Table 3. Multi-Layer Perceptron (MLP) and convolutional neural network methods: Hyperparameters’ domain and the corresponding tuned values at the data sets under consideration.
method / data set | parameters | |||||
---|---|---|---|---|---|---|
N n | N e | lr | activation | optimiser | Drop | |
MLP | {2, 3, …, 200} | [10, 50000] | [1e-6, 1e-2] | {Identity, Logistic, Tanh, ReLu} | {LBFGS, SGD, ADAM}, | [0.1, 0.8] |
MLP at Demo | 173 | 31270 | - | Identity | LBFGS | - |
MLP at Fixation | 190 | 58325 | - | ReLu | LBFGS | - |
CNN at Fixation | 192 | 100 | 0.0001 | ReLu | ADAM | 0.1 |
MLP at Demo-Fixation | 158 | 49150 | - | Tanh | LBFGS | - |
CNN at Demo-Fixation | 192 | 200 | 0.0001 | ReLu | ADAM | 0.1 |
MLP at IA | 34 | 66253 | - | Logistic | LBFGS | |
MLP at Demo-IA | 50 | 13953 | - | Logistic | LBFGS |