Table 7. Logistic Regression (LR): Hyperparameters’ domain and the corresponding tuned values at the data sets under consideration.
method / data set | parameters | ||||
---|---|---|---|---|---|
intercept | C | N i | l1 ratio | penalty options | |
LR | {False, True} | [1e-1, 4] | {100, 101, …, 100000 } | [1e-1, 9e-1] | {none, l1, l2, Elastic Net} |
LR at Demo | True | 0.4078 | 29307 | 0.1445 | l2 |
LR at Fixation | True | 0.1302 | 27169 | 0.2779 | none |
LR Demo-Fixation | True | 0.1035 | 85814 | 0.8695 | l1 |
LR at IA | True | 3.123 | 83030 | 0.663 | l2 |
LR at Demo-IA | False | 0.317 | 90860 | 0.611 | none |