped reads may contain
junction spanning reads. Both STAR-Fusion94 (v1.10.0) and PRADA24

were applied to detect gene fusions. After removing fusions that were
observed in normal samples, i.e., those annotated as “GTEx_recurrent”,
we obtained 916 fusions with STAR-Fusion.With PRADA2, we obtained
237 fusions. Fusions identified by bothmethods were regarded as high
confidence. For PT-PDX or PDX-PDX paired samples, we rescued PT or
PDXonly fusions in its paired sample fromthe raw fusionpoolof STAR-
Fusion or PRADA2. We in total rescued 7 fusions (4.3% of all gene
fusions). The functional consequence of fusion candidates (in-frameor
out-of-frame) was predicted with PRADA24.

To validate the PDX fusion transcript LRPAP1–PDGFRA, we
designed a pair of primers located on LRPAP1 and PDGFRA around
the predicted fusion site: forward—5’ GCCAAGTATGGTCTGGACGG
and reverse—5’CGGGCAGCACATTCGTAATC, respectively. Product
length was 233 bp. Total RNA was isolated from 30mg of snap fro-
zen PDX tissue using RNeasy mini kit (Qiagen, Cat#74004). Using
One-step qRT-PCR kit (Invitrogen, Cat#11732-020) we performed
one-step RT-PCR to amplify the predicted fusion gene junction
from the same PDX tissue as was used for sequencing: 516_PDX &
892257_PDX. 50 ngof total RNA inputwas used for RT-PCR reaction.
RT-PCR was performed in 50 μl reactions using 0.5 mM dNTPs,
3 mM MgSO4, 0.2 μM each primers and provided mix of Super-
Script III RT/Platinum Taq. The RT-PCR reaction was carried out
with the following program: 500 C for 30min, followed by 950 C,
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2min and by 400 cycles of 950 C, 15 s, 550 C, 30 s and 680 C, 1 min.
RT-PCR products were analyzed by agarose gel electrophoresis
(2%). The result was visualized with SYBR safe DNA gel stain
(ThermoFisher Sc, Cat#S33100).

Other analyses
The ssGSEA and GSEA analysis was done using the python package
GSEApy (v0.10.4)95. MsigDB C2 collection96 (c2.all.v2022.1.Hs.sym-
bols.gmt) was used in GSEA analysis to find the significantly differ-
ential pathways between Group1 and Group2 patient tumors. To
obtain cell proliferation activity, we applied ssGSEA to cell pro-
liferation signatures, including Benporath_Proliferation, REACTO-
ME_Cell_Cycle, and KEGG_Cell_Cycle. We also applied ssGSEA to
patient tumors to estimate activity of immune-related gene sig-
natures. The gene signatures were collected from previous
studies97,98. Besides, we used TIMER2.099 to estimate abundance of
immune cell infiltration in PT samples.

Statistics and reproducibility
No statistical method was used to predetermine sample size. PDXs
were excluded from the analyses when high mouse contamination
was detected in the genomic data. The experiments were not
randomized.

Data availability
The raw sequencing data generated in this study have been depos-
ited in the European Genome-Phenome Archive database under
accession code EGAS00001006710 [https://ega-archive.org/
datasets/EGAD00001009863]. The processed genomic data are
available at synapse (Synapse ID: syn35811916). PDX clinical infor-
mation and request forms can be found at the pediatric solid tumor
PDX portal [https://pstPDX.streamlit.app]. The processed data
generated in this study are provided in the Supplementary Infor-
mation/Source data file. For the raw sequencing data that are under
controlled access on EGA, access information including data access
agreement and conditions of data release is provided on the portal
site. Data access requests can also be sent to cprit_tpct@uthsc-
sa.edu. Data access will be granted as soon as data requests are
approved by the data oversight committee. No restriction is placed
on how long the data will be made available for; however, data
availability is bound by the scope and duration of the research pro-
jects described in the data access agreement. Source data are pro-
vided with this paper.

Code availability
The codes used for sequencing data analysis are available onGithub at
https://github.com/fnhe/PediatricSolidTumorPDX100.
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