
Generation of Whole-Body FDG Parametric Ki Images from Static 
PET Images Using Deep Learning

Tianshun Miao,
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Bo Zhou,
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Juan Liu,
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Xueqi Guo,
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Qiong Liu,
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Huidong Xie,
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Xiongchao Chen,
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Ming-Kai Chen,
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Jing Wu,
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Department of Physics, Beijing Normal University, Beijing 100875, China

Richard E. Carson,
Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Chi Liu*

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA

Abstract

FDG parametric Ki images show great advantage over static SUV images, due to the higher 

contrast and better accuracy in tracer uptake rate estimation. In this study, we explored the 
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feasibility of generating synthetic Ki images from static SUV ratio (SUVR) images using three 

configurations of U-Nets with different sets of input and output image patches, which were the 

U-Nets with single input and single output (SISO), multiple inputs and single output (MISO), 

and single input and multiple outputs (SIMO). SUVR images were generated by averaging three 

5-min dynamic SUV frames starting at 60 minutes post-injection, and then normalized by the 

mean SUV values in the blood pool. The corresponding ground truth Ki images were derived using 

Patlak graphical analysis with input functions from measurement of arterial blood samples. Even 

though the synthetic Ki values were not quantitatively accurate compared with ground truth, the 

linear regression analysis of joint histograms in the voxels of body regions showed that the mean 

R2 values were higher between U-Net prediction and ground truth (0.596, 0.580, 0.576 in SISO, 

MISO and SIMO), than that between SUVR and ground truth Ki (0.571). In terms of similarity 

metrics, the synthetic Ki images were closer to the ground truth Ki images (mean SSIM = 0.729, 

0.704, 0.704 in SISO, MISO and MISO) than the input SUVR images (mean SSIM = 0.691). 

Therefore, it is feasible to use deep learning networks to estimate surrogate map of parametric Ki 

images from static SUVR images.

Index Terms—

parametric Ki image; FDG PET; deep learning

I. Introduction
18F-fluorodeoxyglucose (FDG) PET imaging has been widely used for detection, staging, 

and therapeutic response assessment in oncology [1]. Tumors typically have higher activities 

of glucose metabolism, leading to higher uptake rates of glucose analogy FDG in tumors 

than in normal tissues [2–6]. For cancer diagnosis and staging, whole-body PET imaging is 

typically performed to scan from the base of the skull to mid-thigh, covering most relevant 

organs [6]. Combined with other imaging modalities, such as CT and MRI, FDG PET 

imaging help to localize suspected tumor regions and provide more functional information 

about tumors [7, 8].

Standard uptake value (SUV) is widely used in clinics for PET quantification and is 

generated from static FDG PET images, acquired typically at 60 minutes post tracer 

injection [6]. In comparison, parametric Ki value derived from dynamic PET frames is 

a potentially more quantitative measurement for the FDG metabolic rate than the semi-

quantitative measurement of SUV [9, 10]. The derivation of Ki value is based on the 

theory that the FDG uptake process can be approximated using two-tissue irreversible 

compartmental model [11, 12]. Through the acquisition of dynamic FDG PET images after 

tracer injection and the measurement of the arterial tracer activity as the input function, 

Ki value can be calculated using Patlak graphical analysis for each voxel [12, 13]. As a 

common physiological metric, the glucose metabolic rate can be converted from the Ki 

value with the value of the glucose concentration and a correction term of lumped constant 

[14, 15]. The two-tissue irreversible compartmental model is applicable for many tissue 

regions over the body, but is not valid in organ regions with dual blood supply, such 

as liver [16]. Kinetic parameters in these regions could be estimated by more complex 
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models. For example, based on the two-tissue compartmental model, the generalized Patlak 

analysis estimated Kloss in additional to Ki, with considerations of FDG dephosphorylation. 

The generalized Patlak analysis can reduce the estimation bias, but encounter higher noise 

than the standard linear Patlak analysis [17]. The voxel-wise model selection was also 

implemented to apply different compartmental models in whole-body PET images [18].

Both dynamic PET image acquisition and input function measurement are time-consuming 

and cause discomfort to the patients [19, 20]. To simplify the process, a dual-time-point Ki 

calculation method was implemented to reduce the number of frames in linear regression 

calculation of Patlak analysis [21]. Image-derived and population-based input functions 

can also replace the input function measurement through arterial blood sampling to reduce 

discomfort of patients [22, 23]. To further simplify the process, it would be appealing to 

generate Ki images from single timepoint static PET images.

Deep neural networks have become increasingly popular in medical imaging research, such 

as image denoising [24], segmentation [25], and detection and classification of tumors [26]. 

In tasks of denoising low dose PET images, 3D U-Net could achieve superior performance 

than conventional denoising techniques, such as Gaussian filter [27]. Generative adversarial 

networks (GAN) [28] are also widely used to denoise images of various modalities, such 

as low dose CT [29], PET [30] and fast MRI [31]. Various kinds of deep neural networks 

were also used in image synthesis across different imaging modalities [32]. For example, 

U-Net, which was originally designed for segmentation tasks of biomedical images, such as 

segmenting neuronal structures in microscopy images [33], was also developed to generate 

attenuation maps of PET images from input MRI images [34]. GANs have been used to 

train SPECT emission images to generate attenuation maps, which can help attenuation 

correction process without CT [35]. Deep learning networks have been used to predict PET 

images between different tracers. Based on the correlation between glucose metabolism and 

synaptic vesicle glycoprotein 2A (SV2A) in the brain, PET images of 11C-UCB-J could be 

generated from FDG PET images using 3D U-Net [36].

Inspired by the deep learning architecture used for image synthesis between different 

imaging modalities and tracers, we applied various configurations of 3D U-Nets to 

synthesize parametric Ki images from static FDG PET images in this study. One recent 

study used a 3D U-Net structures to generate dynamic PET frames from MR images, where 

the output dynamic PET frames were further converted to Ki images using Patlak analysis 

[37]. However, the process of generating Ki images was isolated from the 3D U-Net, and 

this work focused more on the correlation between MR and dynamic PET images instead 

of absolute quantification. Another study used 3D U-Net to generate parametric Ki images 

from static SUV images without input function measurement [38]. The SUV images in 

their study were acquired by a total-body PET/CT scanner, thus had higher counts than 

the whole-body PET images from typically clinical PET scanners using continuous bed 

motion (CBM) or step-and-shoot techniques [38]. A More recent study used an improved 

cycle-GAN, in additional to U-Net, to generate parametric Ki images from SUV images in 

the chest regions [39]. Our work implemented similar deep learning networks to generate 

parametric Ki images in the body trunk without input function measurement. However, we 

used SUV ratio (SUVR) images, instead of SUV images, as input to training the U-Nets, 
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based on the findings that static SUVR values are better correlated with parametric Ki values 

than SUV in tumor regions [40]. The static PET images in our study were acquired by a 

Siemens mCT PET/CT scanner using CBM acquisition and had lower counts than those 

from total-body scan with long axial FOV. In addition to the U-Net configuration used in 

[38], we explored U-Net configurations with different sets of input and output image patches 

to explore if additional information, such Vb values, helped to train U-Nets. Currently, the 

PET/CT scanners with CBM imaging techniques are still widely used in clinics and our 

deep learning workflow could be used to generate parametric Ki images from the static PET 

images acquired by these scanners.

II. Materials and methods

A. Data Generation

There were 25 whole-body FDG dynamic PET scan datasets included in this study. 

The subjects were scanned on a Siemens Biograph mCT scanner using the multi-pass 

CBM mode. After the subject’s FDG injection ranging from 256 to 373 MBq, a 6-

min single bed scan on the heart was performed to capture the initial phase of input 

function. Then the whole-body scanning process was performed with 19 CBM passes, 

with each pass taking 120 seconds for the initial 4 frames from 6 min to 15 min post 

tracer injection, and 300 seconds for the remaining frames after 15 min post tracer 

injection [21]. Images were reconstructed into dynamic frames each with the voxel size 

of 2.036mm×2.036mm×2.027mm. During the acquisition of dynamic frames, blood samples 

were collected through arterial cannulation after tracer injection and were centrifuged to 

obtain plasma. The plasma radioactivity of the samples was measured by gamma counters to 

obtain the arterial input function after decay correction [21].

The static SUV image of each subject was generated as the average of three dynamic SUV 

frames from 60 minutes to 75 minutes post tracer injection, with the frame index from 14 to 

16 [21]. Left ventricle blood pool regions were segmented manually in static SUV images 

for all subjects, and static SUV images were then normalized by the mean values in the 

blood pool regions to generate SUVR images. One U-Net configuration was implemented 

to read three input SUVR patches generated from individual dynamic SUV frames from 60 

minutes to 75 minutes, and then normalized by mean values of blood pool in the middle 

frames. Ground truth Ki images were generated with images of intercept Vb values from all 

dynamic SUV frames and plasma input functions of the tracer, using Patlak analysis with 

t* = 20 min [21, 41]. The output Ki images in the training dataset were preprocessed by 

multiplying the Ki values by 100, so that most output values of U-Nets were in the range 

of 0 to 10, to improve training efficiency. Both SUVR and Ki images were cropped to only 

include the subject’s body trunk with a matrix size of 160×288×256. We used patch-based 

approach in the training and random patches of smaller regions, with a matrix size of 

64×64×64, were created from both the SUVR and the Ki images.

B. U-Net Structures

In our work, three deep learning network configurations were implemented using the 

Pytorch library [42] based on the 3D U-Net structure [36]. All configurations read static 
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SUVR image patches as input and generate their corresponding Ki image patches as output. 

Fig. 1 shows the first two configurations of U-Nets with different numbers of input SUVR 

image patches and single output Ki image patch. The U-Net accepting single SUVR patch as 

input was denoted as single input and single output (SISO). The network with multiple input 

patches, specifically three SUVR patches corresponding to SUVR images of 60–65 min, 

65–70 min, and 70–75 min post-injection, was denoted as multiple inputs and single output 
(MISO). Three individual SUVR frames provide additional information about the change of 

tracer activities between 60 minutes and 75 minutes post-injection. We aim to explore if the 

additional dynamic information could further improve the Ki image prediction. Both U-Net 

configurations had contraction and expanding paths, with each path having 5 operational 

layers. Every layer consisted of two 3D convolutional and ReLU operations. The contraction 

path of the U-Nets encoded the input image patches as smaller features by connecting two 

consecutive layers with the max-pooling operation, while the expanding path decoded the 

features with up-sampling operations between two layers. The 3D convolutional operations 

used 3×3×3 kernels with 1 voxel padding. The first layer had 64 filters, representing 64 

features extracted from the input SUVR patches. The number of filters doubled in the next 

layer, hence there were 128, 256, 512 and 1024 filters in Layers 2, 3, 4 and 5. The output 

of each layer in the contraction path was concatenated to the layer at the same depth in the 

expanding path through skip connection. While patches of SUVR and Ki images were used 

in training process, entire SUVR images of cropped regions in the subjects’ whole body 

were used as the input of U-Nets in the testing process to generate Ki images.

The U-Net can be modified to generate multiple image patches as the multi-task outputs. 

In Patlak analysis, images of intercept Vb values were generated together with Ki images. 

In this study, the multi-task U-Net was implemented to incorporate patches of Vb values 

as the additional output to Ki patches to examine whether Vb values improved the 

training performance. The multi-task U-Net only accepted single input of SUVR patch, 

and thus was denoted as single input and multiple outputs (SIMO). This configuration 

had single contraction path and was divided into two expanding paths after the bottleneck 

layer between the contraction and the expanding paths. Like the previous two U-Net 

configurations, the SIMO U-Net used the skip connection to concatenate the output of each 

contraction path layer to the input of the corresponding expanding path layer.

C. U-Nets Training and Testing

The three configurations of U-Nets were all trained with a NVIDIA Quadro RTX 8000 GPU 

card. The 25 subjects were partitioned into 5 groups to perform 5-fold cross-validation. In 

each group, the SUVR and Ki images of 20 subjects were assigned to train the U-Nets, 

while the SUVR images of the remaining 5 subjects were used as the input of the U-Nets to 

generate corresponding synthetic Ki images to evaluate the training performance. For every 

subject, 400 patches of the SUVR and Ki images were randomly generated as the input and 

output of the U-Nets. All U-Nets were trained with a batch size of 14, and a total of 300 

epochs. The SISO and MISO U-Nets used the L1 loss of the scaled Ki patches as the cost 

function, while in the SIMO U-Net, the cost function was the sum of the L1 losses of scaled 

Ki and unscaled Vb patches. We did not scale Vb values in the cost function because most of 

the Vb values were already in the range of 0 to 10. The initial learning rate was set to 10−4, 
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with decay rate of 0.96 for every epoch. The U-Net is a fully convolutional neural network, 

including operations of 3D convolution, average pooling, up-sampling and skip connection. 

Therefore, the U-Net can accept input images with variable sizes, and the image size is only 

limited by the average pooling operations [33]. In the validation and testing process, the 

images of body trunks (matrix size of 160×288×256) were set as input of the U-Nets to 

generate corresponding images of Ki distribution over the body trunks. Due to the limitation 

of GPU memory, the U-Nets used CPU with a large system memory to generate whole-body 

Ki images.

D. Evaluation

The regions of representative organs, such as liver, heart, kidney, and aorta wall, were first 

evaluated visually in the coronal view of SUVR, synthetic and ground truth Ki images. 

Difference images in color map were generated between synthetic and ground truth Ki 

images, so the regions with high bias between two images can be observed. We also used 

2D joint histograms to compare the voxel values in two images. The joint histograms were 

plotted between synthetic and ground truth Ki images, after removing background voxels, 

and were compared with the joint histograms between input SUVR and ground truth Ki 

images.

Two image similarity metrics, structure similarity index (SSIM) and normalized mean 

square error (NMSE), were used in this study to compare synthetic and ground truth Ki 

images. The value of SSIM ranges from −1 to 1, and higher values indicate higher similarity 

between two images [43]. The NMSE is non-negative, and lower values suggest higher 

similarity. SSIM values were calculated between synthetic and ground truth Ki images and 

were compared with the values between the corresponding input SUVR and ground truth 

Ki images to examine whether synthetic Ki images generated from the U-Nets were more 

similar to ground truth Ki images than SUVR images. The NMSE values were calculated 

between synthetic images and ground truth Ki images, after removing background voxels, to 

compare the performance of different U-Nets. Because the definitions of SUVR and Ki are 

inherently different, thus it is not feasible to calculate the NMSE values between SUVR and 

Ki images as the reference for evaluation.

Lesion regions were segmented in SUV images by the researchers and verified by a nuclear 

physician. These regions were evaluated by comparing their mean voxel values in the 

synthetic and the ground truth Ki images. Among the 25 subjects in the study, 22 of 

them had hypermetabolic lesions in different parts of the body, such as lung and chest, as 

displayed in Fig. 7.

III. Results

The evaluation of Ki image generation is shown with three sample subjects in Figs. 3 to 5. In 

each figure, the coronal image slices were chosen to cover the relevant organs, such as liver, 

heart, and aorta wall. The aorta walls can be visualized more clearly in both synthetic and 

ground truth Ki images, than in SUVR images. All three networks showed similar difference 

images, though the myocardial biases appear to be the highest in MISO images.
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In each joint histogram, a regression line was derived between synthetic and ground truth 

Ki values. Certain body regions, including urinary bladder and injection intravenous lines, 

were excluded from the linear regression analysis. For each subject, we calculated R2 values 

in the linear regression analysis between the synthetic Ki values generated from various 

U-Nets and the ground truth Ki values. The R2 values of the prediction in the analysis of 

the SISO U-Net were higher than the R2 values of SUVR for most subjects (16 out of 25). 

In the analysis of the other two U-Net configurations, the R2 values of the prediction were 

generally lower than those of SISO. For the MISO U-Net, 14 out of 25 subjects had higher 

R2 values than the those of SUVR, while 13 out of 25 subjects had higher R2 values using 

the SIMO U-Net than those of SUVR.

Table 1 summarized the statistics of slopes, intercepts and R2 values in the linear regression 

analysis between the synthetic Ki values obtained from various U-Nets and between the 

input SUVR and the ground truth Ki values. The statistics were also listed for each 

validation group in the cross-validation process. The R2 values were labeled as bold if 

they were higher than the reference R2 values of SUVR. The mean R2 value of all subjects 

in SISO, MISO and SIMO were all slightly higher than that of SUVR. The statistics of 

each group generally agreed with the results of all subjects that the R2 values of U-Net 

predictions are generally higher than the R2 values of SUVR.

Table 2 summarized the statistics of the similarity metrics between synthetic Ki images 

generated from the U-Nets and ground truth Ki images, compared with the metrics between 

input SUVR and ground truth Ki images as the reference. The statistics of each validation 

group were also listed in the cross-validation process. The SSIM values between the 

synthetic and ground truth Ki images were labeled as bold if they were higher than the 

reference values. The lowest NMSE values were also labeled in bold among the U-Net 

predictions. The mean SSIM values between synthetic and ground truth Ki images were 

higher than that between input SUVR and ground truth Ki images. In the SISO U-Net, 20 

out of 25 subjects had higher SSIM scores between synthetic Ki and ground truth Ki images 

than the scores between input SUVR and ground truth Ki images, while 17 out of 25 in 

the MISO and 18 out of 25 in the SIMO groups had higher SSIM scores between synthetic 

and ground truth values. The mean NMSE score between synthetic Ki images from SISO, 

and ground truth Ki images was lower than those between the synthesis from the other two 

U-Nets and the ground truth. The Ki images generated from U-Nets were generally more 

similar to ground truth Ki images than the input SUVR images were, and the SISO U-Net 

outperformed the other two configurations in terms of SSIM and NMSE.

One-tailed pairwise t-tests were conducted to evaluate the difference of the SSIM and R2 

values from different U-Nets and the SUVR images. The P values of the t-tested showed that 

the values of the SSIM and R2 from SISO network are significantly larger than those from 

SUVR, while the values of SSIM and R2 from the other two networks showed no significant 

difference from the reference values of SUVR. Therefore, the t-test also indicated that the 

SISO U-Net outperformed the SUVR and other two U-Nets in terms of SSIM and R2.

The hyperparameters of the U-Nets were optimized using the training and validation 

datasets. To validate the effectiveness of the hyperparameters, we included a testing dataset 
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with 5 additional subjects to compare their synthetic and ground truth Ki images. The 

ground truth Ki images were generated using standard Patlak analysis with the image-

derived input functions, while the synthetic Ki images were generated using the U-Nets 

trained in Group 5 in the validation process.

As indicated in Table 4, the U-Nets generally outperformed the input SUVR images in terms 

of the SSIM and R2 values in the testing dataset, even though the R2 value of MISO was 

marginally smaller than that of the SUVR. Therefore, the hyperparameters optimized by the 

training and validation groups did not overfit and were effective to synthesize the Ki images 

from subjects outside training and validation datasets.

As shown in Fig. 6, the linear regression analysis of the distributions in lesion regions 

showed that the R2 values of three U-Nets were similar with the R2 value of SUVR. The R2 

value of MISO network was higher than the value of SUVR. Sample lesion regions, labeled 

by the green bounding boxes, were presented in the coronal image slices in Fig. 7. It can 

be observed that the synthetic Ki images derived from SISO are visually consistent with the 

ground truth Ki images and both Ki images have substantially higher lesion contrast than 

those of SUVR images.

IV. Discussion

In this study, we developed deep learning methods to generate Ki images from static SUV 

images using the U-Nets in three configurations. As shown in Figs. 3 to 5, the coronal 

slices of the synthetic Ki images were visually more consistent with the ground truth Ki 

slices than the SUVR slices. The aorta walls had higher contrast in both the synthetic and 

the ground truth Ki slices, than in the SUVR slices. The synthetic Ki images generated 

from all three U-Nets were visually smoother than ground truth Ki images, likely because 

SUVR images have lower noise and the subsequent Ki images generated from SUVR images 

could inherit such low noise level. The difference images showed that the bias between 

synthetic and ground truth Ki images were small in most regions. Even though higher biases 

were observed in the regions with high tracer uptake, such as heart and the kidneys, the 

normalized differences were small.

The linear regression analysis of mean Ki and SUVR values in the body and lesion regions 

indicated that the synthetic Ki values generated from the U-Nets could correlate slightly 

better with ground truth Ki values than input SUVR values, in terms of higher R2 values, 

but such differences are not significant. In addition to the linear regression analysis, the 

comparison of the SSIM values showed that synthetic Ki images were more consistent 

with ground truth Ki images than input SUVR images. The statistics of each group in the 

cross-validation process agreed with the statistics from all subjects. Even though in Group 2, 

the mean R2 value of SISO is lower than that of SUVR, SISO network still performed better 

than SUVR in terms of R2 value from all subjects. The statistics in the testing dataset also 

agree with those in the validation dataset that the U-Nets outperformed the SUVR in terms 

of mean SSIM and R2 values.
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Although three configurations were all based on the U-Net architecture, the SISO U-Net 

generally outperformed the other two configurations. Visually, the synthetic Ki images 

generated from SISO were less noisy than the images generated from the other two 

networks, as shown from Fig. 3 to Fig. 5. In the linear regression analysis of the joint 

histograms, the mean R2 value of the prediction in SISO was higher than those of the two 

other configurations. The mean SSIM value in SISO U-Net was also the highest. However, 

in the evaluation of the lesion regions, the R2 values of U-Net predictions did not have 

clear differences among all three configurations. The MISO network incorporated more 

information of the input static SUVR frame than the SISO network. However, individual 

input frame of MISO was noisier than the single input frame of SISO, which may negatively 

affect the training performance of MISO network. Therefore, our data suggested that 

incorporating additional input SUVR or output images of Vb values did not benefit the 

training performance of U-Nets.

Our work demonstrated that it is feasible to generate parametric Ki images from static 

SUVR images. The synthetic Ki images generated from various configurations of U-Nets 

were generally more consistent with ground truth Ki images than input SUVR images, 

with stronger linear correlations and higher SSIM values. However, the improvement of 

correlations from the U-Nets over those of SUVR was small and there were still differences 

between synthetic and ground truth Ki images. As shown in joint histogram analysis from 

Fig.3 to Fig. 5, the regression slopes between the synthetic and ground truth Ki values 

were not close to 1 for many subjects. The normalized standard deviation values in Table 

1 also showed difference was not minor between the regression slopes across all subjects. 

Therefore, the synthetic Ki values were not quantitatively accurate compared with ground 

truth Ki values. In this work, we chose SUVR images instead of SUV images as the 

network input with the considerations explained in the Appendix that Ki is better correlated 

with SUVR as compared to SUV. Since input functions vary with subjects, even though 

population-based input functions can be used [22], values of Θ(T) in the Appendix differ 

among subjects due to variations of static image acquisition times and input functions. 

Therefore, the relationship between SUVR and Ki values also varies, and we hope our 

proposed deep learning methods could recover such underlying relationship. The patient’s 

motion might also affect the Ki image quality. For example, in Fig. 3, the contour of 

myocardium is smaller in three synthetic Ki images than in the ground-truth image, probably 

because this patient’s motion across dynamic frames produced more blurring effect than 

the static images. In the future, the information of patient’s motion, acquisition times and 

input functions could be incorporated into deep learning networks to further improve the 

performance in generating parametric Ki images.

As mentioned in the Introduction, the Ki estimation using standard Patlak analysis is not 

valid for the tissue regions with double blood supply and FDG dephosphorylation, such as 

in liver [16]. In these regions, the two-tissue reversible compartmental model is a better 

tool to estimate the parametric values [17]. And in vascular, lung and skin regions, zero 

or one compartmental model is favored to reduce the artifacts in the Ki value estimation 

[18]. Therefore, the bias of Ki estimation from the standard Patlak analysis could also 

contribute to the errors in our Ki estimation based on the SUVR values. The generalized 

Patlak analysis could help to reduce the bias of Ki estimation in the regions of non-negligible 
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FDG dephosphorylation. But it could introduce higher noise level than the standard Patlak 

analysis [17]. Therefore, there are trade-off between noise and bias to select different 

compartmental models to estimate parametric values.

V. Conclusion

An image synthesis workflow, including three deep neural network configurations based on 

the 3D U-Net architecture, was developed to generate parametric Ki images from the static 

SUVR images, which can serve as the surrogate to the Ki estimation from the standard 

Patlak analysis. This workflow reduced the scan time and eliminated the need of input 

function measurements in the conventional Ki image generation using dynamic PET data 

and Patlak graphical analysis.
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Appendix

This section summarized the finding of J. van den Hoff, et al., regarding the correlation 

between the SUVR and Ki values [40]. Patlak analysis was the conventional method to 

generate Ki values from dynamic data [13], based on the equation of

Ct(t)
Ca(t) = Ki ×

∫0
tCa(s)ds
Ca(t) + V b

where Ki = K1k3
k2k3

, representing the tracer net influx rate constant in tissue [11], and Ct(t) and 

Ca(t) were the tracer concentrations in tissue and plasma at time t post-injection [12]. The 

term on the left side of the equation could be defined as normalized SUV ratio (SUVR) 

value. The value of Ki can be well correlated to the value of SUVR for a wide range 

of subjects, with the assumptions that 1) the plasma input functions of different subjects 

had the similar shapes, which can be expressed as Ca(t) ≈ N × ba(t); 2) all static SUVR 

frames were acquired at the approximately the same time post tracer injection; and 3) 
values of Vb were small compared with SUVR values [40]. Then the correlation can be 

expressed as SUVR T = Ki × ∫0
T ba s ds
ba T

. With the fixed time point T, the term Θ T = ∫0
T ba s ds
ba T

is a constant. Therefore, SUVR is linearly proportional to Ki when the assumptions are met 

and is preferred over SUV as network input in our study to generate Ki.

In clinical scenarios, plasma input functions vary with subjects, and values of Θ(T) differ 

accordingly, which makes the relationship among Ki, Vb and SUVR vary among subjects. 

Acquisition times of the static SUV frames also differ with subjects, in the scale of minutes, 

which makes values of Θ(T) different across subjects. Values of Vb generated by Patlak 

analysis are also not negligible compared with SUVR values. Thus, the variations in 

Miao et al. Page 10

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquisition times and Vb values could contribute to the errors in deriving Ki directly from 

SUVR and more training data could further improve the network performance.
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Fig. 1. 
The SISO and MISO U-Nets with 5 operational layers to generate output Ki images from 

SUVR images. The SISO U-Net reads one SUVR patch as input, while the MISO U-Net has 

the input of three.
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Fig. 2. 
The single input and multiple outputs (SIMO) U-Net with 5 operational layers to generate 

output Ki and Vb images from SUVR images. The contraction path is shared by both 

outputs, with the expanding paths split for the outputs.
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Fig. 3. 
Evaluation analysis of sample subject #1 including the synthetic and reference Ki images, 

corresponding difference images, SUVR input image, and the joint histograms. In each 

joint histogram, the regression line was represented by the red straight line, with labels of 

regression slope, intercept and R2 value.
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Fig. 4. 
Evaluation analysis of sample subject #2 including the synthetic and reference Ki images, 

corresponding difference images, SUVR input image, and the joint histograms. In each 

joint histogram, the regression line was represented by the red straight line, with labels of 

regression slope, intercept and R2 value.

Miao et al. Page 17

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Evaluation analysis of sample subject #3 including the synthetic and reference Ki images, 

corresponding difference images, SUVR input image, and the joint histograms. In each 

joint histogram, the regression line was represented by the red straight line, with labels of 

regression slope, intercept and R2 value.
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Fig. 6. 
The distributions of the lesion ROI mean values in SUVR (a), synthetic Ki, and ground truth 

Ki images. The synthetic Ki values were generated from three configurations of U-Nets, 

which were SISO (b), MISO (c) and SIMO (d).
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Fig. 7. 
The coronal slices of two sample subject’s SUVR, ground truth Ki, synthetic Ki from SISO, 

and CT images, with green bounding boxes representing the lesion regions.
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TABLE I

Statistics of Slope, Intercept and R2 in the Linear Regression Analysis in Joint Histograms between Input 

SUVR, Synthetic Ki and Ground truth Ki Images

SUVR SISO MISO SIMO

Slope Intercept R 2 Slope Intercept R 2 Slope Intercept R 2 Slope Intercept R 2

Total

Mean 1.218 0.155 0.571 0.714 0.0259 0.596 0.740 0.0366 0.580 0.747 0.0357 0.576

Normalized 
Standard 
Deviation

0.235 0.215 0.211 0.366 1.769 0.227 0.423 0.676 0.216 0.367 0.6208 0.239

Group 
1

Mean 1.120 0.131 0.606 0.871 −0.014 0.666 0.891 0.022 0.646 0.880 0.023 0.638

Normalized 
Standard 
Deviation

0.401 0.083 0.104 0.609 −6.760 0.097 0.656 1.171 0.209 0.632 0.954 0.198

Group 
2

Mean 1.393 0.180 0.562 0.769 0.031 0.555 0.842 0.030 0.577 0.839 0.030 0.566

Normalized 
Standard 
Deviation

0.048 0.214 0.263 0.177 0.879 0.281 0.375 1.236 0.199 0.223 1.014 0.283

Group 
3

Mean 1.330 0.172 0.544 0.660 0.046 0.571 0.661 0.049 0.552 0.677 0.052 0.547

Normalized 
Standard 
Deviation

0.158 0.159 0.207 0.128 0.145 0.179 0.160 0.182 0.184 0.138 0.171 0.181

Group 
4

Mean 0.944 0.142 0.607 0.576 0.035 0.642 0.544 0.047 0.594 0.595 0.039 0.622

Normalized 
Standard 
Deviation

0.242 0.030 0.135 0.039 0.008 0.132 0.107 0.018 0.126 0.058 0.016 0.148

Group 
5

Mean 1.306 0.150 0.538 0.695 0.031 0.548 0.762 0.035 0.53 0.745 0.034 0.509

Normalized 
Standard 
Deviation

0.074 0.212 0.261 0.253 0.751 0.273 0.192 0.616 0.274 0.190 60.646 0.284
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TABLE II

Similarity Metrics of SSIM and NMSE between Input SUVR, Synthetic Ki and Ground truth Ki Images

SUVR SISO MISO SIMO

SSIM NMSE SSIM NMSE SSIM NMSE SSIM NMSE

Total
Mean 0.691 0.729 0.139 0.704 0.165 0.704 0.153

Normalized Std 0.103 0.087 0.580 0.010 0.728 0.010 0.626

Group 1
Mean 0.653 0.675 0.014 0.643 0.016 0.638 0.016

Normalized Std 0.147 0.072 0.412 0.111 0.552 0.110 0.511

Group 2
Mean 0.727 0.771 0.008 0.759 0.010 0.757 0.009

Normalized Std 0.068 0.056 0.317 0.058 0.748 0.062 0.450

Group 3
Mean 0.672 0.735 0.007 0.712 0.008 0.713 0.008

Normalized Std 0.085 0.080 0.218 0.088 0.245 0.087 0.203

Group 4
Mean 0.717 0.713 0.016 0.693 0.020 0.695 0.016

Normalized Std 0.049 0.054 0.647 0.054 0.733 0.050 0.643

Group 5
Mean 0.689 0.750 0.007 0.713 0.009 0.718 0.009

Normalized Std 0.142 0.121 0.292 0.130 0.341 0.124 0.271
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TABLE III

Significance Test Results (P-value) of R2 and SSIM Values between Input SUVR, Synthetic Ki and Ground 

truth Ki Images

SISO and SUVR MISO and SUVR SIMO and SUVR

SSIM 0.0014 0.1485 0.1266

R 2 0.0229 0.3360 0.4137
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TABLE IV

Statistics of SSIM and R2 Between the Synthetic and ground truth images in Testing Dataset

SUVR SISO MISO SIMO

SSIM
Mean 0.739 0.755 0.740 0.742

Normalized Std 0.059 0.072 0.076 0.074

R 2 
Mean 0.696 0.731 0.688 0.770

Normalized Std 0.133 0.103 0.083 0.080
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