Table 8. Classification on demographic data set: The average and standard deviation of evaluation metrics over 10 different data splits.
Methods | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-score | ROC-AUC | |
Logistic Regression | 0.481 ± 0.019 | 0.691 ± 0.016 | 0.567 ± 0.018 | 0.619 ± 0.088 |
Gaussian Naive Bayes | 0.065 ± 0.012 | 0.235 ± 0.029 | 0.100 ± 0.014 | 0.633 ± 0.061 |
Support Vector | 0.482 ± 0.019 | 0.694 ± 0.014 | 0.569 ± 0.018 | 0.557 ± 0.102 |
K-Nearest Neighbour | 0.543 ± 0.092 | 0.665 ± 0.051 | 0.577 ± 0.046 | 0.586 ± 0.106 |
Random Forest | 0.480 ± 0.021 | 0.687 ± 0.028 | 0.565 ± 0.024 | 0.603 ± 0.103 |
Gradient Boosting | 0.547 ± 0.103 | 0.701 ± 0.033 | 0.595 ± 0.050 | 0.558 ± 0.142 |
AdaBoost | 0.523 ± 0.097 | 0.694 ± 0.031 | 0.582 ± 0.048 | 0.541 ± 0.109 |
Multi-Layer Perceptron | 0.543 ± 0.094 | 0.684 ± 0.031 | 0.582 ± 0.031 | 0.609 ± 0.071 |