Table 11. Classification on the combination of fixation report and demographic data sets: The average and standard deviation of evaluation metrics over 10 different data splits.
Methods | Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-score | ROC-AUC | |
Logistic Regression | 0.573 ± 0.003 | 0.658 ± 0.002 | 0.599 ± 0.003 | 0.713 0.003 |
Gaussian Naive Bayes | 0.724 ± 0.018 | 0.302 ± 0.001 | 0.162 ± 0.001 | 0.689 ± 0.003 |
Support Vector | 0.807 ± 0.003 | 0.807 ± 0.003 | 0.802 ± 0.003 | 0.872 ± 0.002 |
K-Nearest Neighbour | 0.903 ± 0.001 | 0.903 ± 0.001 | 0.903 ± 0.001 | 0.976 ± 0.001 |
Random Forest | 0.911 ± 0.002 | 0.910 ± 0.002 | 0.911 ± 0.002 | 0.981 ± 0.001 |
Gradient Boosting | 0.902 ± 0.002 | 0.901 ± 0.003 | 0.901 ± 0.003 | 0.978 ± 0.001 |
AdaBoost | 0.669 ± 0.007 | 0.684 ± 0.002 | 0.642 ± 0.003 | 0.724 ± 0.002 |
Multi-Layer Perceptron | 0.913 ± 0.002 | 0.911 ± 0.002 | 0.912 ± 0.002 | 0.983 ± 0.000 |
Convolutional neural networks | 0.657 ± 0.097 | 0.649 ± 0.096 | 0.641 ± 0.096 | 0.713 ± 0.111 |
Fused CNN-MLP | 0.685 ± 0.098 | 0.692 ± 0.094 | 0.675 ± 0.097 | 0.767 ± 0.098 |