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Heterogeneous encoding of temporal stimuli
in the cerebellar cortex

Chris. I. De Zeeuw 1,2,3, Julius Koppen1,3, George. G. Bregman1, Marit Runge1 &
Devika Narain 1

Local feedforward and recurrent connectivity are rife in the frontal areas of the
cerebral cortex, which gives rise to rich heterogeneous dynamics observed in
such areas. Recently, similar local connectivity motifs have been discovered
among Purkinje and molecular layer interneurons of the cerebellar cortex,
however, task-related activity in these neurons has often been associated with
relatively simple facilitation and suppression dynamics. Here, we show that the
rodent cerebellar cortex supports heterogeneity in task-related neuronal
activity at a scale similar to the cerebral cortex. We provide a computational
model that inculcates recent anatomical insights into local microcircuit motifs
to show the putative basis for such heterogeneity. We also use cell-type spe-
cific chronic viral lesions to establish the involvement of cerebellar lobules in
associative learning behaviors. Functional heterogeneity in neuronal profiles
may not merely be the remit of the associative cerebral cortex, similar prin-
ciplesmay be at play in subcortical areas, even thosewith seemingly crystalline
and homogenous cytoarchitectures like the cerebellum.

The cerebellum, a neural structurewhose origins can be traced back to
primitive marine species, has maintained the primary histological
features of its cortical wiring throughout vertebrate evolution1. The
contiguous lattice-like construction2 of the cerebellar cortex has
inspired several theories that expect such structural uniformity to be
translated into homogeneous physiological function3,4. Recent work,
however, has revealed new forms of heterogeneity that belie the
crystalline cytoarchitecture of the cerebellar cortex. Evidence from
different species and behaviors suggests that the cerebellum exhibits
heterogeneity of various forms, including diversity in transcriptomic
identity5, microcircuit connectivity6–8, intrinsic cellular properties9,
temporal characteristics10, synaptic diversity11, and diverse task-related
functions12.

It is, however, challenging to reconcile these newfound sour-
ces of heterogeneity with the fact that for the past several decades,
physiological responses of primary neurons in the cerebellar cor-
tex, the Purkinje cells, have often comprised relatively simple forms
of activity, i.e., patterns of increase, decrease, and, during periodic
behaviors, oscillations between these two states. Such facilitation

and suppression of cerebellar cortical neurons have been reported
in a variety of behaviors, such as smooth pursuit13–16, motor
control17, vestibular-ocular responses18,19, ocular following20, man-
ual tracking21, eyelid conditioning22,23, whisker control24, saccadic
adaptation25,26 and manual reaching behaviors27. Recently, more
varied but relatively simple functional patterns have been uncov-
ered in cerebellar neurons encoding bodymovements28, suggesting
that cerebellar encoding may support diverse representations. One
might argue that the overall lack of physiological heterogeneity is
unsurprising given that the cerebellar cortex is considered a feed-
forward structure with only limited potential for recurrent
dynamics but this view has recently been called into question29,30.
This change of opinion, in part, arises from the revelation of the
surprising degree to which local recurrent and feedforward col-
lateralization pervades local cerebellar cortical microcircuits lead-
ing to interconnected anatomical and functional motifs6–8. These
findings, alongside diversity in incoming extracerebellar inputs,
predict more complex dynamics in cerebellar cortical activity than
currently reported.
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We know that recurrent connectivity in frontal areas of the cere-
bral cortex31 gives rise to complex, persistent, and heterogeneous
dynamics32,33, which often feature multiplexed task
representations32–36. The question arises, given recently uncovered
local recurrent and feedforward microcircuit motifs and given input
diversity to various cerebellar lobules, why such heterogeneity eludes
cerebellar cortical activity underlying behavioral tasks. Here, we show
evidence of multiplexed task-related representations and functional
heterogeneity in cerebellar cortical responses in a relatively simple
associative learning task. We provide computational models of the
cerebellar microcircuit that incorporate recent anatomical insights6,8

to predict how such distinct and diverse representations might be
acquired and propagated within the cerebellar cortex.

Results
Heterogeneity of cerebellar cortical responses in temporal
association behaviors
We study predictive eyelid responses in a modified trace conditioning
task, where mice were trained on different statistical distributions of
time intervals (Fig. 1a, b). Trials consisted of a transient flash of light
paired with the delayed administration of a periocular airpuff. The
interstimulus interval (ISI) between the light and airpuff was either a
single interval (350ms) referred to as a ‘Narrow’ condition or was
drawn from a discrete uniform distribution (200, 275, 350, 425,
500ms), referred to as a ‘Wide’ condition (Fig. 1b). After several pair-
ings, the eyewould closepredictively (Fig. 1c–e) at the anticipated time
of the airpuff. These predictive responses are also known as condi-
tioned responses (CR), whereas reflexive eyelid closure in response to
the airpuff is known as the unconditioned response. ACR refers to the
amplitude of the conditioned response, which was best evaluated on
test trials, where the airpuff was omitted (Fig. 1b–d below and Sup-
plementary fig. 1a). After training each mouse for several weeks
(average training time ~70 days), we found that predictive eyelid
responses stabilized in amplitude, ACR, and frequency (CR percentage)

(Supplementary fig. 1b). We examined the predictive eyelid response
across test trials for mice trained on Narrow and Wide conditions and
found them to differ in shape and amplitude (Fig. 1d, e and Supple-
mentary fig. 1a).

After the stabilization of responses, we performed acute large-
scale electrophysiological recordings of neurons in the cerebellar
lobules IV/V and Simplex across days (Fig. 2a) in individual mice that
were trained on the Narrow or Wide conditions. Acute recordings at
the same location across days were enabled by a grid-in-chamber
apparatus that ensured that probe locations were within close proxi-
mity on each acute penetration (Supplementary fig. 2c). Subsequent
histological registration and analysis of probe data confirmed that the
vast majority of recordings were performed in lobules IV/V and Sim-
plex (Supplementary fig. 3a, b).

We identified Purkinje cells using cross-correlation statistics
between Purkinje cell (PC) simple and complex spiking patterns (Sup-
plementary fig. 4a, b, see “Methods” section). Else, units were classified
as putative Purkinje cells (pPC) and putative molecular layer inter-
neurons (pMLI) by consideringother factors (see “Methods” section for
details).We analyzed these cerebellar cortical neurons recordedduring
the Narrow (Nmice = 6, NNeurons = 2571) and Wide (Nmice = 6,
NNeurons = 2179) conditions and found heterogeneity in neural activity
responses, not unlike the diversity of complex, multiplexed responses
often reported in the cerebral cortex32,33,35. We found that these activity
patterns could be classified into at least eight distinct functional classes
(Figs. 2b–e and 3a–g, and Supplementary fig. 5a, b). The classification
algorithmsmeasuredmodulation in the stimulus Interval epoch (I) and
the epoch following the Airpuff (A) and took the valence and mod-
ulation of activity following both epochs into consideration (Figs. 2b–d
and 3a–g, and Supplementary fig. 5a, b).

We found that a large number of neuronsmodulated congruently
for the two epochs, i.e., I+A+ or I−A−, in both Narrow (54%) and Wide
(41%) conditions, whereas a smaller proportion of neurons exhibited
incongruent modulation, i.e. I−A+ or I+A−, for the Narrow (7%) and
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Fig. 1 | Task and behavior. a, b Mice are trained on a modified trace eyeblink
conditioning task (left) where the inter-stimulus time interval (ISI) between a flash
of light and a transient periocular airpuff on a paired trial is sampled froma ‘Narrow
distribution’with a single ISI (350ms, blue, top) or sampled fromadiscrete uniform
‘Wide distribution’ (200, 275, 350, 425, 500ms, Green, middle). The airpuff is
omitted in test trials (right, bottom panel) to observe the predictive component of
the eyeblink response. c Eyelid closure is measured on test and paired trials to
determine the amplitude (ACR) of the predictive response (blue) and distinguish it

from the reflexive response (gray) at the time of the airpuff. d Normalized single-
trial eyelid closure traces for paired (above, blue/green lines) and test trials (below,
gray lines) for the Narrow andWide conditions. The traces are aligned to the onset
time of the light cue (black dashed line) and the time of the airpuff(s) is also
indicated (black dashed lines). e Examples of average normalized eyelid traces for
test trials in the Narrow (blue) and Wide (green) conditions. Note that no airpuff
was administered in these trials but the mean of both interval conditions is indi-
cated (black dashed line at 350 ms). Error bars indicate standard error.
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Wide (5%) conditions (Fig. 2e). A relatively large proportion of neurons
modulated only for the Interval epoch in the Narrow (8%) and Wide
(10%) conditions and also many neurons modulated only in response
to the Airpuff epoch in the Narrow (21%) and Wide (23%) conditions.
Only 12% of neurons in the Narrow and 21% of neurons in the Wide
condition were found to be non-modulatory in either epoch (Fig. 2e).

Cerebellar motif models explain heterogeneous functional
representations
Previous work in eyeblink conditioning has only reported facilitating
and suppressing Purkinje cells underlying predictive eyelid
behaviors23,37,38 and characterization of molecular layer interneuron
physiology has been limited during such behaviors. Here, we report
eight functional classes of modulation in response to associative
learning of well-timed eyelid responses with different temporal sta-
tistics. To explain the observed heterogeneity, we leverage insights
from recent functional anatomical discoveries of collateral con-
nectivity among Purkinje cells and MLIs6,8,39 to develop a motif
microcircuitmodel, called TRACENet, that accounts for different types
of local feedforward inhibitory, disinhibitory, and recurrent motifs.

Purkinje cells receive inputs from granule cell parallel fibers and
fromclimbingfibers,which influence the generation of high-frequency
simple spikes and low-frequency complex spikes, respectively. Com-
plex spike-specific tuning has been shown to be important in under-
standingbehaviors suchasmotor adaptation26,motor learning40,41, and
recently, non-motor behaviors42,43. Based on previous reports23,41 and
observations in our own data, the model assumes that the airpuff eli-
cits a complex spike in the Purkinje cell. It is also assumed that Purkinje
cells receive a cascade of parallel fiber signals following the light cue,

which is consistent with recent evidence of activity patterns in the
granule layer during different behaviors in various species44–46. Con-
junctive activation of both these pathways is believed to lead to long-
term depression of the postsynaptic terminals of PF-PC synapses for
which parallel fiberswere active within a brief eligibility window. In the
model, this leads to well-timed suppression of Purkinje cell activity,
which has been hypothesized as the primary driver for conditioned
eyelid responses. Many of these aspects of the model are similar to
previous proposals in the field47–50. However, while suppression of
Purkinje cell activity is believed to be the long-standing model for
learning in such behaviors, there is no explanation for the existence
and role of the many facilitating Purkinje cells that are also found
during such behaviors23,38. Further unlike previous models, TRACENet
takes relatively recent reports of diversity in mossy fiber inputs51 and
climbing fiber inputs to both the Light and Airpuff cues23,41 into
account for generating its neural activity predictions (Fig. 4b and
Supplementary fig. 6).

Furthermore, TRACENet advances computations from a single
Purkinje cell to its localmicrocircuit, i.e. it describes how recurrent and
feedforward connectivity with other Purkinje cells and MLIs may pro-
pagate a learned signal further and possibly account for the rich and
heterogeneous dynamics that we observe. In addition to local con-
nectivity, we assume that within a lobule, not all Purkinje cells will
receive a task-related climbing fiber signal. We also assume that not all
molecular layer interneurons and Purkinje cells in a local population
will receive relevant airpuff or light-related signals. Based on these
assumptions, the model constructs feedforward inhibitory and low-
gain recurrent motifs (Fig. 4a, b, see “Methods” section). These entail
feedforward PC-MLI and recurrent PC-PC connectivity. These

40

60

80

40

60

80

100

I- A-

I- A-

Fi
rin

g 
ra

te
 (s

p/
s)

So
rt

ed
tr

ia
ls

NarrowWideNarrow Wide

∆ 
Fi

rin
g 

ra
te

 fr
om

 b
as

el
in

e Interval-related response Airpuff-related response

I+ I - A NM A+ A - I

b

c

d e

I+ A+Non-modula�ng I- A- I - A+ I+ A - A+ A - I+ I -

Interval-related response Airpuff-related response

-50

0

50

100

42%

12%

12%

9%

12%

Congruent

Interval
only

Airpuff
only0

50

100

0

50

100

I+ A+

I+ A+

Time (ms)

34%

7% 16%

21%20

0000000000

A-

A+

I+I-

A-

A+

I+I-

NarrowWideNarrow Wide
N

Neurons
 = 2179N

Neurons
 = 2571

Lobule IV/V
Simplexa

NM

Fig. 2 | Classification of neural responses. a Recordings weremade with a grid-in-
chamber setup in head-fixed animals. Probe entry locations as marked with DiI at
grid point epicenter on the last day of recording. b Classification of neurons based
on prior-related and airpuff-related responses. PSTHs or rasters are aligned to
either epoch. A classification technique that quantified firing rates in each epoch
with respect to baseline firing rate determined whether the neuron significantly
responds to either epoch and in which direction. I indicates interval or ISI-related
activity, A indicates Airpuff-related activity and + and − signs indicate facilitation
and suppression, respectively. c Relative firing rate of each functional class with
respect to baseline. Dots represent individual neurons (total Nnarrow = 2571,

Nwide = 2179). Boxes represent averages. Error bars indicate standard error of
mean. Dashed line indicates no change from baseline. NM stands for non-
modulating. d Polar histogram exhibiting functional heterogeneity in recorded
cerebellar cortical neurons for the Narrow (left) and Wide (right) condition. Clas-
sification of Purkinje cells based on their response to the ISI epoch (I+ or I−) and
Airpuff epoch (A+ or A−). e Relative proportion of each functional class among
recorded neurons for the Narrow (left) and Wide (right) conditions. Congruent
conditions (I+A+and I-A−), Interval only (I+ I−), andAirpuff only (A+A−) aremarked.
Incongruent conditions, I+A- and I-A+ (light blue colors) are not labeled. Colors
indicate functional classes in the same manner as the legend in c.

Article https://doi.org/10.1038/s41467-023-43139-9

Nature Communications |         (2023) 14:7581 3



connectivities and assumptions are sufficient to account for all eight
functional classes observed in the neural data for both the Narrow and
Wide conditions (Fig. 4c, d and Supplementary fig. 6).

Locus of Purkinje cell learning of temporal stimuli examined by
chronic silencing
While delay eyeblink conditioning has been well-studied in the cere-
bellar cortex23,37, we know relatively little about the cerebellar pro-
cesses that support trace conditioning52. Recent work has shown that
the neural mechanisms for trace and delay conditioning are expected
to be similar in cerebellar circuitry53. However, it remains unclear
whether trace conditioning engages larger proportions of rodent
cerebellar lobules than previously studied in delay conditioning
behaviors, in which animals are trained for considerably shorter
durations.

To examine the anatomical locus associated with trace eye-
blink conditioning behavior, we used targeted chronic lesioning of

Purkinje cells in lobules IV/V and Simplex (Fig. 5a–c and Supple-
mentary fig. 7a–d). We induced cell death selectively in Purkinje
cells throughout lobules Simplex and parts of lobule IV/V by
introducing Diptheria Toxin A (dTA) in them via retrograde trans-
port from the anterior interposed nucleus. This was enabled using a
PCP2-Cre mouse line, which expresses Cre in Purkinje cells, in
combination with a viral construct that facilitates Cre-dependent
expression of dTA. In a control group, we lesioned Purkinje cells
projecting to the posterior interposed nucleus (Fig. 5b and Sup-
plementary fig. 7b, d). Using a cell death marker (GFAP54) as a
positive control, missing fluorescent protein (GFP) expressing only
in Purkinje cells as a negative control, presence of viral particles
(mCherry) as a second positive control, we were able to quantify
and detect the location of ablated Purkinje cells throughout lobules
Simplex and IV/V (Fig. 5c and Supplementary fig. 7a–d) for the test
group. We performed a similar analysis for the posterior cere-
bellum for the control group.
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Next, we examined the effect of these lesions on predictive eyelid
behavior in the test and control groups (Fig. 4d, e and Supplementary
fig. 8a–f). We found a significant decline in the performance of the test
group after the viral injection (early and late post-injection phases, see
methods), registering a significant main effect for the percentage of
predictive eyeblinks (F(2,6) = 4.89, p = 0.04) and a significant decline in
their amplitude (F(2,6) = 4.75, p = 0.047; Fig. 5d, e) for the test group
and no significant main effects for the control group, which affected
hemispheric lobules in the posterior cerebellum (Supplementary
fig. 7a–d). Since these locations coincide with our recording sites, we
inferred from this that Purkinje cells in lobule IV/V and Simplex play a
role in supporting predictive eyelid behaviors in our modified trace
conditioning task.

Discussion
Previouswork in cerebellar physiology has reported cerebellar cortical
neurons as facilitating or suppressing their dynamics during a variety
of behaviors13,15,17,23–25,27,37, which, in the case of Purkinje cells, are also
referred to as burst and pause firing patterns. Recent discussions in the
field suggest that more complex physiological patterns ought to be
expected based on recent revelations of feedforward and feedback
motif connectivity among Purkinje cells and MLIs6,8,39. Here, we report
eight functional representations of cerebellar cortical activity under-
lying a relatively simple associative behavior, suggesting that both
Purkinje cell and molecular layer interneuron dynamics may be more
complex and heterogeneous than previously believed.

We use recent work to develop local motif models that can
account for such heterogeneity. Our modeling suggests that a subset
of Purkinje cells could perform an initial learning function due to long-
term plasticity induced by conjunctive activation of climbing fiber and
parallel fiber pathways. This learning, however, then propagates to
neighboring neurons via feedforward connectivity to MLIs and
potential recurrent connectivity to Purkinje cells. Ourmotifs, however,
do not capture many nuances and findings observed in recent
work6,8,39, for example, multisynaptic interactions, some of which
remain unreconciled. This may explain why there are some forms of
heterogeneity observed in our data that our models and classification
methods are, at present, unable to account for, for e.g., diversity in
temporal dynamics of the activity during each epoch or complex
nonlinear activity patterns within each epoch.

Recent advances in neurophysiology techniques are enabling
finer scrutiny of the function of localmicrocircuits just as our ability to

record from large populations of neurons is increasing in capacity,
leading to a more complex picture of neural structures and their
function. At the same time, computational modeling serves to
demystify how seemingly complex neural circuits could amplify, sieve,
and refine relevant outputs to their downstream targets. Here, we
provide evidence of functional heterogeneity in cerebellar cortical
circuits during temporal behaviors and suggest that similar diversity
may be found in a variety of other behaviors.

Methods
Mice and surgical setup
This study utilized fourteenmice (Postnatal age >60 days, 5 female).
Six C57BL/6 mice were used for the behavioral training sessions and
were used for physiological recordings in lobules IV/V and Simplex
of the cerebellar cortex. Eight PCP2-Cre-eYFP mice were used for
test and control conditions of viral lesioning experiments using
diphtheria toxin A (N = 8). All procedures were performed in
accordance with protocols approved by the animal care and use
committees (IvD) at Erasmus Medical Center. Mice were housed in a
12:12 light: dark cycle and were tested in the light phase. No
restriction was placed on food. Water dispensation was maintained
throughout and body weight was monitored. All surgical proce-
dures were carried out aseptically under a mixture of 3% isoflurane
in 1l/min oxygen anesthesia. Post-operative analgesia management
was enabled by administering Buprenorphine HCl (0.1 mg/kg) and
Carprofen (5 mg/kg). Mice were monitored for 3 days post-surgery
and were provided analgesic medication (Rimadyl, Carprofen,
Zoetis B.V) before the continuation of experiments. Between post-
natal ages P60 and P80, a semi-magnetized pedestal was installed
on the skull to enable head fixation during behavioral training. A
custom-designed thermoplastic recording chamber was installed
on a cerebellar craniotomy centered at AP −6.25 mm, ML −2.25mm,
and 3mm in diameter. The chamber was affixed using an adhesive
(Optibond, Kerr corporation, USA) and dental cement (Charisma,
Kulzer, USA). After implantation, the chamber of each mouse was
cleaned daily with saline and a dura-cleaning tool and disinfected
with low concentrations of ethanol to maintain the hygiene of the
dura and surroundings. All surgical installations on the skull were
aligned using 2D line level. During recording sessions, a custom-
made plexiglass grid was installed into the chamber to ensure sys-
tematic anatomical access to cerebellar structures and to provide
stable housing for the electrode.
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Task, experimental setup, design, and training
Mice were head-fixed to a post with a semi-magnetized pedestal
attached to their skull andwereable to comfortably rest ormove freely
on a self-initiating treadmill with low forward resistance but adequate
textured grip. A high-speed infra-red camera (Basler Ace aca1300,
Basler, Germany) was trained on the eye of the animal to record
movements. Our setup was designed based on earlier proposals for
similar tasks55. Posterior whiskers were trimmed to minimize inter-
ference with eyeblink detection. A custom-made device delivered a
periocular airpuff representing the unconditioned stimulus using an
air-pressurized drive triggered by a 5V pulse. A semicircular array of
white LEDs was used to deliver the light representing the conditioned
stimulus. This delivery system was built to ensure homogenous and
adequate bilateral visual input to the mouse (to ensure equivalent
bilateral activation of the pontine nuclei). The camera recording and
stimulus delivery system were integrated using custom drivers and
code in Objective C (Cocoa framework XCode, Apple, Cupertino, USA)
and Matlab 2020a (Matlab, Nattick, USA). Pulse pal (Sanworks, USA)
was used for regulating stimulus delivery.

Each experimental training session lasted for 80 trials, with an
inter-trial interval sampled from a discretized truncated exponential
function (tau = 4s). Mice were considered trained when the CR per-
centage values saturated to or exceeded a threshold of approximately
40% (Supplementary Fig. 2). After performance metrics stabilized,
mice underwent a surgical craniotomy and chamber placement.

On each trial, the LEDs (Light) were active for 70 ms, followed by
the interstimulus interval (ISI), after which the airpuff was adminis-
tered for 70ms, resulting in reflexive eye closure. The ISI was deter-
mined based on the time interval distribution condition. For the
narrow condition, the ISI was 350ms, whereas in the wide distribution,
it was sampled with uniform probability from a discrete distribution
(200, 275, 350, 425, and 500ms), which is shown tomaximize training
efficiency56. At the start of each session, two airpuff-only trials were
administered to compute and calibrate the baseline eye closure by
calculating the change in pixel value during each frame in the region of
interest. This value was used to normalize subsequent eyeblink
responses. Mice were monitored at all times during training and were
given a time-out if squinting or extended eye closure was detected.
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Fig. 5 | Chronic perturbation of Purkinje cells in cerebellar lobule simplex.
a Targeted chronic lesions of Purkinje cell populations were enabled by a retro-
grade viral vector encoding a Cre-dependent construct for Diptheria Toxin A (dTA)
andmCherry (rAAV-mCherry-flex-dTA). Mice trained on theWide condition (PCP2-
Cre-eYFP)were injected after the crystallization of behavioral performancemetrics.
Progression is denoted in three stages: pre-injection (blue), early post (light green,
began 7–10 days after injection), and late post-injection (dark green). b A coronal
section from the test group (left) shows that the construct was injected (in orange,
rAAV-mCherry) in the anterior interposed (AIN) the downstream target of lobule
simplex (insetmarks A-P position on a schematic of a sagittal section) Purkinje cells
(green, indicated Cre and eYFP). In contrast, a coronal section from the control
group (right, N = 4) with the same staining shows that the construct was injected in

the posterior interposed (PIN). cA confocal image of the Simplex lobule for the test
group shows that the presence of mCherry (orange), indicated viral particles,
coincideswith the absenceof Purkinje cells (green), and thepresenceof a cell death
marker glialfibrillary acidic protein (GFAP inwhite). Resultswere confirmed inN = 4
mice. d Behavioral metric comparison for ACR and predictive response percentage
(CR percentage) within training sessions. Large circles indicate session averages
and dots indicate individual trials in the pre (blue) and post (green) injection
phases. eMetric comparisons for test (left) and control (right) groups for pre, early
and late post-injection stages for ACR (ANOVA F(2,6) = 4.75, p =0.047) and CR
percentage (ANOVA F(2,6) = 4.89, p =0.04). ‘*’ represents an alpha of 0.05. Circles
connected by black lines indicate averages and gray lines indicate individuals. Error
bars represent standard error.
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Sessions also consisted of paired and test trials, where the airpuff was
omitted.

Quantification of eyeblink metrics
Eyeblink responses within the sessionwere normalized to the reflexive
response evoked by the airpuff either in absence of the light stimulus
on airpuff-only trials or on paired trials. A predictive response was
detected if the eyeblink trace velocity increased beyond a threshold
and amplitude that exceeded thrice the baseline standard deviation
before the light presentation across all trials within a session. Percen-
tage of the predictive response within a session was computed as the
number of trials where such a response was detected against the total
number of trials within a session. Response amplitude was computed
as the maximum eye closure of the predictive component after
light onset.

Large-scale electrophysiology using silicon probes
Extracellular recordings were performed using ESSY-37 E1 32 channel
silicon probes (Cambridge NeuroTech, UK). An Intan (RHD2132, USA)
amplifier was used to digitize and amplify the recorded extracellular
voltage signals at 16 bit and were recorded using an Intan RHD2000
Amplifier Evaluation System (sampling rate: 30,000Hz). We used
Open Ephys57 for acquisition, online monitoring, and processing of
cerebellar electrophysiological signals. A craniotomy 3mm in dia-
meter was made at AP −6.25mm, ML −2.25, after which a cylindrical
light-weight recording chamber with a sealable lid was installed at the
rim of the craniotomy on the skull surface. During recordings, lido-
caine was applied onto the dura surface 15min before recordings,
which was subsequently cleaned with saline. A plexiglass grid,
designed to fit into the chamber at a horizontal orientation was
assembled and the silicon probeswere lowered through the grid holes.
From previous anatomical mappings, we determined that the grid
access points coincided with lobule IV/V and Simplex. Daily penetra-
tions followed lateral to medial increments within and across grid-
points 4 and 5. On a given day, 1–4 sessions were recorded at different
depths unidirectionally from ventral to dorsal. The silicon probe was
allowed to stabilize for 20min before recording. The mouse could
move freely on the treadmill at all times without influencing probe
stability, however, during trials, the wheel movement was arrested.

Unit isolation, Purkinje cell identification, and putative mole-
cular layer interneurons
In the absence of optogeneticmanipulations, Purkinje cells can also be
identified from large-scale in vivo recordings through physiological
metrics. We used five criteria for such identification: (1) Recordings
were performed from the molecular layer and Purkinje layer based on
the polarities of the identified complex spike patterns. (2) The baseline
firing rate of neurons lay between 40-200 Hz. (3) Complex spikes and
simple spike waveforms were recorded from the same channel or
adjacent locations within 20μm. (4) The complex and simple spike
waveforms conformed to standard timescale and shape properties43.
(5) The complex spike elicited a 15-20ms simple spike suppression in a
cross-correlogram (with a 10% contamination rate for this criterion,
Supplementary fig. 7). Purkinje cells for which the last condition was
notmet were labeled putative Purkinje cells. Note that we were unable
to record granule cells due to limitations in electrode impedance and
data from recording locations in granule layers were excluded.
Although we only record from the molecular layer, neurons that we
couldnot classify as Purkinje cells are referred to as putativemolecular
layer interneurons.

Functional classification of cerebellar cortical population
Modulatory activity in each subclasswas determined in twoways, 1) by
computing variance across binned trials (15–20 trials) within condi-
tions and by computing their deviation in the category-specified

directions. 2) By fitting a GLMmodel to the neural data for the Airpuff,
Interval epochs (similar to previous work36,58). The results were vali-
dated by plotting the full distribution of firing rates and weights for
each component in each category (Supplementary fig. 5a, b). This
resulted in 8 functional types, depending on valence/weight of the
interval or airpuff-related epochs. We also characterize one generic
non-modulatory class in addition to the eight modulatory types.

Injections and immunohistochemistry
We injected rAAV- EF1a-mCherry-flex-dTA into the anterior or poster-
ior interposed of PCP2-cre-eYFP mice for the test and control groups,
respectively. We injected 50–80 nl of the viral construct using a
microinjection device (Nanoject II, Drummond scientific, USA) using
20μm glass tip pipettes at a depth of 2250μmμm for the anterior
interposed (AP −6.20mm, ML −2.25,) and 2300μm for the posterior
interposed (AP -6.35 mm, ML -2.25). Each volume was administered
over 3–4 injections at a speed of 23nl/s with >10min between each
injection and before gradual withdrawal. Three days post craniotomy,
mice resumed the same training protocol on theWide condition. In the
early-late post-injection analysis, we did not include 7–10 days of post-
injection behavioral data owing to the time that the AAV vectors need
for effective expression. After around 20 days post-injection, mice
were deeply anesthetized with an overdose of pentobarbital (0.2ml,
i.p.) and transcardially perfusedwith 20ml saline followed by 50ml 4%
paraformaldehyde (PFA) in PBS. Brains were extracted and post-fixed
in 4% PFA for 2h and incubated in 10% sucrose overnight at 4 °C. Brains
were then embedded in gelatine and cryoprotected in 30% sucrose in
PB, frozen on dry ice, and sectioned using a freezing microtome
(50μm thick). For immunohistochemistry in the dTA experiments,
sections were blocked for 1 h at room temperature in PBS with 0.4%
Triton X-100 and 10% N-hydroxysuccinimide (NHS) solution and
incubated for 48h at 4 °C in a primary antibody (rabbit anti-GFAP
antibody, 1:7000, Agilent Technologies Inc.) diluted in PBS with 2%
NHS and 0.4% Triton X-100. These sections were then washed and
incubated for 2 h at room temperature in the secondary antibody
(donkey-anti-rabbit, 1:400, Jackson). In all experiments, slices were
counterstained with DAPI (1:100.000, Invitrogen) and mounted using
Mowiol (Sigma). All sections were imaged using a fluorescent micro-
scope (Axio Imager 2, Zeiss) operated by ZEN 2.6 Pro (Zeiss). All sec-
tions were then registered to the Allen Common Coordinate
Framework CCF using the AllenCCF software59. Probe tracks and his-
tological labels were quantified using this tool and further analyzed for
location analysis.

TRACENet model
Encodingmodel for time intervals and scalar variability. We assume
granule cell spike counts (r) obey an inhomogeneous Poisson process
whose rate function is GaussianwithmeanωðtÞ and standarddeviation
σi. The maximum firing rate of the ith granule cell parallel fiber, μi, is
specifiedwith respect to the onset of the light or conditioned stimulus.

pðrjtÞ=
Y 1

ri!
ωiðtÞri e�ωiðtÞ ð1Þ

ωiðtÞ=
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσi
2

p e
�ðt�μi Þ2

2σi
2 ð2Þ

Due to scalar variability, the internal estimate of elapsed time (~t)
has a probabilistic relationship to the chronometric elapsed time (t).
We formulated this relationship as a conditional Gaussian probability
distribution whose mean is t and whose standard deviation remains
constant for the ith kernel but scales across kernels by linear scaling
factor wb, equivalent to the Weber fraction that best describes beha-
vioral observations. Therefore, we assume a heterogeneous
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population that takes such a form and approximates Weber’s law.

pð~tjtÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðwbtiÞ2

q e
�ð~t�ti Þ

2

2ðwbti Þ2 ð3Þ

Wewill nowassumea relativelydenseanddiscrete heterogeneous
population over stimulus time ts. Let pðtsÞ be the prior probability of
the stimulus time ts.While eachgranule cellmayhave apreferredfiring
time, only a subset of granule cells will be active (over elapsed time)
when a given ts is administered.

The firing rate reduction over the population was modeled by a
gain function, gðtÞ, with time constant τbasisi , and the increase in width
was modeled linearly before learning, σbasisi

= σ0iκ=N, where i indexes
neurons ordered according to their preferred time interval, N is the
total number of neurons and κ is the proportion of increase in the
width σ0. The resulting function describes the rate of the ith granule
cell (GC).

riðtÞ= gðtÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2
basisi

q e
�ðt�ts Þ2

�
2σ2

basisi ð4Þ

For encoding of pðtsÞ, we define wi, which represents the post-
synapticweight of the ith GCwith a Purkinje cell. Long-termdepression
(LTD) in TRACE is modeled for each GC-PC synapse as proportional to
the rate of firing of respective GCs shortly before the firing of climbing
fibers (CFs) at the timeof the airpuff. The timebeforeCFfiring atwhich
GC-PC synapses become eligible for LTD is called the eligibility trace
(ϵ),whichwe assumeoccurs 20-50msbefore the onset of the airpuff in
the model. In the absence of CF stimulation and in the presence of GC
firing, Long Term Potentiation (LTP) is induced. The dynamics of LTD
andLTPweregovernedby their respective timeconstants, τltd and τltp.
In the absence of learning, synapses would gradually drift toward the
baseline, w0.

dwi

dt
= � 1

τltd
riðts � ϵÞδðt � tsÞ+

1
τltp

ðw0 �wiÞ ð5Þ

At steady state, the sum of all weights over the basis set popula-
tion resembles the shape of an inverted prior distribution p(t), which
makes sense given that Purkinje cells are inhibitory and one of the
primary learning mechanisms in the cerebellar cortex is long-term
depression60 of Purkinje cell activity. In the model, the change in
baseline PC activity is computed as a weighted sum of GC activity.

ΔVpcðtÞ=
XN

i= 1

riðtÞwi ð6Þ

Feedforward PC-PC motifs: We model the disinhibitory influence
of PC1 on a neighboring PC2 by subtracting the activity of PC1 from the
baseline activity of PC2 and using a feedforward gain (κp), which
represents the strength of the synaptic connectivity of PC1 on PC2:

Vpc2ðtÞ= κpðVpc2ð0Þ � Vpc1ðtÞÞ ð7Þ
Feedforward PC-MLImotifs: Wemodel the disinhibitory influence

of PC1 on a neighboringMLI by subtracting the activity of PC1 from the
baseline activity of the MLI and using a feedforward gain (κm), which
represents the strength of the synaptic connectivity of PC1 on the
neighboring MLI:

VMLI ðtÞ= κmðVMLI ð0Þ � Vpc1ðtÞÞ ð8Þ
The reciprocal connectivity between MLI-PC can also be modeled

using the same principle.
Recurrent PC-PC motifs: Utilizing insights from previous work61,

we model a mutually inhibitory interaction between two Purkinje cells

(v and u), which receive common parallel fiber input (θ). Each neuron
has its own time constant (τ) and input (wθ) and recurrent
weights(wuv), which we assume to be symmetric. The time-varying
firing rates of these units are then governed by:

τPC1 _u = � u+ f ðwuθθ�wuvvÞ ð9Þ

τPC2 _v= � v+ gðwvθθ�wuvuÞ ð10Þ

where,

f ðxÞ, gðxÞ= 1
1 + e�x

ð11Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Dryad
database (https://doi.org/10.5061/dryad.41ns1rnmc).

Code availability
Code is provided on https://github.com/NarainNeuro/
CerebellarHeterogeneity_NC_2023.
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