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Abstract

This paper represents our research results in the pursuit of the following objectives: (i) to

introduce a novel multi-sources data set to tackle the shortcomings of the previous data

sets, (ii) to propose a robust artificial intelligence-based solution to identify dyslexia in pri-

mary school pupils, (iii) to investigate our psycholinguistic knowledge by studying the impor-

tance of the features in identifying dyslexia by our best AI model. In order to achieve the first

objective, we collected and annotated a new set of eye-movement-during-reading data. Fur-

thermore, we collected demographic data, including the measure of non-verbal intelligence,

to form our three data sources. Our data set is the largest eye-movement data set globally.

Unlike the previously introduced binary-class data sets, it contains (A) three class labels and

(B) reading speed. Concerning the second objective, we formulated the task of dyslexia pre-

diction as regression and classification problems and scrutinized the performance of 12

classifications and eight regressions approaches. We exploited the Bayesian optimization

method to fine-tune the hyperparameters of the models: and reported the average and the

standard deviation of our evaluation metrics in a stratified ten-fold cross-validation. Our

studies showed that multi-layer perceptron, random forest, gradient boosting, and k-nearest

neighbor form the group having the most acceptable results. Moreover, we showed that

although separately using each data source did not lead to accurate results, their combina-

tion led to a reliable solution. We also determined the importance of the features of our best

classifier: our findings showed that the IQ, gender, and age are the top three important fea-

tures; we also showed that fixation along the y-axis is more important than other fixation

data. Dyslexia detection, eye fixation, eye movement, demographic, classification, regres-

sion, artificial intelligence.

Introduction: Background, previous work, and motivation

Background and previous work

Developmental dyslexia is a learning disorder characterized by specific reading impairment,

despite normal intelligence and oral language skills [1]. Children with dyslexia suffer from
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slow and effortful reading and impaired word recognition; hence, text comprehension, the

ultimate objective of reading is unachievable, which negatively affects educational success,

mental health, and social integration [2, 3]. Therefore, identifying dyslexia at an early stage is

of significant importance for taking appropriate action [4–6].

Traditionally, dyslexia is identified during a formal assessment which involves a set of lan-

guage and cognitive tasks, tapping into phonological and visual-spatial processing, reading of

words, non-words, and texts, spelling abilities, etc [7]. Such assessment batteries require a

trained specialist (usually a psychologist or other learning specialist), are time-consuming, and

require overt children’s responses during some rather toxic behavior (e.g., reading of non-

words). Thus, they are hardly suitable for screening, which is in great demand to decrease the

age of dyslexia identification. Recently, a new set of automatic dyslexia detection solutions has

emerged; these methods are based on Artificial Intelligence (AI) algorithms that have been

applied to various data sources, ranging from eye-tracking to neuroimaging data.

According to [8], the latest and most comprehensive review of the application of AI to iden-

tify dyslexia, MRI, fMRI, face video or image, reading test errors, test scores, EEG, and eye

tracking are the seven data types used to train AI algorithms. To the best of our knowledge,

considering the number of unique data sets, eye-tracking-based (seven data sets, including the

current research), EEG (six data sets), and MRI (five data sets) are the top three frequently

used data types.

Considering AI methods to identify dyslexia, the author of [9] concisely reviewed 13 AI-

based solutions to detect dyslexia up to the end of 2019. In a more recent survey [8], 22 solu-

tions up to the beginning of 2021, including the original 13, were comprehensively reviewed.

According to [8], the support vector machines [10], artificial neural networks, and random

forest [11], in descending order, are the three most commonly applied AI classification algo-

rithms. Calculating the accuracy, precision, and recall in a 10-fold cross-validation procedure,

is the most frequently applied evaluation framework.

The majority of the papers which have been published after the two earlier surveys also pur-

sued similar frameworks. More precisely, El Hmimdi et al. (2021) [12] analyzed the raw eye-

tracking data sets from [13, 14] and proposed a new set of eye descriptor parameters as the

input features to their classical set of classification algorithms and obtained approximately

82% accuracy. Raatikainen et al. [15] introduced a new eye movement data set for Finnish

natives. They exploited random forests to extract the most informative features and fed them

to support vector machines to detect dyslexia. AlGhamdi 2022 [16] used a publicly available

dataset [17], obtained from online gamified test results, and proposed a novel ensemble recom-

mendation to detect dyslexia with nearly perfect classification accuracy, while Kaisar and

Chowdhury (2022) [18], using the same data set, initially achieved lower accuracy and then

systematically reviewed the impact of various oversampling methods and proposed a hybrid

method, employing oversampling and ensemble learning, which then achieved higher accu-

racy, although not as high as AlGhamdi’s results.

The authors of [19] collected a hand-written-character data set from Chinese children

and created a multi-level multidimensional model. Vajs et al. [20] applied VGG16 neural

network [21] on a slightly different version of the data set proposed [22] and obtained 87%

accuracy. Later, in [23], they proposed a new feature space and obtained ROC AUC equal to

0.96 for logistic regression. These authors validated the previous findings on two different

data sets in [24].

Previous eye-tracking studies of reading Russian-speaking children with and without dys-

lexia are few in number and focused on comparing fixation durations, progressive saccades,

and regressions in these two groups of participants ([25–27]). Their findings were consistent

with the results of other studies in alphabetical languages. Namely, all three studies agreed that
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children with dyslexia produced longer fixations and were more sensitive to word length and

frequency compared to typically-developing readers. Also, Parshina et al. (2022) applied the

ScanPath method to investigate which global reading processes children in grades 1 through 5

with and without dyslexia adopted to read entire sentences. The authors identified five reading

processes and concluded that children with dyslexia relied on the same processes that their

typically developing peers but with a 3-year reading delay. Importantly, no previous studies of

reading in Russian have ever aimed to classify readers with and without dyslexia based on their

eye movements.

Motivation and contribution

Although the majority of these solutions have obtained acceptable performances and they are

remarkably faster than the traditional methods of dyslexia diagnostics, most of them suffer

from several shortcomings. This study aimed to (i) address some of the shortcomings of previ-

ously developed solutions, (ii) propose an robust AI-based solution to detect dyslexia, and (iii)

investigate the psycholinguistic knowledge with the performance of our best AI model. In

order to elaborate on our objectives and contributions, first, we concisely review the shortcom-

ings of the previous solutions. We categorize those shortcomings into (i) data-related and (ii)

AI-related categories. Among the plausible data types, it is natural to use eye-movement data

to analyze reading impairment like dyslexia, and we focus on this data type. We summarized

the characteristics of the six previously introduced eye-movement data sets in Table 1.

Concerning the data-related issues, the following observations from Table 1 require extra

attention: (i-a) the size of the data sets, (i-b) synthetically balanced data set—except for [15], (i-

c) the characteristics of the target values, (i-d) the age range, and (i-e) being limited to a spe-

cific language. More precisely, regarding (i-a), it is well known that the larger the data size, the

greater the power of an AI model to recognize patterns [31, 32]. Our data set is the largest data

set of its type, and thus, should increase the power of the AI models. As for (i-b), although syn-

thetically balancing data representations is a popular method for addressing class imbalance

issues; to the best of our knowledge, there is no rigorous mathematical definition to decide

which samples should be selected for further up/down-sampling. Current techniques may lead

the model to assign more weights to some of the data points in the synthetically manipulated

data, and there is no guarantee that the new data representation is aligned with the unknown,

underlying real-world distribution. The findings of [33], a recent and comprehensive review

on this subject, are partially aligned with our line of thought and confirmed our claims. There-

fore, we increased the size of our data set and, to some extent, preserved the imbalanced data

representation.

Table 1. Chronologically ordered summary of eye-tracking data sets to study dyslexia from eye movement using AI.

Reference Control Group Size High Risk of Dyslexia Size Low Risk of Dyslexia Size Age Range Target Values Language

Discrete Continuous

[28] 97 88 0 9-10 2 - Swedish

[29] 32 37 0 8.5-12.5 2 - Greek

[22] 18 18 0 8-12 2 2 Serbian

[15] 135 30 0 ave. 12.5 2 - Finnish

[12] 41 46 0 12.3-18 2 - French

[30] 49 48 0 11-55 2 - Spanish

This work 213 72 22 6-14 3 1 Russian

https://doi.org/10.1371/journal.pone.0292047.t001
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Concerning (i-c), instead of binary-class data, which consists of typically developing and

dyslexic readers, we introduced three classes: 1) typically developing readers, 2) those at low

risk of dyslexia, and 3) those at high risk of dyslexia; additionally, we introduced a contiguous

target variable of reading speed, which is a direct measure of reading aloud. This setting

enabled us to formulate the problem both as classification and regression tasks. We intended

to create a margin between the two traditional classes by introducing the low-risk class.

Regarding (i-d), our data set covers a broader age range, and thus, we expected to detect dys-

lexia at its earlier stages among school pupils. Therefore, our newly introduced data set can be

considered our first contribution.

Our second main objective and contribution addresses the AI-related shortcomings of pre-

vious papers. To the best of our knowledge, this is the most comprehensive empirical research

scrutinizing the performance of 12 classifications and eight regression approaches for identify-

ing dyslexia with the help of AI. The entire AI methods under consideration, with the help of

the Bayes optimization search method, have been fine-tuned, and the corresponding tuned

values are reported accurately.

Our third objective and contribution is introducing the application of the Shapley additive

explanation approach, to determine the importance of the AI methods to this area of research,

in order to investigate our psycholinguistic knowledge with the performance of our best AI

method.

Data sets

A fraction of the current data set, that is, 144 participants’ data, was reported in [27]. In that

paper, the authors analyzed the eye movements of typical readers vs. children with dyslexia

using ScanPath [34] and clustering methods. The current study pursues different objectives

and adds 163 new participants’ data. All data collection of the current study was approved by

the HSE Committee on Interuniversity Surveys and Ethical Assessment of Empirical Research

and conducted in accordance with the Declaration of Helsinki (World Medical Association,

2013). The participants were recruited between March 2020 and March 2022. Their parents

signed an informed consent form before the study. The authors have access to the participants

eye-tracking and behavioral data, their age, grade, gender, and identification number. They

have no access to information that could identify individual participants.

The complete data set used in this study, as well as the Python code for applying all of the

methods and the metrics under consideration, are made publicly available in the following

GitHub repository: https://github.com/Sorooshi/DD.

Apparatus and stimuli

The eye-tracking data set was collected under well-controlled experimental conditions. The

participants’ eye movements were recorded with an Eyelink 1000 Plus or an Eyelink Portable

Duo eye-trackers (SR Research, Canada) with a sample rate of 1000 Hz. The participants were

seated 55 cm from the camera while their heads were fixed using a chin rest. Only the right eye

movements were tracked [35]. Natural reading performance was measured: the participants

silently read 30 different sentences from the child’s version of the Russian sentence corpus [36,

37]. The selected sentences were suitable for primary school children and had diverse gram-

matical structures typical for the readers. The sentences were demonstrated in a random order

for each participant. Ten sentences were followed by a two-option comprehension question, to

check for involvement in the task. The task lasted approximately 20 minutes.

All participants’ data, regardless of their accuracy in the comprehension questions, were

included in the analysis. Using the EyeLink Data Viewer software 4.2.1 (Oakville, Ontario,
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Canada: SR Research Ltd.), we generated a fixation report (also referred to eye-fixation in this

paper), a interest area report (also referred to IA or IA data in this paper) from the collected

raw eye movements, refer to [38, 39] for more details.

The fixation, IA and the demographic information–including the measure of non-verbal

intelligence (IQ)–formed the three sources of our introduced data set in this paper. We com-

bined demographic data with the fixation and with IA reports to test the additive value of

demographics with the eye-tracking data.

To obtain an independent, direct, and continuous measure of reading performance, we also

tested each participant with the Standardized Assessment of Reading Skills (SARS) tool [40].

Children had to read aloud a text (“How I caught a crayfish”) of 227 words in print form as

quickly and as accurately as possible. The number of words read accurately in the first minute

was taken as a measure of an individual child’s reading fluency.

Demographic data

Our data set includes 307 Russian-speaking primary school students from first to sixth grade.

All children had various, but age-appropriate nonverbal intelligence, assessed with Ravens col-

ored progressive matrices [41]. The participants’ parents reported no abnormal vision capabil-

ities and no history of neurological or psychiatric disorders. They also confirmed that their

children are monolingual.

Based on the SARS test [40] and recent normative cutoff levels obtained in [42], individual

reading performance was annotated into three groups: 1) typically developing children (TD);

2) children at risk of developmental dyslexia (DR); 3) children with developmental dyslexia

(DD). The TD group, which we occasionally refer to as typical readers in this paper, consists of

213 students, 100 girls, and 113 boys. The DR group consists of 22 students, seven girls, and 15

boys. The DD group consists of 72 students, 27 girls, and 45 boys. We summarized the charac-

teristics of our data set in Table 2.

The DR group refers to those students whose reading performance based on the SARS was

between 1 and 1.5 standard deviation (SD) lower than the population average. This group con-

sists of 22 students, seven girls, and 15 boys. The last group, DD, consists of students whose

reading speed was lower than 1.5 SD of the populations average performance. This group con-

sists of 72 students, 27 girls, and 45 boys. The borders between the groups were based on the

SARS test guidelines.

Eye-fixation data

In the fixation report, each row represents a fixation event arranged in the order of fixations in

each sentence (for each participant). It includes information about the duration of the current

Table 2. Summary of the demographic data set. N represents the number of participants.

TD DR DD

Grade 1 N = 51 (22 girls, Age = 7.3 ± 0.5) N = 6 (4 girls, Age = 7 ± 0.6) N = 8 (2 girls, Age = 7.2 ± 0.5)

Grade 2 N = 40 (24 girls, Age = 8.3 ± 0.5) N = 7 (1 girl, Age = 8.6 ± 0.5) N = 10 (2 girls, Age = 8.4 ± 0.8)

Grade 3 N = 37 (19 girls, Age = 9.3 ± 0.5) N = 1 (1 girl, Age = 9) N = 20 (12 girls, Age = 9.3 ± 0.6)

Grade 4 N = 39 (18 girls, Age = 10.2 ± 0.5) N = 2 (0 girls, Age = 10. ± 0.) N = 28, (9 girls, Age = 10.2 ± 0.6)

Grade 5 N = 30 (12 girls, Age = 11.2 ± 0.8) N = 2 (0 girls, Age = 11.5 ± 0.7) N = 6 (2 girls, Age = 11.2 ± 0.4)

Grade 6 N = 16 (5 girls, Age = 12.1 ± 0.6) N = 4 (1 girl, Age 11.7 = ± 0.5) NA

NA

Total N = 213 (100 girls 113 boys) N = 22 (7 girls 15 boys) N = 72 (27 girls 45 boys)

https://doi.org/10.1371/journal.pone.0292047.t002
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fixation (FIX_DURATION) in milliseconds and the x and y fixation coordinates, FIX_X and

FIX_Y, respectively.

Interest area data

In the interest area report (IA), each row contains information about eye-movement events for

each interest area (word) in each sentence (for each participant). The eye-movement events

that we analyzed are as follows:

• FIRST_FIXATION_DURATION: the duration of the first fixation on a word;

• FIRST_RUN_TOTAL_READING_TIME: the sum of all fixations’ duration on a word during

first-pass reading;

• REGRESSION_PATH_DURATION: the sum of all fixations’ duration on a word from the

first fixation during first-pass reading until the eyes move to the right, including time spent

re-reading;

• TOTAL_READING_TIME: the sum of all fixations duration on a word;

• FIXATION_COUNT: the total number of fixations on a word;

• SKIP: the probability of skipping a word;

• FIRST_SACCADE_AMPLITUDE: amplitude (in the degree of visual angle) of the first sac-

cade to a word;

• FIRST_FIXATION_X: the x coordinate of the first fixation event on a word;

• FIRST_FIXATION_Y: the x coordinate of the first fixation event on a word;

• REGRESSION_IN: the probability of a backward saccade (regression) to a word;

• REGRESSION_OUT: the probability of regression from a word during first-pass reading;

• REGRESSION_OUT_FULL: the overall probability of regression from a word.

Experiments setting

Preprocessing techniques. If the data set contains a categorical feature, we converted it to

its one-hot encoded version. After such a conversion, if needed, all the data sets and their cor-

responding independent variables were standardized using the Min-Max technique, that is,

each feature of a data point is subtracted from the corresponding minimum value and then

divided by its range. More formally, if D ¼ fdivg
N
i¼1

for v = 1, . . ., V, where V is the number of

features, it represents our data sets consisting of N data points; and dva and dvb denote the max-

imum and minimum of feature v. This techniques standardizes the data point d̂iv ¼
div � dvb
dva � dvb

s.t.

d̂iv 2 ½0; 1�.

Hyperparameter tuning strategy. Various methods have been proposed for tuning the

hyperparameters of AI algorithms. Interested readers may refer to [43], a relatively recent sur-

vey, for more details and comparisons of different tuning methods. Relying on this survey, we

also exploited the Bayesian optimization [44], BO, to fine-tune the hyperparameters of the

algorithms under consideration.

BO considers the parameter tuning process as a function of all possible combinations of an

algorithm’s parameters. First, it constructs a surrogate function, next it utilizes the so-called

acquisition function to score and determine the next evaluation points, i.e. the next
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hyperparameter setting in the optimization loop. More rigorously, BO optimizes

θ∗ ¼ argmin
θ

f ðθÞ ð1Þ

where θ represents the parameters of the algorithm to be tuned.

In principle, for the given number of iterations T, BO consists of the following steps:

For t = 1 to T:

1. construct a probabilistic model of the objective function f over the set fθi; yi ¼ f ðθiÞg
t
i¼1

.

Integrate all the possible true functions using a Gaussian process or random forest

regression;

2. optimize the acquisition function u based on the posterior distribution for sampling the

next point i.e. θt+1 = argminθ u(θ);

3. sample the next observation yt+1 at θt+1.

We used random forest [11] and expected improvement (EI) as our surrogate and acquisi-

tion functions respectively. EI is defined as:

� uðθÞ ¼ � E½ f ðθÞ � f ðθþt Þ� ð2Þ

where θþt is the best-observed hyperparameter setting. In our computations, we use Scikit-

optimize [45] and Keras Tuner [46] Python libraries to tune the hyperparameters. The algo-

rithms’ search spaces and the corresponding tuned hyperparameters are explained in the next

section.

Computational setting. Our computations consisted of two components (i) fine-tuning

the hyperparameters of the methods under consideration and (ii) a comprehensive evaluation

of the fine-tuned methods. For adjusting the hyperparameters, we exploit BO and stratified k-

fold cross-validation with k = 5. After fine-tuning the hyperparameters, we applied ten-fold

cross-validation. At each fold, we trained an algorithm on the train split (90% of data) and

evaluated it using the remaining unseen test data. Finally, we reported the average and stan-

dard deviation of evaluation metrics. Fig 1 demonstrates our computational setting.

Fig 1. Adopted computation setting.

https://doi.org/10.1371/journal.pone.0292047.g001
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Evaluation metrics. Let y be the set of true pairs of (datapoint, label). Similarly, let ŷ be

the set of predicted pairs of (datapoint, label). Let L and S be the sets of labels and datapoints,

respectively. We defined ys as the subset of y with sample s, that is, ys≔ {(s0, l) 2 y|s0 = s}; and yl
as the subset of y with label l. Similarly, we defined ŷs and ŷl as analogous subsets of ŷ. Let

P A;Bð Þ ¼
jA\Bj
jBj , R A;Bð Þ ¼

jA\Bj
jAj , and Fb A;Bð Þ ¼ 1þ b

2
� �

�
PðA;BÞ�RðA;BÞ

b2�PðA;BÞþRðA;BÞ for some sets A and

B. We utilized precision, recall, and F1-score (β = 1) to assess the performance of the classifica-

tion algorithms:

precision ¼
1

P
l2Ljylj

X

l2L

jyljPðyl; ŷlÞ; ð3Þ

recall ¼
1

P
l2Ljylj

X

l2L

jyljRðyl; ŷlÞ; ð4Þ

F1� score ¼
1

P
l2Ljylj

X

l2L

jyljFðyl; ŷlÞ: ð5Þ

We also used the weighted average of the area under the receiver operating characteristic

curve (ROC AUC) in a one-versus-rest manner to summarize the classifier’s performance at

different discrimination thresholds for all classes. Noteworthy to add that all of the metrics

under consideration are 2 [0, 1], and the closer to unity, the better the performance of the

model.

Methods under consideration

One of the central objectives of this research was to conduct a comprehensive set of experi-

ments to empirically scrutinize the performance of various AI methods for finding a robust

AI-based solution to detect dyslexia. To this end, we studied the performance of four families

of models: (A) artificial neural networks: multi-layer perceptron and convolutional neural net-

work; (B) non-parametric: random forest, AdaBoost, Gradient Boosting, k-nearest neighbor,

and support vector machines; (C) linear: linear regression and logistic regression; (D) Bayes-

ian: Gaussian, multinomial, and complement naive Bayes. The multinomial and complement

naive Bayes models did not obtain satisfactory results; therefore, we excluded them from the

paper. Although we obtained similar results for both classification and regression tasks, for

brevity, we only focused on explaining the classification tasks. The rest of this section describes

the principles of the models mentioned above.

Artificial neural networks

In our experiments, we exploited two methods of this family (1) the fully connected multi-

layer perceptron (MLP) and (2) the convolutional neural network (CNN). The motivation for

choosing them is merely due to their successful history.

Notation. Let x 2 X and y 2 Y , represent the data points and the target values, respec-

tively. The goal is to learn a conditional probability distribution p(y|x, θ) from training data,

D ¼ fðxi; yiÞg
N
i¼1

, where N is the number of training cases, and θ represents the parameters of

the model to be estimated.

Multi-layer perceptron. In principle, MLP adjusts the weights Wℓ and the biases bℓ (for

ℓ = 1, . . ., L) of the composition of L hidden layers to derive the distribution of a mapping

function between the input data points x and target variables y, i.e. p(y|x; θ), where θ = (W1,

b1, . . ., WL, bL). In other words, let us denote the hidden units at layer ℓ with zℓ and the
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element-wise (non-)linear activation function with c : R! R, thus:

z‘ ¼ f‘ðz‘� 1Þ ¼ c‘ðW‘z‘� 1 þ b‘Þ; ð6Þ

Consequently, we can show the composition of all layers as:

f ðx; θÞ ¼ fLð fL� 1ð. . . :ðf1ðxÞÞ . . .ÞÞ: ð7Þ

where, by convention, z1 = x.

At each layer of this composition, the gradients are computed w.r.t to their parameters

using the chain rule, and then, those gradients (or higher order derivatives) are passed to an

optimizer to adjust the parameters. Refer to chapter 13 of [47] for more details about MLP and

chapters five and six of [48] about the popular optimization algorithms. The main hyperpara-

meters of MLP are (i) the number of neurons, (ii) the number of hidden layers, (iii) the learn-

ing rate, (iv) activation functions, (v) the number of epochs, and (vi) the optimization

algorithm. In this study, due to the limited size of the data set and to avoid overfitting, we lim-

ited ourselves to shallow networks and only used one hidden layer, and we fixed the batch size

to 32. Table 3 shows the domain of the parameters and the corresponding tuned values.

Convolutional neural networks. The core operation of an MLP hidden layer is to calcu-

late the activation values z = ψ(W x), where x is the input to a layer, W are the weights, and ψ
(.) is the activation function. Therefore, the jth component of the hidden layer has the value

zj ¼ cðwjxÞ. This inner product operation is equivalent to comparing the input x to a parame-

ter wj. Due to non-shared weights across the location, it is not hard to show that this operation

is not translation invariant.

Convolutional layers were proposed to tackle this issue. Although the name implies that

convolution should be the core operation, when the weight vector is symmetric, which is often

the case, convolution and cross-correlation are identical. Since the cross-correlation has fewer

implementation difficulties, it is implemented more frequently. The cross-correlation between

the weight vector w and input vector x is:

½w∗x�ðiÞ ¼
XK

u¼0

wuxiþu; ð8Þ

where K is the size of the kernel or filter and xi represents the ith element of vector x.

It is not hard to show that this operation acts as a feature detector with an equivariance

property–preserving information about the location of the input features. However, this

Table 3. Multi-Layer Perceptron (MLP) and convolutional neural network methods: Hyperparameters’ domain and the corresponding tuned values at the data sets

under consideration. The Nn, Ne, lr, in respect, represents the number of neurons of the hidden layer, the number of epochs, and the learning rate. The drop shows the

maximum dropout in the max pooling layer.

method / data set parameters

Nn Ne lr activation optimiser Drop

MLP {2, 3, . . ., 200} [10, 50000] [1e-6, 1e-2] {Identity, Logistic, Tanh, ReLu} {LBFGS, SGD, ADAM}, [0.1, 0.8]

MLP at Demo 173 31270 - Identity LBFGS -

MLP at Fixation 190 58325 - ReLu LBFGS -

CNN at Fixation 192 100 0.0001 ReLu ADAM 0.1

MLP at Demo-Fixation 158 49150 - Tanh LBFGS -

CNN at Demo-Fixation 192 200 0.0001 ReLu ADAM 0.1

MLP at IA 34 66253 - Logistic LBFGS

MLP at Demo-IA 50 13953 - Logistic LBFGS

https://doi.org/10.1371/journal.pone.0292047.t003
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property is not always desirable, and max pooling solves this problem by selecting the maxi-

mum value of its input within a predefined window. Max pooling operation or other options,

like average pooling, form the so-called pooling layer. The composition of a convolutional

layer and a pooling layer forms the cornerstone of a CNN. A generic and shallow architecture

of a CNN usually consists of stacking a couple of pairs of convolutional-pooling layers, fol-

lowed by a flattening layer and a shallow fully-connected MLP on top of it. The learning pro-

cess is similar to MLP. For more details, refer to chapter 14 of [47].

The crucial hyperparameters of a CNN are: (i) the number of pairs of convolutional and

pooling layers, (ii) the filter size, (iii) the number of filters, (iv) the number of hidden layers of

MLP, (v) the number of neurons in MLP, (vi) the learning rate, (vii) the activation functions,

(viii) the pooling size, (ix) the number of epochs. For the same reason mentioned about MLP,

we limited ourselves to shallow networks and only used one hidden layer for MLP and two

pairs of convolutional-pooling layers. We fixed the batch size at 32. Our preliminary experi-

ments showed that fixing the filter size to three and choosing 32 filters led to the best perfor-

mance of the CNN. The rest of the hyperparameters are tuned using BO. Table 3 shows the

domain of the parameters and the corresponding tuned values.

From the reported tuned hyperparameters of Table 3 and considering the reported results

of the next section, we may conclude that LBFGS [49] is the right optimiser for our problem

using MLP. The difference between the number of epochs required to train MLP and CNN

may require additional investigation. More interestingly, although the ReLu activation func-

tion is the most selected option, the best result, as reported in the next section, is obtained by

MLP at the demo-fixation data set with the Tanh activation function.

Fusing CNN and MLP. As reported in the next section, MLP obtained the best

ROC-AUC for identifying dyslexia from demographic data (see Table 8, and CNN performed

the best at fixation-only data (see Table 11. Hence it is natural to combine these two models

with their winning network architectures to identify dyslexia from the combination of fixation

and demographic data. We named this model fused CNN-MLP and show the network archi-

tectures in Fig 2.

Recalling that the idea behind fusing CNN and MLP was to exploit the best of each model

with their fined-tuned hyperparameters, thus, except for (A) the number of epochs, which we

greedily searched for its best value between 1, 2000 epochs and ten epochs led to the best

results, and (B) utilizing the ADAM optimizer with learning rate equal to 0.0001; the rest of

hyperparameters and network architecture were identical to what reported in Table 3 and

showed in Fig 2.

Non-parametric models

Ensemble learning. A decision tree (DT) is a hierarchical tree structure that consists of a

root node, internal nodes, and leaf nodes. The root node represents the entire data set and has

no incoming edges. The leaf nodes represent all possible outcomes of the data set. DT aims to

produce as pure leaf nodes as possible, i.e. in classification problems, the purity can be mea-

sured using entropy such that the purest leaf node will have an entropy equal or close to zero.

Fig 2. Fused CNN-MLP: Fusing the fine-tuned architectures of MLP at demographic data and CNN at fixation data to classify dyslexia from their combination.

https://doi.org/10.1371/journal.pone.0292047.g002
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To this end, DT recursively and greedily searches over the combination of all features and

their values to find the best splitting point, i.e., the internal node which maximizes the infor-

mation gain; the recursion terminates when a stopping condition is satisfied. For more details

refer to [47].

DTs have several advantages, including being easy to interpret, fast to fit, and relatively

robust to outliers. However, they are prone to overfitting, and they are high-variance estima-

tors. Pre-pruning and post-pruning, i.e. controlling the tree’s depth and width, are popular

techniques to prevent overfitting. However, reducing variance is more involved. One way is to

use an ensemble of trees, for instance, random forests, RF, [11]. RF first builds various boot-

strap samples from the training set and fits an unpruned learner, a decision tree, on each of the

samples, and finally aggregates the predictions by voting. The generic model of an ensemble of

M trees has the following form:

tðyjxÞ ¼
1

M

X

m2M

amtmðyjxÞ; ð9Þ

where tm is the m-th tree, αm is the corresponding weight. We can think of this as an additive

linear model with adaptive basis functions, and thus we can employ the steepest descent with

line search and Boosting algorithms. AdaBoost, AB, [50] and Gradient descent Boosting, GB,

[51] are based on this idea. They sequentially fit a weak learner, and at each sequence, they

weigh the data to bias the next learner for correcting the mistakes of the current estimator and

finally aggregate the weak learners to build a strong learner. In our opinion, AB can be consid-

ered as a specific case of GB with exponential loss; however, at each sequence, AB uses the

learning rate to assign more weight to the prediction errors while GB shrinks the contribution

of each tree to avoid overfitting.

The number of estimators, the minimum number of samples required to split an internal

node, the minimum number of samples required to be at a leaf node, and the learning rate (in

AB and GB) can be considered their most important hyperparameters. Table 4 provides more

details on the hyperparameters and the tuned values of three ensemble learning methods.

Considering the results in the next section, although RF and GB obtained acceptable results,

we cannot find any patterns in the tuned hyperparameter value, except considering this table

as another piece of evidence confirming the so-called no-free-lunch theorem.

K-nearest neighbors. The k-nearest neighbors [52], (KNN) predicts the target value of an

unseen data point x by deriving the distribution over the target values of its K nearest neigh-

bors in the training set, i.e. NKðx;DÞ. More precisely,

pðy ¼ cjx;DÞ ¼
1

K

X

n2NK ðx;DÞ

Iðyn ¼ cÞ; ð10Þ

where I is an indicator function, returning one when the condition is satisfied and zero

otherwise.

KNN has two major hyperparameters: (i) the number of nearest neighbors and (ii) the

choice distance metric to define the neighborhood of x, i.e. d(x, x0). We used the Minkowski

distance and treated its value of P as a hyperparameter. Table 5 provides more details on the

hyperparameters and the corresponding tuned values.

In our opinion, the tuned values of P at the Minkowski distance, which is always greater

than one and less than two, may require scrutinizing to justify the underlying reasons why the

Minkowski distance works better in this range.

Support vector machines. Support vector machines (SVM) maximize the margins

between the hyperplane and the support vectors. There have been various proposed kernel
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extensions of SVM see [53, 54]. The hyperparameters of these extensions consist of: (i) kernel

type, i.e., linear, polynomial, RBF, or sigmoid; (ii) the value of the regularization term c, (iii)

kernel coefficient γ for the case of using non-linear kernels; (iv) degree of the polynomial ker-

nel, (v) the epsilon-tube value � (within which no penalty is associated in the training loss func-

tion with points predicted within a distance epsilon from the actual value). See Table 6 for

more details on the hyperparameter domains and their tuned values.

The kernel function maps a non-linear feature space of the training data into a linearly sep-

arable feature space. SVM performed best in the demo-fixation data set with RBF kernels with

a degree equal to two and a regularization term equal to 3.93. And its best performance

obtained at IA-demo with polynomial kernel and a regularization term equal to 3.95.

Table 5. K-nearest neighbours regression (KNN) methods: Hyperparameters’ domain and the corresponding

tuned values at the data sets under consideration. The K, P, in respect, represents the number of nearest neighbours

and the value of P in the Minkowski distance metric.

method / data set parameters

K P
KNN {1, 2, . . ., 10} [1, 5]

KNN at Demo 10 1.976

KNN at Fixation 10 1.214

KNN at IA 10 1.544

KNN at Demo-Fixation 9 1.042

KNN at Demo-IA 5 1.013

https://doi.org/10.1371/journal.pone.0292047.t005

Table 4. Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB) methods: Hyperparameters’ domain

and the corresponding tuned values at the data sets under consideration. The Ne, Mss, Msl, lr, in respect, represents

the number of estimators, minimum number of samples per split, minimum number of samples per leaf, and learning

rate.

method / data set parameters

Ne Mss Msl lr
AB {10, 11, . . ., 10000} - - [1e-3, 5e-1]

RF {10, 11, . . ., 10000} {2, 3, . . ., 10} {1, 2, . . ., 10} -

GB {10, 11, . . ., 10000} {2, 3, . . ., 10} {1, 2, . . ., 10} [1e-3, 5e-1]

AB at Demo 545 - - 0.017

RF at Demo 6197 5 9 -

GB at Demo 257 4 1 0.005

AB at Fixation 415 - - 0.169

RF at Fixation 2726 2 10 -

GB at Fixation 3380 3 6 0.007

AB at IA 4736 - - 0.087

RF at IA 1980 4 3 -

GB at IA 165 2 10 0.160

AB at Demo-Fixation 309 - - 0.215

RF at Demo-Fixation 9923 9 1 -

GB at Demo-Fixation 2674 9 3 0.282

AB at Demo-IA 7133 - - 0.019

RF at Demo-IA 163 2 1 -

GB at Demo-IA 971 7 3 0.299

https://doi.org/10.1371/journal.pone.0292047.t004
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Naive Bayes classifiers and logistic regression

The underlying assumption in naive Bayes classifiers is the conditional independence of the

features, given the class label. Concretely, this assumption corresponds to the following class

conditional density:

pðxjy ¼ c; θÞ ¼
YV

v¼1

pðxvjy ¼ c; θvcÞ; ð11Þ

where θvc are the parameters of the class conditional density of class c and feature v. Therefore,

we can compute the posterior over the class labels as follows:

pðy ¼ cjx; θÞ ¼
pðy ¼ cjpÞ

QV
v¼1

pðxvjy ¼ c; θvcÞ
P

c0pðy ¼ c0jpÞ
QV

v¼1
pðxvjy ¼ c0; θvc0 Þ

; ð12Þ

where πc 2 π is the prior probability of class c, and it is equal to the relative frequency of each

class in the training set. Depending on the assumed distribution for p(xv|y = c, θvc), different

versions of the naive base classifier have been proposed. In our experiments, multivariate

Gaussian distribution led to the most satisfactory results among the members of this family,

and thus we limited our report to it. To fit the model, first, we need to select the proper distri-

bution, next by applying maximum likelihood estimation and gradient descent, we fit the

model to the data. It is not hard to show that the optimal parameters for the multivariate

Gaussian distribution are:

m̂vc ¼
1

Nc

X

n:yn¼c

xnv; ð13Þ

and

ŝ2
vc ¼

1

Nc

X

n:yn¼c

ðxnv � m̂vcÞ
2
: ð14Þ

While in naive Bayes classification we optimize the joint likelihood ∏n p(yn, xn|θ), in logistic

regression we optimize the conditional likelihood ∏n p(yn|xn; θ). Concretely, multinomial

logistic regression has the following form:

pðynjxn; θÞ ¼ CatðyjSðWx þ bÞÞ; ð15Þ

where x 2 RV
is the data point, y 2 {1, . . ., C} is the class label, W is the C × V weight matrix, b

is the V-dimensional bias vector, S() is the softmax function, and θ = (W, b) are the model

Table 6. Support vector machine (SVM): Hyperparameters’ domain and the corresponding tuned values at the data sets under consideration. The c, γ, �, in respect,

represents the regularisation term, kernel coefficient, and epsilon-tube (applicable only to linear SVM) value.

method / data set parameters

kernels degree c γ �

SVM {linear, poly, RBF, sigmoid} {1, 2, 3} [1, 4] [-2.3, 0.7] [-2.3, 0.7]

SVM at Demo sigmoid - 0.333 0.504 -

SVM at Fixation poly 3 1.640 0.563 -

SVM at IA rbf 1 3.652 1.933 -

SVM at Demo-Fixation RBF 2 3.929 1.941 -

SVM at Demo-IA poly 3 3.950 1.987 -

https://doi.org/10.1371/journal.pone.0292047.t006
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parameters. For model fitting the procedure described earlier can be adopted. Table 7 shows

the domains’ parameters of the logistic regression algorithm and its corresponding optimal

parameters found by BO during the training process at different data sets.

Determine the importance of feature

After finding the best plausible fine-tuned estimator, we determined the importance of the fea-

tures. We applied the Shapley Additive exPlanation (SHAP) approach and its Python library

[55]. SHAP connects optimal payoff allocation with local explanations using the Shapley values

from cooperative game theory and their related extensions.

In the machine learning setting, each attribute (or feature) of a given dataset is considered a

player. Such players can negotiate and form coalitions (subsets of attributes). In the exhaustive

case, the importance of each attribute a for the classification of an object x is counted over all

possible combinations of this attribute with subsets S of all the remaining attributes with

respect to a chosen value function as follows [56]:

φaðxÞ ¼
X

S�f1;...;mgnfag

jSj!ðm � jSj � 1Þ!

m!
ðvðx; S [ fagÞ � vðx; SÞÞ; ð16Þ

where m is the total number of attributes, v is the chosen value function.

In the simplest case, as explained in [57], the function value v is binary, 1 for winning coali-

tions, and 0, otherwise. If the coalition S [ {a} is winning (e.g., if x is classified correctly), while

S is not, the attribute a receives a non-zero importance value. However, for large sets of attri-

butes, the direct approach is no longer applicable due to a combinatorial explosion in terms of

the number of possible coalitions, and the value function is expressed in terms of the approxi-

mate expectation computed, e.g., via Monte-Carlo approach [56].

We exploit two tools of the SHAP library 1) the bar plot of the Mean Absolute SHAP

(MAS) values per feature and 2) the beeswarm summary plot. The MAS, on average, quantifies

the magnitude of each feature’s contribution toward the predicted class labels. The higher the

MAS value of a feature, the higher its impact. The rows of these two plots represent the data set

features ranked in descending order, top-to-bottom. In each row of the beeswarm summary

plot, points are distributed horizontally according to their SHAP value; in places with a high

density, SHAP values are stacked vertically. Investigating how the SHAP values are distributed

demonstrates a feature’s influence on the predictions. The color bar corresponds to value of

each feature of the data point on the graph. If the value of a feature for a particular instance is

relatively high, it appears as a yellow dot; while relatively low variable values appear as blue

dots. Examining the color distribution along the x-axis for each variable provides insights into

the general relationship between a variable’s raw values and its SHAP values.

Table 7. Logistic Regression (LR): Hyperparameters’ domain and the corresponding tuned values at the data sets under consideration. The C, Ni, l1 ratio, in respect,

represents the inverse of regularization strength, the number of iterations, and the Elastic-Net mixing parameter.

method / data set parameters

intercept C Ni l1 ratio penalty options

LR {False, True} [1e-1, 4] {100, 101, . . ., 100000 } [1e-1, 9e-1] {none, l1, l2, Elastic Net}

LR at Demo True 0.4078 29307 0.1445 l2

LR at Fixation True 0.1302 27169 0.2779 none

LR Demo-Fixation True 0.1035 85814 0.8695 l1

LR at IA True 3.123 83030 0.663 l2

LR at Demo-IA False 0.317 90860 0.611 none

https://doi.org/10.1371/journal.pone.0292047.t007
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Experiments

Experimental results and analysis

Tables 8 to 10 represent the results of the methods under consideration using demographic, IA

and fixation data respectively. In predicting dyslexia from demographic data, GB outper-

formed the competitors and can be considered a low-quality winner. Also, it was the winner in

the IA competition with relatively better results. CNN was the best using the fixation data with

relatively acceptable results.

Table 8. Classification on demographic data set: The average and standard deviation of evaluation metrics over 10 different data splits. The best results are bold-

faced.

Methods Metrics

Precision Recall F1-score ROC-AUC

Logistic Regression 0.481 ± 0.019 0.691 ± 0.016 0.567 ± 0.018 0.619 ± 0.088

Gaussian Naive Bayes 0.065 ± 0.012 0.235 ± 0.029 0.100 ± 0.014 0.633 ± 0.061

Support Vector 0.482 ± 0.019 0.694 ± 0.014 0.569 ± 0.018 0.557 ± 0.102

K-Nearest Neighbour 0.543 ± 0.092 0.665 ± 0.051 0.577 ± 0.046 0.586 ± 0.106

Random Forest 0.480 ± 0.021 0.687 ± 0.028 0.565 ± 0.024 0.603 ± 0.103

Gradient Boosting 0.547 ± 0.103 0.701 ± 0.033 0.595 ± 0.050 0.558 ± 0.142

AdaBoost 0.523 ± 0.097 0.694 ± 0.031 0.582 ± 0.048 0.541 ± 0.109

Multi-Layer Perceptron 0.543 ± 0.094 0.684 ± 0.031 0.582 ± 0.031 0.609 ± 0.071

https://doi.org/10.1371/journal.pone.0292047.t008

Table 9. Classification on IA report data set: The average and standard deviation of evaluation metrics over 10 different data splits. The best results are bold-faced.

Methods Metrics

Precision Recall F1-score ROC-AUC

Logistic Regression 0.656 ± 0.012 0.701 ± 0.003 0.619 ± 0.004 0.695 ± 0.007

Gaussian Naive Bayes 0.623 ± 0.007 0.668 ± 0.005 0.633 ± 0.005 0.661 ± 0.006

Support Vector 0.672 ± 0.031 0.702 ± 0.003 0.600 ± 0.003 0.679 ± 0.009

K-Nearest Neighbour 0.642 ± 0.009 0.698 ± 0.003 0.636 ± 0.004 0.664 ± 0.007

Random Forest 0.705 ± 0.013 0.720 ± 0.002 0.665 ± 0.003 0.727 ± 0.007

Gradient Boosting 0.696 ± 0.007 0.723 ± 0.002 0.671 ± 0.003 0.738 ± 0.002

AdaBoost 0.676 ± 0.013 0.715 ± 0.004 0.657 ± 0.005 0.709 ± 0.005

Multi-Layer Perceptron 0.693 ± 0.007 0.721 ± 0.003 0.671 ± 0.004 0.732 ± 0.007

https://doi.org/10.1371/journal.pone.0292047.t009

Table 10. Classification on fixation report data set: The average and standard deviation of evaluation metrics over 10 different data splits. The best results are bold-

faced.

Methods Metrics

Precision Recall F1-score ROC-AUC

Logistic Regression 0.499 ± 0.003 0.618 ± 0.001 0.499 ± 0.001 0.607 ± 0.002

Gaussian Naive Bayes 0.560 ± 0.005 0.618 ± 0.002 0.526 ± 0.003 0.606 ± 0.002

Support Vector 0.383 ± 0.000 0.619 ± 0.000 0.473 ± 0.000 0.577 ± 0.010

K-Nearest Neighbour 0.559 ± 0.003 0.605 ± 0.002 0.544 ± 0.002 0.599 ± 0.003

Random Forest 0.593 ± 0.004 0.626 ± 0.002 0.548 ± 0.002 0.637 ± 0.002

Gradient Boosting 0.602 ± 0.005 0.630 ± 0.002 0.545 ± 0.003 0.650 ± 0.004

AdaBoost 0.530 ± 0.003 0.626 ± 0.001 0.518 ± 0.001 0.628 ± 0.002

Multi-Layer Perceptron 0.600 ± 0.004 0.629 ± 0.001 0.541 ± 0.002 0.647 ± 0.003

Convolutional neural networks 0.656 ± 0.077 0.673 ± 0.053 0.637 ± 0.056 0.758 ± 0.075

https://doi.org/10.1371/journal.pone.0292047.t010
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Since the demographic data is not informative about a person’s reading ability, thus it is not

a surprise that the results using fixation data are better than demographic. Moreover, no tem-

poral or spatial relation is expected in demographic or IA data; therefore, applying CNN did

not make sense. Comparing the best-obtained results over the three data sources, the winner

of the IA dataset obtained a slightly better F1-score: while the winner of the fixation competi-

tion obtained a slightly better ROC AUC.

Table 11 represents the results using the combination of demographic and fixation report

data sets. The combination of the two data sources significantly improved the algorithm’s per-

formances, so that MLP obtained the best results with an acceptable F1-score = 0.912±0.002

and ROC-AUC = 0.983. RF obtained very similar results. The KNN and GB also performed

acceptably with slightly worse results. The absence of a statistically significant auto-correlation

in the demographic data may justify the obtained result by CNN. In our opinion, the difference

between the required number of epochs to train CNN on the fixation data (100 epochs) and

MLP on the demographic data (31,270 epochs) might justify the quality of the obtained results

by the fused CNN-MLP.

Table 12 represents the results using the combination of IA and demographic data. We

observed similar patterns and slightly better results. Although the IA report and its combina-

tion with demographic data led to slightly better results; however, since the fixation data is one

of the purest reports one can obtain from the eye tracker and relying on the prior knowledge

Table 11. Classification on the combination of fixation report and demographic data sets: The average and standard deviation of evaluation metrics over 10 differ-

ent data splits. The best results are bold-faced and the second ones are underlined.

Methods Metrics

Precision Recall F1-score ROC-AUC

Logistic Regression 0.573 ± 0.003 0.658 ± 0.002 0.599 ± 0.003 0.713 0.003

Gaussian Naive Bayes 0.724 ± 0.018 0.302 ± 0.001 0.162 ± 0.001 0.689 ± 0.003

Support Vector 0.807 ± 0.003 0.807 ± 0.003 0.802 ± 0.003 0.872 ± 0.002

K-Nearest Neighbour 0.903 ± 0.001 0.903 ± 0.001 0.903 ± 0.001 0.976 ± 0.001

Random Forest 0.911 ± 0.002 0.910 ± 0.002 0.911 ± 0.002 0.981 ± 0.001

Gradient Boosting 0.902 ± 0.002 0.901 ± 0.003 0.901 ± 0.003 0.978 ± 0.001

AdaBoost 0.669 ± 0.007 0.684 ± 0.002 0.642 ± 0.003 0.724 ± 0.002

Multi-Layer Perceptron 0.913 ± 0.002 0.911 ± 0.002 0.912 ± 0.002 0.983 ± 0.000

Convolutional neural networks 0.657 ± 0.097 0.649 ± 0.096 0.641 ± 0.096 0.713 ± 0.111

Fused CNN-MLP 0.685 ± 0.098 0.692 ± 0.094 0.675 ± 0.097 0.767 ± 0.098

https://doi.org/10.1371/journal.pone.0292047.t011

Table 12. Classification on the combination of IA report and demographic data sets: The average and standard deviation of evaluation metrics over 10 different

data splits. The best results are bold-faced.

Methods Metrics

Precision Recall F1-score ROC-AUC

Logistic Regression 0.722 ± 0.010 0.747 ± 0.003 0.702 ± 0.003 0.778 ± 0.005

Gaussian Naive Bayes 0.689 ± 0.008 0.356 ± 0.004 0.313 ± 0.006 0.733 ± 0.005

Support Vector 0.842 ± 0.006 0.846 ± 0.005 0.837 ± 0.006 0.858 ± 0.005

K-Nearest Neighbour 0.848 ± 0.004 0.852 ± 0.004 0.846 ± 0.005 0.920 ± 0.005

Random Forest 0.883 ± 0.004 0.881 ± 0.004 0.875 ± 0.004 0.957 ± 0.002

Gradient Boosting 0.914 ± 0.003 0.914 ± 0.003 0.913 ± 0.003 0.977 ± 0.001

AdaBoost 0.743 ± 0.008 0.771 ± 0.005 0.739 ± 0.006 0.761 ± 0.009

Multi-Layer Perceptron 0.934 ± 0.005 0.934 ± 0.005 0.934 ± 0.005 0.986 ± 0.001

https://doi.org/10.1371/journal.pone.0292047.t012
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that the natural visual streams are modulated by fixations [58], in the remainder of this

research we focused on the combination of fixation and demographic data.

We justify the improvement obtained from this combination(s) due to (1) large number

theory, that is, combining the demographic and fixation (IA) data acts like a data augmenta-

tion technique which led to improvements in the performance of the AI models, and (2) the

supplementary role of the demographic features for discriminating eye-fixation (IA) data of

the three different classes. While (1) is quite well-known in the AI field; (2) aligns with our

domain knowledge–the expected similarity between the eye movement of older students with

dyslexia and younger non-dyslexics, as reported in [27]. As an additional assessment, we uti-

lized the Gaussian kernel density estimation (KDE) with automatic bandwidth determination

[59] to non-parametrically estimate and compare the probability density functions of non-dys-

lexic first-grade students with fourth-grade dyslexic students in our fixation report data set.

Fig 3 demonstrates the similarities between the fourth-grade students with dyslexia and the

first-grade students without dyslexia.

Fig 3. KDE of plots of fixation data: (a) both of the two grades under consideration, (b) the first-grade typically developing first-grade vs. dyslexics fourth-grade

students.

https://doi.org/10.1371/journal.pone.0292047.g003
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Last but not least, in each comparison, the proximity of the top three results and the fact

that each algorithm has been tuned separately and then trained and evaluated on ten different

disjoint train-test splits can be considered an acceptable evaluation policy to examine the gen-

eralizability power of the algorithms. In other words, the likelihood of the occurrence of over-

fitting (under-fitting) for two or more algorithms over ten different data splits is less than the

case in which one simply applies only one algorithm.

Feature importance

We scrutinized the importance of features on the MLP predictions, one of our best models,

using the kernel explainer from the SHAP library, using the demographic-fixation data set.

Due to the computational complexity of the SHAP approach, it was not feasible to use the

entire train set as the background data, thus following the recommendation of the author of

SHAP, first, we trained the MLP on the whole train split, and then passed the trained model

with 500 randomly selected data points, from the train data split, as the background data to the

kernel explainer, and we used the entire test split to determine the shape values. The results are

illustrated in Fig 4. The left-hand side of this Fig. depicts the summary bar plot of the Mean

Absolute SHAP (MAS) values of each feature per class, and its right-hand side depicts bees-

warm summary plots of the TD, DR, and DD classes.

According to reported results, the demographic features, in total, formed 93.2% of MAS val-

ues, and the fixation data formed the remaining 6.8%. More precisely, considering the pro-

vided MAS summary bar subplots, the IQ, Age, and Sex_2, i.e., being male, with accumulative

MAS values equal to 0.24, 0.23, and 0.23 respectively, were the three most important features.

And among the six school grades, the first and the fourth grades (each with MAS = 0.16) were

more important than the others. Considering the beeswarm summary plots (b, d, and f), we

observed that being male was the most important feature in predicting TD and DD classes.

Age was the most important feature in predicting DR and the second most important feature

for identifying TD class. IQ was the second most important feature to predict DR and DD and

was the third most important feature in predicting TD. Its two extremes had reverse impacts

on the model’s predictions, especially in predicting TD and DD. It ought to emphasize that, in

our opinion, the demographic features are more likely to be confounders than colliders. A

deeper investigation of this subject is our future work agenda.

Regarding the fixation features, fixation along the y-axis, with the approximate MAS value

of 0.052, had more impact than fixation duration with an approximate MAS value of 0.036 and

fixation along the x-axis with MAS value of�0.025. We observed in our data set that students

with dyslexia, on average, looked at lower positions on the screen while reading than typical

readers. They had more frequent eye-movement leaps along the y-axis than typical readers.

These two reasons justify why the model assigned a higher weight to this feature.

Independent test results

Due to the real-world significance of the dyslexia screening problem and before launching a

clinical trial of our proposed solution, we evaluated the performance of the tuned MLP classi-

fier on an independent (and newly collected) test set using the combination of demographic

and fixation data. This new test set consisted of nine typical readers (five girls) and seven stu-

dents with dyslexia (four girls).

For a fair evaluation, we randomly picked one of the ten train-test splits. Then we trained

an MLP classifier using the previously tuned hyperparameters on the train set. Once the train-

ing was done, we used two frameworks to evaluate our model. In the first framework, we used

the entire independent test set to assess the performance of the trained MLP. This framework
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does not imitate real-life circumstances in which the percentage of typically developing stu-

dents is higher than students with dyslexia. To tackle this issue, we fixed the number of typical

readers and randomly chose three students with dyslexia; we repeated this process ten times

and computed the average and standard deviation of the metrics. Table 13 shows the results.

Fig 4. The first to third rows represent the accumulative MAS bar plots (on the left side) and the beeswarm plots (right side) of typically reading (TD), at the risk of

dyslexia class (DR), and developmental dyslexia (DD) classes.

https://doi.org/10.1371/journal.pone.0292047.g004
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Although we observed adequate performances in both of these two frameworks, in both of

these frameworks, we observed some deteriorations between the independent test results and

the previous results. These deteriorations became more evident between the ROC-AUC values.

To explore the reason for such deteriorations, we scrutinized each of the individual predic-

tions. Fig 5 demonstrates the confusion matrices of the first framework and the best results

and the worst results of the second framework.

The algorithm mistakenly predicted three female students with dyslexia–from the first, sec-

ond, and fourth grades–as typical readers. The reasons for such misclassifications could be: 1)

due to the imbalanced representations of data, which becomes even more exaggerated in the

first and second grades students’ data; 2) the lack of sufficient training data; 3) the occurrence

of the so-called “distribution-shift”; 4) the lack of sufficiently informative features to enable the

algorithm(s) to distinguish data points like these three samples from the corresponding typical

readers.

To tackle the first shortcoming, we exploited various up/down-sampling techniques; to

address the second shortcoming we applied data augmentation techniques. However, our

results showed that none of these techniques solved the problem. Therefore, we concluded that

collecting more data is key to tackling these two shortcomings as well as the third one.

To tackle the fourth issue, we see at least three ways to proceed (i) examining various feature

combinations using the different data sources simultaneously to form a more functional fea-

ture space; (ii) adopting more complex methods like [60, 61]; (iii) narrowing down the prob-

lem into a smaller set of problems and adopting one-class classification methods like [62]. We

postponed these items to our future studies.

Table 13. The comparison and validation of the MLP classifier on independent test data set.

Method Metrics

Precision Recall F1-score ROC-AUC

Previously obtained 0.913 ± 0.002 0.911 ± 0.002 0.912 ± 0.002 0.983 ± 0.000

Framework 1 0.859 0.812 0.800 0.786

Framework 2 0.878 ±0.112 0.883 ± 0.067 0.860 ± 0.095 0.767 ± 0.133

https://doi.org/10.1371/journal.pone.0292047.t013

Fig 5. The confusion matrices of the MLP classifier on an independent test set using the combination of demographic and fixation: (a) the first framework results,

(b) the best, and (c) the worst obtained results from the second framework.

https://doi.org/10.1371/journal.pone.0292047.g005
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Conclusion and future work

The central objective of the current research was (i) to address the shortcomings of previously

introduced data sets, (ii) to propose a robust AI-based solution to detect dyslexia at its early

stages, and (iii) to investigate our psycholinguistic knowledge with the performance of our

best AI model. To elaborate (i), the overwhelming majority of the previous data sets consisted

of a small number of participants and the distributions of the control group and participants

with dyslexia were synthetically balanced. More importantly, the age range of most of those

data sets is inappropriate for correcting developmental dyslexia. Therefore, for the first time

using the Russian language, we introduced a new eye movement data set consisting of 307

expert-annotated participant data, making it the largest data set in this category containing the

most precise eye-tracking data. Not only does it mimic the real-world imbalanced data distri-

butions of the normal and the dyslexic groups, but also it covers a broader and more appropri-

ate age range (first- to sixth-grade primary-school students). Our data set consists of three

sources of data 1) eye-fixation, 2) interest area, and 3) demographic, including the measure of

IQ. We also introduced a new class by separating conventional dyslexia into those at low risk

and those at high risk of dyslexia.

To achieve (ii), we investigated the performance of 12 classification approaches (from four

families of models) on the individual subsets of our data set and their combination. In each of

these cases, we fine-tuned the models using the BO method; after that, we trained and evalu-

ated each model using a ten-fold cross-validation procedure and reported the average and

standard deviation of the evaluation metrics. Our experiments showed that although no model

obtained completely satisfactory results for detecting dyslexia from each of our single data

sources, the CNN with F1-score = 0.637 and ROC AUC = 0.758 obtained the best, and rela-

tively satisfactory, results for predicting dyslexia from the fixation data. And GB obtained

nearly similar results on IA data. The combination of fixation and demographic data sources

led four models to obtain acceptable results. Concretely, MLP with average F1-score = 0.912

and ROC AUC = 0.983 is our proposed AI model, while RF, GB, and KNN are also reliable

alternatives. We observed more or less similar patterns and results on the combination of

interest area with demographic data.

As for the advantages and disadvantages of the applied approaches, although our data set is

the largest data set of its type, due to the limited training samples, we had to limit our experi-

ment to shallower neural networks that are less prone to overfitting compared to deeper net-

works. Despite this fact, the neural networks in our experiments led to slightly better results

than their competitors based on ensemble learning, interpreting their weights without exploit-

ing tools like Shapley values is quite difficult—if not impossible—while interpreting and visual-

izing decision trees of limited size is far simpler.

In pursuit of our third objective, we exploited the SHAP approach to determine the impor-

tance of the features of one of our best classifiers on the fixation-demographic data set. In a nut-

shell, we observed that IQ, age, and being male are the top three (probably confounding)

demographic features. Also, we observed the fixation along the y-axis is more important than

the x-axis, the entire eye fixation data incorporates only 6.8% of the SHAP value’s share in iden-

tifying dyslexia. Our findings are partially aligned with our psycholinguistic domain knowledge.

In addition to the standard evaluation procedure, we assessed our best classifier’s perfor-

mance on an independent test data set. Although the results of this test were acceptable, we

observed some fluctuations in our evaluation metrics. Our investigation to figure out the rea-

sons for these fluctuations led us to discover a three-year delay similarity between the eye

movements of the first-grade typically developing students and the fourth-grade students with

dyslexia.
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The current study is not without limitations and shortcomings. Our data suffers from a lack

of sufficient dyslexic samples for the first, second, and sixth grades. More samples are also

needed for the newly proposed “at risk of dyslexia” class. Considering the fact that the demo-

graphic features are more important than fixation, thus the current performance of our pro-

posed solution is conditioned on the demographic data, and as a matter of fact, we can not

expect a very outstanding generalization power of AI model(s) for the grades lack of sufficient

dyslexic samples or for the “at risk of dyslexia” class, unless we collect more data. Another

shortcoming is that our data set is language-specific, although it expands the linguistic range

of available datasets. Finally, our unreported experiments with clustering methods led to poor

results; analyzing and improving those results is a matter for further study.

We see the following directions for our future study:

1. collecting more data covering the grades with small dyslexic samples and DR class,

2. launching several clinical trials of our proposed solution to assess the quality of the pro-

posed solution rigorously and to collect more data;

3. adding new features or combining the existing ones as inputs to AI models so that we can

deduce the importance of demographic data and increase the impact of eye-movement

data,

4. applying more advanced classification methods, for instance, [60], or cluster analysis meth-

ods [63] by extending the concept of feature-rich networks to model the demographic-fixa-

tion data set, or applying reinforcement learning methods,

5. introducing a new data structure for handling the fixation data,

6. a deep investigation to determine whether the demographic features are confounders or

colliders,

7. a deeper investigation to justify why the fixation along the y-axis is more important than

the x-axis,

8. investigating the impact of demographic data and their combination with other publicly

available eye-movement data sets from the literature.
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