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Abstract

Background and Purpose.—The manual segmentation of organ structures in radiation
oncology treatment planning is a time-consuming and highly skilled task, particularly when
treating rare tumors like sacral chordomas. This study evaluates the performance of automated
deep learning (DL) models in accurately segmenting the gross tumor volume (GTV) and
surrounding muscle structures of sacral chordomas.

Materials and Methods.—An expert radiation oncologist contoured five muscle structures
(Gluteus Maximus, Gluteus Medius, Gluteus Minimus, Paraspinal, Piriformis) and sacral
chordoma GTV on CT images from 48 patients. We trained six DL auto-segmentation models
based on 3D U-Net and Residual 3D U-Net architectures. We then implemented an average

and an optimally weighted average ensemble to improve prediction performance. We evaluated
algorithms with the average and standard deviation of the Volumetric Dice Similarity Coefficient
(VDSC), Surface Dice Similarity Coefficient (SDSC) with 2 and 3 mm thresholds, and Average
Symmetric Surface Distance (ASSD). One independent expert radiation oncologist assessed the
clinical viability of the DL contours and determined the necessary amount of editing before they
could be used in clinical practice.

Results.—Quantitatively, the ensembles performed the best across all structures. The optimal
ensemble (VDSC, ASSD) was (85.5+6.4, 2.6£0.8; GTV), (94.4+1.5, 1.0+0.4; Gluteus Maximus),
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(92.6£0.9, 0.9£0.1; Gluteus Medius), (85.0 £ 2.7, 1.1 + 0.3; Gluteus Minimus), (92.1 +1.5,0.8 £
0.2; Paraspinal), and (78.3+5.7, 1.5+0.6; Piriformis). The qualitative evaluation suggested that the
best model could reduce the total muscle and tumor delineation time to a 19-minute average.

Conclusion.—Our methodology produces expert-level muscle and sacral chordoma tumor
segmentation using DL and ensemble modeling. It can substantially augment the streamlining

and accuracy of treatment planning and represents a critical step towards automated delineation of
the Clinical Target Volume (CTV) in sarcoma and other disease sites.
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Sarcoma; Deep Learning; Segmentation; Ensemble Modeling

1. Introduction

A sarcoma is a rare and heterogeneous group of malignant tumors that arises from
mesenchymal tissue, including soft tissue and bone. Among these tumors, chordomas are

a particularly rare form of spine sarcoma that often involves the sacrum. Although surgery

is considered the mainstay of treatment, patients with locally advanced diseases often cannot
be easily resected without severe morbidity. As a result, highdose definitive radiation has
emerged as a treatment option for these patients, with comparable local control rates and
acceptable toxicity [1].

Target delineation is a critical task in the radiotherapy workflow that can considerably
impact the overall treatment outcome, particularly given the increasing dose conformality
offered by modern radiotherapy techniques. Accurate delineation is associated with better
local tumor control and reduced radiation dose to non-target tissues leading to an improved
therapeutic ratio [2].

The delineation of the gross tumor volume (GTV) and clinical target volume (CTV) for
sarcomas can be time-consuming, given the often large size of these tumors as well as their
propensity to spread along muscle fibers while respecting other anatomic barriers (such as
bone or fascial planes). While prior studies have shown reasonable inter-observer variability
in the delineation of extremity sarcomas [3], sacral chordomas may represent a particularly
challenging contouring task given their anatomic location (with multiple adjacent muscle
compartments extending in oblique directions) and propensity to grow to large sizes before
the initial diagnosis.

Artificial Intelligence (Al) in healthcare is a driving force for improving patient care and
efficiency [4, 5, 6].

Al-assisted segmentation of the GTV and neighboring muscles could substantially reduce
the time required to contour these patients and lay the foundations for eventual semi-
automatic or fully automatic CTV delineation. However, there is a lack of studies on soft
tissue segmentation. Although DL techniques have demonstrated great potential for medical
image segmentation, their evaluation is often not pushed enough to enable a translation to
clinical practice.
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This work investigates these bottlenecks and uses machine learning and DL methodologies
to automatically segment sacral chordoma GTV and surrounding muscle structures that
serve as tumor spread pathways.

2. Materials and Methods

The contributions of this study are highlighted in the first part of this section. We then
describe the critical steps involved in processing patient CT scan data for model training
and provide details of the DL architectures and training mechanisms. We also explain how
ensemble methods were utilized to improve the performance of individual models. Finally,
we describe the qualitative assessment of the automated contours.

2.1. Contributions

Our contributions are the following:

. We train a strong and diverse pool of Convolutional-Neural-Network-based
segmentation models using different 3D U-Net architectures, loss functions, and
hyperparameters that can simultaneously segment the six different structures
of interest with high accuracy. To the best of our knowledge, this is the first
time such models are trained on these specific muscle compartments and GTV,
which paves the way toward an automated workflow for future CTV delineation.
Segmenting patients with a tumor represents the additional challenge of higher
muscle shape and texture variability than more traditional segmentation studies
because large tumors can lead to substantial deformations of the surrounding
healthy tissue anatomy.

. We investigate two methodologies to ensemble the pool of standalone models
into a superior consensus model that can outperform any individual ensemble
members: (i) an average of standalone models and (ii) an optimally weighted
average of these models.

. We evaluate our models quantitatively with the Volumetric Dice Similarity
Coefficient, the Surface Dice Similarity Coefficient with tolerance 2 and 3 mm,
and the Average Symmetric Surface Distance.

. We provide a qualitative evaluation of our best standalone model and our optimal
ensemble contour predictions based on the assessment of an independent expert
radiation oncologist. In particular, we provide the estimated amount of time
required to edit our automated contours before clinical use and describe the
extent and location of the delineation discrepancies.

2.2. Dataset

2.2.1. Patient Selection—48 consecutive patients with sacral chordomas treated with
high-dose, definitive proton beam radiation without surgery between 1999 and 2019

who had original simulation CT scans available were retrospectively identified from the
Anonymized Database. The CT scans were acquired on GE scanners following the standard
protocol for radiotherapy treatment planning in use when the patient was simulated, using
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140 kVp for all scans. The image acquisition was performed in prone (n=45) and supine
(n=3) positions. The initial CT image resolutions are listed in Table 2. The average patient
age was 64, the median was 65, and the range was 31 to 90 years old. 20 patients were
females.

2.2.2. Expert Delineation of Muscles and Sarcoma GTV—The gross tumor
volume contours from each patient’s original treatment were extracted and exported into
MIM Maestro (MIM Software Inc, Ohio, USA, version 7.0.5) and reviewed by a radiation
oncologist. These GTV contours were delineated by six different radiation oncologists over
20 years, with expertise ranging from 5 to 20 years (3 with 20+ years of experience, 2

with 10-15 years, and 1 with 5), and were peer-reviewed to ensure discrepancies were
corrected before finalizing the treatment plans. Adjacent muscles of interest, including

the gluteus maximus, gluteus medius, gluteus minimus, paraspinal, and piriformis, were
manually contoured again for this study by a single radiation oncologist, with left and right
muscles recorded as separate contours. Areas inside the body yet outside the muscles of
interest and sarcoma GTV were also identified. Similarly, areas within the CT field of view
but outside of the patient’s body were identified separately.

5 patients were set aside owing to radiographic obliteration of the piriformis muscles

by the primary tumor, meaning these were completely infiltrated by the tumor and thus

not distinguishable. However, because these patients still have contours for other muscles
(though often still substantially deformed by the GTV), we include them as an outlier test
set to evaluate our models’ generalizability to extreme cases. The average GTV volume for
in-sample data is 378 cm? with a standard deviation of 388 cm3. In the outlier test set, the
GTV volume average is 1622 cm3, with a standard deviation of 421 cm3. We do not report
results on the piriformis muscle group for the outlier test set as there is no ground truth. If
one of our models still classifies a few voxels as piriformis during evaluation, we consider
such predictions misclassified.

In the end, we randomly split 30 patients in the training set, 5 in the validation set, and 8 in
the testing set after putting aside the 5 patients from the outlier testing set.

2.2.3. CT Image Pre-processing—The original CT images comprised samples with
different element spacing and image orientation with respect to patient anatomy. To
standardize the data into a uniform format suitable for DL networks, we fixed a specific
image orientation, aligned all cases, and re-sampled all 3D images to the same element
spacing of 2 x 2 x 2 mm, to ensure sufficient resolution for future treatment planning and
faster downstream DL model training. We then cropped the images to restrict the field of
interest as the smallest bounding box that contained all structures segmented in all patients.
We also padded the images on all 3 axes to obtain a common final image dimension of 182
x 157 x 216 voxels. We then re-scaled each CT image so that the overall voxel values of
each patient have zero mean and unit variance. Finally, due to the symmetric structure of all
contoured muscles, we merged the left and right contours of the same muscle type into a
single structure which helped the models capture muscle geometry better (see an illustration
in Figure 1).
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Appendix A provides more detailed explanations of the pre-processing steps.

2.3. Deep Learning Architectures

Recently, DL techniques using neural networks, particularly convolutional neural networks
(CNNs), have demonstrated remarkable potential in medical image processing and
automated segmentation of normal anatomy [5, 7, 8, 9, 10] and gross tumor volume (GTV)
[10, 11, 12, 13, 14], with high accuracy and reduced processing time, outperforming the
current atlas-based segmentation methods [15, 16].

2.3.1. 3D U-Net—We based our CNNs used for the DL segmentation tasks on the 3D
U-Net architecture [17]. We trained both standard 3D U-Nets and Residual 3D U-Nets [18].
The network’s input is a three-dimensional CT volume of size (182 x 157 x 216) and the
ground truth labels of the GTV and muscles. The output is a four-dimensional segmentation
mask of size 8 x 182 x 157 x 216 where 8 corresponds to the number of anatomical
structures concurrently segmented (GTV, 5 muscle pairs, regions of no interest in the body,
and region outside of the body). The 3D U-Net network is divided into 4 downsampling
blocks (encoder), 4 upsampling blocks (decoder), and a middle part. All parts of the network
use blocks of Group Normalization, 3D convolutions, and rectified linear units (ReLU).

We used max-pooling for downsampling and interpolation for upsampling. The difference
between the 3D U-Net and Residual 3D U-Net lies in the basic block scheme: the Residual
3D U-Net has 5 block levels in the encoder-decoder path instead of 4, uses summation
joining instead of concatenation joining, and transposed convolutions for upsampling. More
details on the architectures can be found in Appendix B. We trained the two network
architectures with different loss functions, including Dice loss, standard cross-entropy loss,
and class-weighted cross-entropy loss.

We adopted a final softmax activation function with cross-entropy-based training losses to
produce the segmentation mask of probabilities for each voxel and classification class. We
used a final sigmoid activation function when training with a Dice Loss.

Finally, we converted the output probabilities into a discrete label mask to visualize
predictions and compute metrics by choosing the class with the highest probability for each
voxel.

2.3.2. Training and Validation Mechanism—\W trained the models on the 30 image
sequences from the training set and validated the performance with the 5 image sequences

in the validation set using the Intersection over Union score averaged over all classes (see
definition in section (2.5)). For each one of the six (loss, architecture) combinations, we
executed a hyperparameter search on the Adam optimizer [19] learning rate and learning rate
scheduler, weight decay (L2 weight regularization), image patch shape, and stride shape to
obtain the best model performance. For the case of the weighted cross-entropy loss, we also
tuned the weights given to each class. The details about the hyperparameter search are given
in Appendix B.

During training, we further regularized the models by 7 consecutive data augmentation
transformations with on-the-fly random flips on the horizontal and vertical axis, random
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rotations of 90 degrees, random rotations in the ZY axis, elastic deformation, random
contrast changes, additive Gaussian noise, and additive Poisson noise. The ZY rotations
were normally distributed with an angle spectrum of 15 degrees in each direction.

Based on validation performance, the best hyperparameter combination was an initial Adam
learning rate of 1074, decayed by a factor of 0.7 every 15 epochs, a weight decay of 1075, a
patch shape of 128 x 128 x 128 with a stride shape of 16 x 16 x 32 which gave 60 patches
per image. For the weighted cross-entropy loss, the best weights were 0.25 for GTV, 0.1 for
G. Maximus, G. Medius, and G. Minimus, 0.15 for Paraspinal, 0.2 for Piriformis, 0.05 for
Out-of-the-body regions and In-the-body regions of no interest.

For each (loss, architecture) combination, we chose the model checkpoint with the lowest
validation loss to be evaluated on the test set. We stopped the training when there was

no improvement in the validation loss for more than 10 epochs, which typically happened
after 40-60 epochs. One epoch represents one iteration when the entire training set passes
through the neural network. The training was generally completed in two days, using a GPU
TeslaV100 and 4 CPU cores.

We obtained six trained models that we included in the pool of base learners for ensemble
modeling (see the summary in Figure 2).

2.3.3. Testing Protocol—At test time, we used the same patch and stride shapes as in
training time and mirror-padded the raw data patches by 4 pixels on each axis for sharper
prediction near the volume boundaries. We averaged the overlapping patch predictions to
avoid checkerboard artifacts in the output prediction masks. We tested the standalone models
and the ensemble models in the test set of 8 image sequences and the additional outlier

test set of 5 image sequences from patients with very large tumors. The trained models
performed the segmentation task in under one minute for each patient.

2.4. Ensemble Modeling

Ensemble methods are a popular technique in machine learning that aims to improve
prediction accuracy and robustness by leveraging the diversity of individual models to form
a consensus. Individual models are susceptible to data uncertainty, training randomness, and
overfitting. However, by combining their knowledge and insights, an ensemble can generate
a final consensus that benefits from the “wisdom of the crowd” [20, 21].

In this study, we investigate two stacking [22] ensemble techniques for muscle and sarcoma
segmentation: voxel-wise average and optimally weighted average of a specific pool of 3D
base learners. We aim to determine if these techniques can lead to superior performance
compared to using a single model.

2.4.1. Average Ensemble—For the Average Ensemble, we combined the six top-
performing models described in Section 2.3.2 using a simple average of their probability
predictions voxel-wise. The final class probabilities of each voxel are the average of the
probabilities given by each model. This methodology requires no additional training and has

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Boussioux et al. Page 7

been shown to achieve superior performance in other healthcare segmentation tasks [23, 24,
25].

2.4.2. Optimal Ensemble—We also developed an optimally-weighted combination of
the models that we call Optimal Ensembleto further leverage their strengths. Instead of
weighting each model equally, we allowed the weights to increase or decrease, including
the possibility of setting a model’s weight to 0. The optimal set of weights {w, w;, -+, w;}
associated with each model was defined as the solution that maximizes the Intersection
over Union (see metric definition in Section 2.5) for all eight segmented structures on the
validation set:

8 |X; N Xinssmbls

{wi, w;, -, we}: =arg max IoU ,eme = arg max . - , with
wy, -, We Wy, *++, We i=1 |XeUXensemble (1)
Zk w,=1 Zk w,=1
6
Xensemble = 2 kamodelk’ (2)
k=1

where X: represents the expert manual ground truth of the structure i, X,... represents the
automated segmentation of model k, and | - | corresponds to the cardinality of the set, i.e., the
number of voxels equal to 1 in our binary mask scenario.

Contrary to standard weighted average ensembles in machine learning that can be obtained
with linear regression (e.g., on a tabular task), this 3-dimensional objective function (1) is
not convex. Therefore, we optimized the models’ weights using gradient ascent with the
Adam optimizer with a learning rate of 1073 until reaching convergence with a tolerance of
1074,

To train the Optimal Ensemble, we optimized the weights using the models’ predictions
made on the validation set.

After training ended, 4 models had a non-zero weight: the 3D U-Nets trained with Dice
loss (w, = 0.2) and Cross-Entropy loss (w, = 0.2), and the Residual 3D U-Nets trained with
Dice loss (w, = 0.28) and Weighted Cross-Entropy loss (ws = 0.32) (see pipeline summary in
Figure 2).

2.5. Metrics

To assess the accuracy of auto-delineation with respect to the ground-truth contours during
validation, we used the Intersection over Union (Jaccard score). At test time, we computed
four metrics and report their average and standard deviation across the testing sets. We
used the Volumetric Dice Similarity Coefficient, the Surface Dice Similarity Coefficient
with tolerances of 2 mm and 3 mm, and the Average Symmetric Surface Distance. We
chose these four test metrics to provide insights into how well segmentations overlap, how
much the structure borders should be corrected, and how far the contour predictions are
from the ground truth. We utilized distinct validation and test metrics to make the testing
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process more robust and check models generalize well, not because they are overfitted to the
validation metric.

The Intersection over Union (1oU), also called the Jaccard index, is a similarity measure
between a finite number of sets. For two segmentation masks X, (expert manual ground
truth) and X, (automated segmentation), it can be defined as follows:

[X.nX,| _ [X.n X,
[X.Uu X ™ X ]+ [X]-[X.nX]"

J(Xo Xo) =

As mentioned in section 2.3.2, we used the loU score to compare the models during
validation and determine when to stop the training.

The Wlumetric Dice Similarity Coefficient (VDSC) is a voxel-wise measure of the overlap
of two image regions. It normalizes the overlap size to the average size of the two structures:

[X. N X,

VDSC(X,, X,) =2. 75—
(Xe X) =2 751X

where X, represents the expert manual ground truth and X, represents the automated
segmentation. The VDSC ranges from 0 to 1, where 1 indicates perfect performance. A
larger VDSC corresponds to a higher degree of coincidence between the auto-segmented and
ground truth volumes.

The Surface Dice Similarity Coefficient (SDSC) [26] calculates the distance between two
surfaces relative to a given tolerance , providing a measure of agreement between the
borders of manually and automatically defined structures:

|S. N B,|+|S,n B

SDSC(Ses Sev B B) = =535

where S., .S, are surface areas of structures e (expert manual ground truth) and a (automated
segmentation). B, (resp. B,) is the surface area of the part of .S, (resp. .S,) such that any voxel
in this part is no further than = from S, (resp. S.). The SDSC ranges from 0 to 1, representing
the fraction of the structure border that must be manually corrected because it deviates from
the ground truth by more than the acceptable distance defined by the tolerance z.

In this study, we report results for the 2 mm and 3 mm distance tolerances z.

We calculated the shortest distances between structures in the 3-dimensional space.
Specifically, the 2 mm SDSC considers a predicted contour that is one perpendicular pixel
apart from the ground truth as correct, while the 3 mm SDSC considers a predicted contour
that is one diagonal pixel apart (i.e., 2,/2 ~ 2.83 mm) from the ground truth as correct.

The selection of 2 mm and 3 mm thresholds was driven by computational and clinical
considerations. Since we had previously chosen a 2 mm image resolution to ensure adequate
resolution for future treatment planning and faster, more stable deep learning model training,
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evaluating for a finer threshold was not appropriate. Conversely, selecting a threshold greater
than 3 mm was deemed too clinically imprecise for accurate radiotherapy planning.

The Average Symmetric Surface Distance (ASSD) [27] is the average of all the shortest
distances from points on the boundary of the machine segmented region to the boundary of
the ground truth, and vice versa. The ASSD, therefore, complements the previous metrics
by taking voxel localization into consideration. Smaller values represent better segmentation
accuracy.

2.6. Qualitative assessment of the segmentation

A separate expert radiation oncologist assessed the average amount of editing time necessary
for clinical use of the ground truth, the best standalone model with respect to VDSC
(Residual 3D U-Net Dice), and optimal ensemble contours, for five random patients from
the test set. We previously anonymized each contour to avoid a biased evaluation. The
radiation oncologist examined all muscle and GTV contours on every single slice of each
patient to make their evaluation. We also asked this expert radiation oncologist to determine
the typical faults made by the models for every structure segmentation.

3. Results

3.1. Quantitative assessment

The performance of the two ensemble models and six base learners is shown in Table 1a.
We report the average, standard deviation, and performance range of each model for each
metric. We found that the ensembles perform consistently better than the standalone models:
they have a higher average and a lower variance. Moreover, each standalone model has at
least one poor score for one of the patients and structures, while the ensemble models never
suffer such degradation. For instance, among the 6 x 6 = 36 (standalone models, structure)
VDSC (respectively ASSD) worst scores (i.e., the minimum of the metric range), the two
ensemble models had a better minimum range 31 (resp. 35) times.

The average ensemble (resp. optimal ensemble) improves the top-performing standalone
model with respect to each metric by an average of 1.5% (resp. 1.7%) on VDSC, 2.8% (resp.
3.3%) on SDSC 2 mm, 2.1% (resp. 2.5%) on SDSC 3 mm, and 11% (resp. 14%) on ASSD.

We saw a very high and stable performance of the ensembles on the Gluteus Maximus,
Gluteus Medius, and Paraspinal muscles, with scores above 90% for VDSC, SDSC 2
mm, and SDSC3 mm. We noticed, in general, high performance on the GTV and Gluteus
minimus with an average VDSC above 85%. The Piriformis muscle had the lowest
performance, although it maintained scores above 77%. Across structures, the VDSC
standard deviations were within 1 — 3%, except for GTV (around 6.5% for the ensembles)
and Piriformis (in the 5% for the ensembles).

The average ensemble (resp. optimal ensemble) has an average VDSC standard deviation
37% (resp. 36%) lower than the best standalone model with respect to VDSC, an average
SDSC 3 mm standard deviation 14% (resp. 15%) lower than the best standalone model with
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respect to SDSC 3 mm, and an average ASSD standard deviation 0% (resp. 14%) lower than
the best standalone model with respect to ASSD.

The different SDSC thresholds show that most contours are within one diagonal pixel away
from the ground truth. With the optimal ensemble, the average SDSC 3 mm is higher than
89% for all structures except for the GTV (74%). The average SDSC 2 mm results show that
both ensembles have very strong performance for G. Maximus, G. Medius, G. Minimus, and
Paraspinal (88%+) and strong performance for the Piriformis (82%+). The average ASSD
scores confirm this conclusion: under 1.1 mm for all structures, except Piriformis (under 1.6
mm) and GTV (under 2.7 mm).

The results on the outlier test set, in Table 1b, show the performance of the ensemble models
decreases but still maintains a VDSC within 80-90% for all structures and an SDSC 3 mm
higher than 80% for all structures except the GTV, where it reaches 51%. The ASSD also
increases for all structures, most notably for the GTV (7.0 mm on the outlier test set vs.

2.6 mm on the test set for the optimal ensemble). On the outlier test set, the two ensemble
models no longer systematically outperform the best standalone model for every structure.
However, they are the only models to maintain consistent performance, at least always close
to the best one reported.

Qualitative Assessment.—We report the qualitative assessment results in Table 1c.

In particular, the best standalone model with respect to VDSC would require the same
amount of editing as the ground truth contours for all structures and patients: on average,
under 3 minutes for muscles and under 6 minutes for the GTV. The optimal ensemble
contours would require, on average, under 3 minutes to correct each structure except for the
Gluteus Maximus (4 minutes) and GTV (11 minutes).

Although our automated muscle segmentation can provide reasonably accurate muscle
contours, including most muscle origins and insertions, we noted some potential limitations
and areas for improvement. Firstly, while the gluteus maximus contours were largely
accurate, there were minor areas where their origins were not predicted with complete
fidelity. Overall, the paraspinal muscles demonstrated good accuracy in all patients, with
only the superior border requiring slight improvements. The gluteus medius and gluteus
minimus muscles had some issues with their distal edges but were otherwise generally
suitable for clinical use. The piriformis contours demonstrated some inaccuracies where
the muscle inserted into the femur. Furthermore, delineating the tumor/bone interface can
be difficult, as illustrated in Figure 3a, where the GTV extension through the bone is

less defined. Finally, automated delineation of the tumor-muscle interface can also be
challenging, mainly where tumor emboli invade muscles, as indicated by the green arrow in
Figure 3b.
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4. Discussion

4.1. Results Interpretation

The high accuracy for automated contouring of the Gluteus muscles and Paraspinal is likely
due to these muscles’ large size and generally consistent structure. The Piriformis has a
slightly poorer performance, likely because of the thin shape of this muscle and the difficulty
in distinguishing the boundary between the lateral edge of this muscle and the medial edge
of the Gluteus Medius on axial imaging. The model achieves remarkably strong performance
in general, including on the GTV, despite the variability of its shapes and textures in the
images. Moreover, the qualitative assessment confirmed the very satisfactory performance
for clinical use.

4.2. Ensemble Models Improve Score Performance and Decrease Variance

By incorporating various model predictions, ensemble models effectively leverage the
insights obtained from multiple sources and provide more robust predictions. Table 1la
shows that ensemble models largely outperform standalone models for the hardest patients.
Ensembles advantageously smooth predictions and may avoid failures cases that a specific
model may face for a specific patient. The ensemble models substantially reduced the
variance across predictions, which is an important step toward offering physicians robust and
stable treatment planning options. We further report t-tests comparing if the ensembles are
significantly better than the standalone models in Appendix C.

It also appears possible to obtain valuable auto-delineations of relevant structures for CTV
definition using training datasets from only 30 patients. It is remarkable and promising for
other rare diseases when it is challenging to acquire large and consistent datasets.

4.3. Advantages of an Automated Approach

Overall, we conclude that Al-assisted muscle contouring and most of the GTV contouring
along tumor-fat tissue planes would represent substantial time savings for clinical use. The
manual labor of contouring sarcoma tumors and the surrounding muscles of interest is
burdensome and tedious for physicians. Clinicians from [Anonymized Hospital] reported a
typical 40-minute duration to contour muscles from all groups for one patient. The time
required to contour the GTV could range from 10 minutes to an hour depending on its
size, the reference sequence (e.g., additional availability of an MRI sequence), and the
extent of tumor invasion into adjacent bone and muscle. In comparison, Al-assisted muscle
contouring can typically save 30—80 minutes per patient.

Furthermore, at the [Anonymized Hospital], in the case of complex and large soft tissue
sarcomas (such as retroperitoneal) or spine or pelvic bone sarcomas, the manual delineation
can take up to several hours of the radiation oncologists’ time for a single patient.

The automation of the proposed approach is easily applicable and understandable and
offers excellent potential to relieve the physicians and free up time. We expect that our
segmentation models could be extended to other important structures, such as cauda equina,
sacral, sciatic nerves, rectum, and other pelvic organs, if the ground truth labels were
available.
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4.4. Limitations

On the one hand, the optimal ensemble outperforms, in general, the best standalone model,
particularly for the GTV segmentation. On the other hand, the qualitative analysis revealed
that the optimal ensemble segmentation of the GTV would require more adjustments than
the one from the best standalone model (11 minutes vs. 6 minutes on average). We explain
this discrepancy by the subtle flaws in the ground truth contours of the GTV according to
the independent assessment. Since the optimal ensemble is trained to replicate the ground
truth even more closely, we conjecture that it is more susceptible to intra-observer variability
and, thus, is less robust across physicians and may be more biased towards the contouring

of those samples. This reflects the limitations of only using quantitative metrics and the
importance of complementing with a qualitative clinical use assessment.

Furthermore, since we tackled a rare tumor type, we could only perform our study on a
small dataset. While a single radiation oncologist generated the ground-truth contours of the
muscle structures, the GTV contours were delineated by six different physicians over 20
years, which may have led to different contouring styles. However, it appeared not to be a
problem for our DL models, which displayed great generalization capacity.

The results of Table 1b suggest the models show lower performance when the tumor is
huge. This is within expectation as no such cases were present in the training set, and
extensive tumor growth can substantially deform adjacent muscles. A larger and more
diverse training set would likely improve performance. However, although less accurate, our
optimal ensemble remains a valuable tool for fast preliminary segmentation.

We also acknowledge that no dosimetric evaluation was performed. A geometric evaluation
like the one investigated in this paper tends to show bigger differences than a dosimetric
evaluation because physical phenomena such as radiation scattering blur out geometric
differences and lead to more similar radiation dose distributions. Our evaluation can thus be
considered a worst-case analysis.

Lastly, further preprocessing of the CT images could potentially improve performance: for
example, by increasing the muscle-to-tumor contrast with specific windowing.

Moreover, although we demonstrated that CT images already yield sufficient predictive
power, the ideal scenario would combine diagnostic MR images with CT images. MRI offers
superior image contrast of soft tissue than CT and would provide an additional modality

to analyze the same patient’s muscle and tumor structures. However, our methodology can
scale to include other images: MR images can be input as additional channels into the 3D
U-Nets, and the ensemble model would work similarly. It is also possible to train models on
the MRI alone that could later be combined as distinct standalone models in the ensemble
stage.

4.5. Towards Clinical Target Volume (CTV) Delineation

A standard CT simulation scan lacks intrinsic physiologic or anatomic compartment
information, making it necessary for annotators to rely on their expertise to identify relevant
structures. The CTV delineation process is complex and requires incorporating information
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about the natural history of a particular tumor’s modes of local extension based on patterns
of failure after surgery and/or radiation therapy, as well as anatomic factors that affect tumor
dissemination (i.e., fascial barriers to spread).

The automated method of segmenting GTV and surrounding muscles offers several benefits
to physicians. The technique represents a critical first step toward automating the CTV
delineation process and subsequent treatment planning by accurately identifying natural
anatomical barriers and musculoskeletal compartments that are not typically delineated for
treatment planning purposes and which otherwise require advanced expertise in recognizing
anatomy on CT scans. The automated process also incorporates prior experience information
to guide CTV delineation and make it more efficient. Given the rarity of chordomas and
other sarcomas in this region, this Al-based tool may prove invaluable in improving target
delineation for less experienced clinicians.

5. Conclusion

When combined with ensemble modeling, deep learning methods can effectively solve
segmentation problems for rare tumor types, such as sacral chordomas, that typically
require substantial clinical expertise for appropriate target delineation. Our analysis of

48 patients demonstrates the ability to reliably auto-segment the GTV and surrounding
muscle structures. Overall, we highlight the power of an optimal ensemble which provides
a quantifiable advantage, improving the top-performing standalone model by an average
of 2% on VDSC and 14% on ASSD. We also qualitatively evaluated and demonstrated

a substantial reduction of time spent on manual labor for physicians when using machine-
generated contours. Despite the difficulty at the muscle and tumor interface, the automated
definitions serve as valuable starting points for clinicians, making the final modifications and
confirmation a quick and easy task.
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CT Image Acquisition

The CT scans were acquired with a GE scanner following the standard protocol for
radiotherapy treatment planning. The image acquisition was performed in prone (n=45) and
supine (n=3) positions. The initial CT image resolutions are listed in Table 2.

GTV Contouring Procedure

All GTV contouring procedures were executed by radiation oncologists with specialized
expertise in sarcoma treatment. Before 2015, additional staff members participated

in the peer review of contours and treatment plans during weekly chart rounds. In

2015, [Anonymized Hospital] introduced a contour review system that incorporated

the involvement of an additional radiation oncologist, also with sarcoma subspecialty
expertise, before commencing the treatment planning process. At this point, 3—4 radiation
oncologists managed these patients, ensuring that at least one participated in contour
review. Furthermore, the treatment plans continued to undergo peer review by multiple staff
members during weekly chart rounds as before.

CT Image Pre-processing

This section outlines more precisely our pipeline to pre-process the data.

1.
2.

CT scans and RT structures were converted to MHA format.

We manually fixed some CT image orientations, which were found to be
wrongly recorded due to the patient’s prone vs. supine position during CT image
acquisition. Moreover, we recentered the offsets of all image sequences to be
observed in the same field of view by applying axial translations in 3D Slicer.

We rigidly aligned all images to Right-Anterior-Inferior (RAI) anatomical
position and applied a transformation to align all patients to one randomly
selected reference based on the pelvic bony anatomy. The resulting
transformation was applied to the structure files for alignment. We used a rigid
registration with 6 degrees of freedom to assign voxel positions of each image
relative to one common coordinate system.

We resampled image and structure files to the same 2 x 2 x 2 mm resolution
with linear interpolation applied to the images and nearest-neighbor interpolation
applied to the structures. The 2 x 2 x 2 mm element spacing ensured sufficient
resolution for future treatment planning and faster and more stable DL model
training.

We manually merged all structure segmentation into a single image file.

We manually cropped all images to restrict the field of interest as the smallest
bounding box that contained all structures segmented in all patients (see Figure
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1 as an example). If needed, we padded the images on all 3 axes to obtain a
standard final image dimension of 182 x 157 x 216 voxels, where one voxel still
corresponds to a 2 mm cube.

We re-scaled each image so that voxel values had zero mean and unit variance by
calculating the mean and standard deviation of the Hounsfield units of all voxels

in a given CT image and then subtracting from each voxel the mean and dividing
by the standard deviation.

The final image sequences had 8 anatomical structures: 5 left-right merged muscle
structures, sarcoma GTV, other areas inside the body of no interest in this study, and areas
outside of the body (see Figure 1).

We converted all data from DICOM image sequences to .mha files for image processing,
which we then converted to .h5 files for model training and testing.

B.: U-Net Architectures Details

As suggested by [17] and [18], we used the following specific hyperparameters for our 3D
U-Nets and Residual 3D U-Nets:

64 feature maps at each level of the encoder,

For each block, a layer order of group normalization, 3D convolution operation,
and ReLU activation function,

8 groups for the GroupNorm operation,

4 levels in the encoder/decoder path for the 3D U-Nets and 5 levels for the
Residual 3D U-Nets (since the model effectively becomes a residual net, it
allows for deeper networks).

1-pixel zero-padding added to all three sides of the input,
Size of the convolving kernel in the basic blocks: 3,
Size of the window in the pooling operation: 2,

Nearest neighbor upsampling in the decoder for 3D U-Nets and transposed
convolutions for upsampling in the decoder for Residual 3D U-Nets.

We based our U-Net architecture and training code from [28].

3D U-Net Hyperparameter Search

For each one of the six (loss, architecture) combinations, we concurrently validated the
following hyperparameters in the provided sets:

the Adam optimizer learning rate: [5 - 107, 1074, 3 - 1074, 5- 1074, 7 - 1074,
1079

learning rate scheduler: learning ratex[1, 0.7, 0.5] every [5, 10, 15] epochs

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Boussioux et al. Page 16

. weight decay (L2 weight regularization): [0, 107, 1075, 5 - 1075, 1074, 5 - 1074,
1079

. image patch shape: [128 x 128 x 128, 64 x 64 x 64, 32 x 32 x 32]
. stride shape: [32 x 32 x 32,32 x 32 x 64, 16 x 16 x 32, 16 x 16 x 16, 8 x 8 x 16]

For the specific case of the weighted-cross-entropy loss, once we found the best
hyperparameters corresponding to the standard cross-entropy loss, we fixed these
hyperparameters and validated the weights given to each class in the weighted-
cross-entropy loss. We tested the following weights with the intuition that we

wanted to increase the weight on the hardest classes to predict (GTV, G. minimus,
Piriformis): [(0.25,0.1,0.1,0.1,0.15,0.2,0.05,0.05), (0.25,0.05,0.05,0.25,0.05,0.25,0.05,0.05),
(0.2,0.1,0.1,0.2,0.1,0.2,0.05,0.05), (0.3,0.05,0.05,0.1,0.1,0.3,0.05,0.05)], where we give
tuples corresponding to (GTV, G. Maximus, G. Medius, G. Minimus, Paraspinal, Piriformis,
Out-of-the-body regions, In-the-body regions of no interest).

The hyperparameter search revealed the following insights:

. The Adam optimizer learning rate was the best in the ballpark of 107 as smaller
led the model to train too slowly, and larger led to less stable training and poorer
generalization.

. The learning rate scheduler was not the most crucial hyperparameter, but it was
important to decrease the learning rate during the training process to refine the
weights.

. The weight decay had to be present but low enough.

. The image patch shape was a critical factor: too small led to much slower

training and poorer generalization as the model had less context for predictions.

. The stride shape was less crucial. It was a trade-off to avoid too many or too few
samples from each image sequence.

. The weights of the weighted-cross-entropy loss subtly impacted the
performance; different combinations had about the same results.

C.: Statistical Tests

We conducted t-tests to investigate whether the performance of the average or optimal
ensembles surpassed that of each standalone model across the four metrics and six
anatomical structures. We employed a two-stage Benjamini and Hochberg procedure for
non-negative multiple comparisons correction with a false discovery rate of 0.1 [29].

We conducted the tests for every combination of metric and structure, comparing each
standalone model against the average or optimal ensemble. Subsequently, we corrected

the p-values model-wise across the six structures under investigation. We reported the
corrected p-values in Tables 3a (Standalone Models vs. Average Ensemble) and 3b
(Standalone Models vs. Optimal Ensemble). We observe many statistically significant model
comparisons at the 0.2 level, indicating that both the average and optimal ensemble models
perform significantly better than individual models across several structures and metrics.
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However, it is important to exercise caution when interpreting the results of the statistical
testing due to the limited sample size of the validation cohort. All statistical analysis was
executed in Python using the scikit-learn [30] and statsmodels packages [31].
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Figure 1:
INustration of an axial CT slice (left) from two different patients after processing the full

image. We show the manual segmentation (center) and the final automated segmentation
(right) using our optimal ensemble model.
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Average Ensemble

Optimal Ensemble
(optimally weighted
average)

Ilustration of the pipeline to utilize the different top standalone models (base learners) into
the average and optimal ensemble.
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Figure 3a:
Example of a patient where the extension of the average ensemble GTV contour (magenta)

through the bone does not match the ground truth contour (green) and would require
adjustments before clinical use.
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Figure 3b:
Example of a patient where the interface delineation between the GTV (green contour) and

muscle (yellow contour) is harder because tumor emboli are invading into muscle (area with
red dashes in the figure).

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Boussioux et al.

Table 1a:

Page 24

Segmentation results for each structure averaged over the 8 test patients. We provide the standard deviation
and range of the results. The best performance for each metric is in bold.

Model Metric GTV G. maximus G. medius G. minimus Paraspinal Piriformis
3D U-Net 828457 939+ 15 923408 843425 906+ 1.1 747473
Dice (73.6,90.1) (91.3,95.8) (91.2,93.4) (79.5,88.8) (88.4,91.9) (62.6,84.5)
3D U-Net 827466 936+ 2.0 916+ 1.0 841423 91.8+0.8 736+ 6.4
Cross-entropy (70.0,89.6) (89.4,95.8) (90.3,93.0) (80.5,87.4) (90.5,92.9) (58.0,79.4)
eﬁeig;]'t\'ezt 7934112 935+17 917+ 1.0 829+2.1 912431 68.9+75
cross-antropy (52.2,88.8) (90.7,95.4) (89.9.93.2) (79.1,86.2) (83.6.94.3) (52.2,77.5)
Residual 3D 81.8+ 147 940+ 17 921+1.1 833426 90.7 + 3.0 771+6.1
U-Net Dice (43.8,91.0) (90.7,96.0) (90.3,93.4) (79.1,86.5) (83.1,93.0) (68.9,84.5)
feidual 3D | Vbse 83171 931426 902+ 16 80.7+52 91.3+18 72293
ntrony (71.1.91.4) (87.0,95.6) (87.6.92.4) (70.4,88.0) (87.2.93.8) (49.3.8L.9)
Residual 3D
U-Net 834482 940+ 15 914+1.1 82.8+28 915426 745452
Weighted (64.7,90.0) (91.0,95.5) (89.5.92.7) (78.6,86.6) (85.6.93.8) (65.9,81.5)
Cross-entropy
Average 85.1+65 94.4+16 92.6+0.9 85.0+2.7 922+13 77754
Ensemble (70.5,91.5) (91.3,96.1) (91.1,93.7) (81.4,90.1) (89.3,93.3) (66.5,84.9)
Optimal 855+ 6.4 944+ 15 92.6+0.9 85.0+2.7 921+15 783457
Ensemble (70.7.91.5) (91.6,95.9) (91.1,93.7) (81.7,89.9) (88.6,93.4) (67.4.85.3)
3D U-Net 61075 90.4 + 5.0 912422 86.6+ 5.1 882+35 80.5+8.7
Dice (49.070.2) (80.8.96.6) (86.4.93.9) (77.8.94.3) (82.7.93.8) (63.0,91.9)
3D U-Net 60.2+8.7 80.1+56 893+ 2.4 86.6+ 3.8 90.8+ 4.1 759+ 8.6
Cross-entropy (49.173.7) (77.2.93.9) (85.1,93.3) (80.1,91.4) (83.6,96.8) (56.9,86.0)
3&%;}’:‘;} 53.4+12.9 88.6+5.2 89.3+2.9 843+36 90.3+38 715+88
crossentropy (30.6,73.7) (79.7,96.8) (82.391.8) (78.2,89.8) (84.3,95.8) (52.0,82.2)
Residual 3D 61.1+169 90.4 5.9 903+ 1.9 85.7+4.0 88.8+38 816+78
U-Net Dice (21.1,79.5) (77.397.1) (87.2.92.7) (78.0,92.1) (82.2,94.2) (71.1,90.8)
, SDSC 2
Freeidual 3D mm 62.1+13.4 87.8+7.6 84.0+ 4.0 823+85 905+ 29 72241038
o (35.4,77.7) (69.9,94.5) (78.4.91.6) (63.2,93.5) (85.5,93.8) (46.8,85.5)
Residual 3D
U-Net 623+ 105 90.9+4.7 88.3+3.1 85.1+5.1 90.7 +4.1 77.9+6.9
Weighted (47.9,74.5) (81.6,96.5) (82.7.92.2) (74.1,91.9) (81.3.95.1) (67.9,88.0)
Cross-entropy
Average 653+0.1 919451 919425 882451 921425 825+7.2
Ensemble (54.1,80.5) (80.9,96.8) (86.2,94.5) (77.5,96.1) (86.5,95.2) (67.5,92.5)
Optimal 66.2+09.1 922+48 91.9+24 88.3+5.1 920+27 83975
Ensemble (55.1.81.6) (82.0,97.0) (86.6,94.9) (77.4,95.7) (85.6,95.2) (69.5,93.9)
3D U-Net 68.1+7.1 94.1+38 95.4+ 18 91.0 + 4.0 93.1+3.0 86.0 8.0
Dice (57.0.78.0) (86.3.98.1) (91.3.97.5) (84.1,96.9) (87.1.97.1) (69.4,95.4)
3D U-Net 68.0+8.1 933+47 944+ 2.0 91.1+34 948427 823481
Cross-entropy (57.9.81.0) (82.1.96.6) (90.5.97.5) (85.6,95.6) (89.8.98.5) (63.4,90.1)
SDSC 3
%g;}’;ﬁ mm 62.0+ 136 92.9+43 94.4+23 89.4+2.9 943+29 793+93
crossentrapy (36.0,81.4) (84.4,98.8) (88.5,96.4) (85.1,94.5) (89.3,98.2) (58.0,90.5)
Residual 3D 68.4+ 175 942+ 46 944+ 16 90.1+36 926431 87.1+6.7
U-Net Dice (25.3,86.2) (83.4.98.5) (91.2,96.0) (82.9,95.8) (87.9.96.2) (77.8,95.3)
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Model Metric GTV G. maximus G. medius G. minimus Paraspinal Piriformis
Sfﬁg“g:gg_ 69.6+12.3 92.0+6.7 89.7+35 87.4+7.4 94.5+1.9 785+9.9
entropy (44.2,83.5) (75.3,97.1) (83.7,95.1) (70.3,96.4) (91.3,97.1) (54.6,89.4)
Residual 3D
U-Net 71.0+10.2 946+3.8 93.4+26 89.6 +4.7 945+3.1 85.3+6.6
Weighted (56.1,83.4) (86.0,98.4) (88.2,96.0) (79.7,95.6) (87.4,97.3) (75.5,94.0)
Cross-entropy
Average 72979 953+4.1 95.9+2.0 91.9+4.2 95.7+1.8 87.9+6.6
Ensemble (63.5,85.8) (85.4,98.7) (90.8,97.4) (82.9,98.2) (91.5,97.3) (73.5,96.1)
Optimal 73.7+7.7 955+3.7 95.8+2.0 92.0+4.3 955+1.9 89.0+6.9
Ensemble (63.3,85.9) (86.9,98.6) (91.0,97.6) (82.6,97.8) (91.0,97.3) (75.1,97.2)
3D U-Net 3.7+14 12+05 09+0.1 12+0.3 11+02 1909
Dice (2.1,6.3) (0.6,2.2) (0.8,1.1) (0.8,1.6) (0.6,1.4) (0.9,3.3)
3D U-Net 33%£09 14+10 1.0+0.1 12+0.3 09+03 23%£10
Cross-entropy (2.1,4.7) (0.7,3.9) (0.9,1.2) (0.9,1.7) (0.5,1.4) (1.4,4.6)
ﬁig;]’t\‘ezt 47+34 15408 10401 14402 10403 26+15
cross-entropy (1.9,13.4) (0.6,3.5) (0.9,1.3) (1.0,1.8) (0.6,1.4) (1.3,6.4)
Residual 3D 50%6.1 1.2+09 1.0+0.1 13+0.2 1.0£02 16+06
U-Net Dice (1.6,20.9) (0.6,3.5) (0.8,1.1) (0.9,1.6) (0.6,1.3) (0.9,2.6)
feldual 3D | ASSD 35+2.1 17+18 1302 1506 0.9+0.1 34412
entropy (1.9,8.3) (0.7,6.4) (0.9,1.6) 0.8,2.7) (0.8,1.1) (2.2,6.0)
Residual 3D
U-Net 3.0+£0.9 1.1+06 1.1+£0.2 13+£0.3 0.9+0.2 18+06
Weighted (1.8,4.3) (0.6,2.5) (0.9,1.4) (0.9,1.8) (0.7,1.3) (1.1,2.6)
Cross-entropy
Average 27+08 1.1+0.7 09+0.1 11+03 0.8+0.2 1.6+0.7
Ensemble (1.6,3.7) (0.6,2.9) (0.7,1.1) (0.6,1.6) (0.6,1.1) 0.9,3.2)
Optimal 26+0.8 1.0+04 09+0.1 1.1+£0.3 0.8+0.2 15+£06
Ensemble (1.5,3.6) (0.6,2.0) 0.7,1.1) (0.6,1.6) (0.6,1.1) (0.8,2.9)
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Table 1b:

Segmentation results for each structure averaged over the 5 outlier test patients. We provide the standard
deviation and range of the results. The best performance for each metric is in bold.
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Model Metric GTV G. maximus G. medius G. minimus Paraspinal
. 811+7.4 85.4+6.6 88.1+ 4.6 83.7+34 78.9+ 104
3D U-Net Dice (69.5,90.7) (73.8,93.3) (79.0,91.6) (77.9,86.7) (67.9,91.8)
3D U-Net Cross- 814+6.0 872+28 88.3+39 812437 795496
entropy (73.0,90.9) (83.2,91.7) (80.7,91.1) (74.4,84.4) (69.5,92.2)
e UMt 82.7+6.38 85.0+5.2 87.8+4.1 82.5+32 78,0+ 15.4
g (72.8.93.0) (77.0,91.1) (80.6.91.7) (76.7,86.1) (50.5,92.8)
entropy
Residual 3D U- 82.0+69 87.1+39 88.9+ 3.4 81.9+4.2 847+72
Net Dice (72.6,90.9) (81.1,93.0) (82.6,92.2) (745,86.1) (71.9,93.2)
, VDSC
Residual 3D U- 784638 85.4+ 2.6 84.8+4.38 79.2+65 81.9+9.8
(68.2,88.3) (81.9,88.4) (75.5,88.7) (66.7,84.8) (64.0,92.1)
entropy
Rﬁg'td\bl\gigﬁeg' 78.8+5.0 865+ 36 885+3.1 817+ 4.4 85.7+7.0
MUY (71.4.86.2) (80.2,91.3) (83.2,92.0) (74.2,:87.4) (74.7.92.8)
Average 821+ 6.4 87.9+31 89.4+33 83.6+3.6 83.8+7.0
Ensemble (72.991.7) (82.4,91.5) (83.1.92.0) (77.2,:87.5) (75.0,93.1)
Optimal 81.9 + 6.6 87.8+3.1 89.4 +3.2 83.4 +3.9 849+6.6
Ensemble (72.6.91.8) (82.4,91.1) (83.3.92.1) (76.4:87.7) (75.0,93.2)
. 417+96 71.8+117 828456 848+43 68.2+17.2
3D U-Net Dice (27.1,52.6) (54.6,89.4) (72.0,87.5) (77.2,90.3) (40.0,87.6)
3D U-Net Cross- 40.8+85 738+7.9 83.0+5.1 80.7 % 6.0 68.5 + 16.6
entropy (29.652.8) (66.0,87.5) (73.3:87.2) (70.1:87.5) (45.9,90.2)
W et 469+109 71.2+84 81659 82.7+56 69.2 + 22.4
g (32.8,64.3) (60.4,84.7) (72.3,89.6) (75.6,90.6) (33.6,92.1)
entropy
Residual 3D U- 453+10.2 762+ 8.6 83.9+6.7 83.4+6.1 785+ 116
Net Dice (34361.7) (66.6,88.4) (72.191.7) (74.2:90.3) (61.4,93.3)
_ SDSC 2
Residual 3D U- mm 35573 72071 74378 77.7+96 743+ 134
(26.4,45.5) (64.5,82.1) (59.8,82.0) (60.5,89.2) (50.7,89.9)
entropy
RNe:'td\j‘\fe'igﬁeg' 438+6.4 76.8+ 6.6 81.6+6.1 81960 812+96
MUY (35.1,52.4) (69.1,88.5) (71.2,:87.9) (72.3:87.8) (64.2,92.0)
Average 440487 767+7.7 85.0 + 5.3 85.0 + 5.5 76,5+ 13.4
Ensemble (31.0,55.9) (67.2,88.8) (75.1,89.7) (76.1,91.0) (56.6,92.4)
Optimal 442+87 76.9+ 7.4 849455 849458 79.3+10.6
Ensemble (31.6,56.4) (67.9,88.4) (74.7.90.1) (75.4.90.9) (66.3,93.0)
. 492+108 78.3+11.0 88.5+5.1 90.4+33 74.6+ 159
3D U-Net Dice (33.3,62.8) (615,94.1) (78.3,92.2) (84.7,94.1) (49.4,92.5)
3D U-Net Cross- 481+96 80.1+6.9 88.6 = 4.4 87.1+51 749+ 16.0
entropy (35.9,62.6) (72.4,91.9) (80.3,92.4) (78.6,92.2) (55.5,94.5)
DUN SDSC 3
Weintod ooy mm 54.0+117 76.7+9.3 87.4+5.2 88.4 + 4.8 743+220
(39.2,73.3) (63.4,90.3) (79.1,94.0) (83.1,94.9) (38.1,96.0)
entropy
Residual 3D U- 524+116 81.8+7.38 89.2+58 89.4+53 835+ 10.8
Net Dice (39.3,69.6) (71.5,93.0) (79.6,95.6) (81.9,94.3) (64.9,96.3)
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Model Metric GTV G. maximus G. medius G. minimus Paraspinal
Relillgtu(ajlrgst-U- 421+83 78.0+58 81.6+7.1 84.3+89 79.7 137
(31.6,51.9) (70.9,86.2) (68.8,88.2) (67.9,93.9) (54.2,93.7)
entropy
RNeZ'td\j‘\fe'igﬁeg' 500+ 7.4 823+6.1 877452 87.4+55 85.8+9.7
Cross.entropy (39.8,60.5) (73.6,92.4) (78.6,92.5) (79.4,92.4) (68.2,95.6)
Average 51.3+10.0 827468 902+ 45 905+ 45 8214117
Ensemble (36.8,66.1) (73.1,92.7) (82.0,94.4) (84.0,94.7) (67.4,95.9)
Optimal 51.4+10.1 82.8 6.7 90.1+4.7 90.3+4.9 84.6+9.6
Ensemble (37.1,66.6) (73.2,92.4) (81.7,94.6) (83.2,94.7) (69.9,96.3)
3D U-Net Dice (7315113?5’) 28+14(1050) | 19+12(1142) | 13+02(10,17) | 25+13(L14.4)
3D U-Net Cross- 6.8+3.1 42+39
entropy (33121) 28+12(1.349) | 1.8+08(1.233) | 1.6+04(1.222) (10114)
3D U-Net
- 63+3.1 62+7.1
Weighted cross- (25112) (14203) 23+11(1.143) | 1.4£03(1.0.18) | 3.0+£27(0.9,8.0)
entropy
Residual 3D U- 6.8+3.3
Aot Dice (3.1.120) 24209(1.1,38) | 1.7£08(1.031) | 1.5+04(1.022) | 28+3.0(088.7)
Residual 3D U- ASSD 81+36
Net Cross- (4314.4) 33+15(1.9,63) | 24+08(1.7,3.9) | 1.9+08(1.1,33) | 3.2+33(10,9.8)
entropy R
Residual 3D U-
Net Weighted é‘%ilzz'% 25409 (1441) | 1.7£05(12,26) | 1.5£04(1222) | 1.8+1.1(0.9,3.9)
Cross-entropy e
Average 6.9+34
Ensemble (3.0125) 23+08(14,35) | 1.6+07(1.029) | 1.3+03(09,1.8) | 2.0+1.1(0.83.9)
Optimal 70+34
Enemile (3.0126) 23+08(14,36) | 1.6+07(1.029) | 1.3£03(0.9,1.8) | 1.9+1.1(0.83.9)
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Independent qualitative assessment by a separate expert radiation oncologist on 5 random patients from our

test set. We report the range and average editing time in minutes necessary for clinical use.

Structure Ground Truth | Best Model | Optimal Ensemble
GTV 6 (3, 13) 6 (3, 8) 11 (7, 13)
Gluteus Maximus 2(0,4) 2(0,4) 4(0,7)
Gluteus Medius 2(0,4) 2(0,4) 2(0,4)
Gluteus Minimus 3(1,4) 3(1,4) 3(L,4)
Paraspinal 3(1,4) 31,4 3(L,4)
Piriformis 3(1,4) 3(1,4) 3(1,4)
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Table 2:

Original resolutions of the image sequences of the 48 patients in our cohort.

Resolution (mm)

Number of cases

1x1x25

22

09x09x25

10

1.3x13x%x25

1x1x3.75

0.8x0.8x3.75

0.9x0.9x3.75

1.8x18x%x25

0.7x0.7x25

18x18x5

N R R R R B ES
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Page 30

Corrected p-values corresponding to each (metric, ensemble, standalone model vs. average ensemble) t-test.

ASSD Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.210 0.398 0.356 0.374 0.120 0.371

3D U-Net Cross-entropy 0.185 0.248 0.070 0.270 0.248 0.185

3D U-Net Weighted Cross-entropy 0.133 0.133 0.000 0.077 0.077 0.006

Residual 3D U-Net Dice 0.266 0.450 0.228 0.266 0.228 0.517

Residual 3D U-Net Cross-entropy 0.078 0.130 0.064 0.064 0.090 0.078

Residual 3D U-Net Weighted cross-entropy | 0.347 0.385 0.050 0.283 0.283 0.347
VDSC Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.255 0.255 0.255 0.255 0.055 0.255

3D U-Net Cross-entropy 0.254 0.254 0.198 0.254 0.254 0.254

3D U-Net Weighted Cross-entropy 0.246 0.138 0.010 0.088 0.138 0.138

Residual 3D U-Net Dice 0.397 0.397 0.314 0.314 0.314 0.418

Residual 3D U-Net Cross-entropy 0.156 0.167 0.110 0.110 0.178 0.060

Residual 3D U-Net Weighted cross-entropy | 0.337 0.337 0.132 0.234 0.337 0.274
SDSC2 Model Comparison GTV | G. maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.268 0.268 0.268 0.268 0.075 0.268

3D U-Net Cross-entropy 0.258 0.258 0.210 0.268 0.268 0.210

3D U-Net Weighted cross-entropy 0.202 0.110 0.000 0.091 0.110 0.056

Residual 3D U-Net Dice 0.362 0.362 0.288 0.332 0.210 0.415

Residual 3D U-Net Cross-entropy 0.031 0.047 0.031 0.032 0.047 0.022

Residual 3D U-Net Weighted cross-entropy | 0.284 0.296 0.080 0.232 0.264 0.232
SDSC3 Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.342 0.342 0.342 0.342 0.198 0.342

3D U-Net Cross-entropy 0.280 0.293 0.270 0.339 0.293 0.270

3D U-Net Weighted cross-entropy 0.188 0.116 0.004 0.116 0.116 0.058

Residual 3D U-Net Dice 0.392 0.392 0.228 0.386 0.126 0.415

Residual 3D U-Net Cross-entropy 0.135 0.155 0.155 0.155 0.155 0.135

Residual 3D U-Net Weighted cross-entropy | 0.385 0.385 0.186 0.360 0.360 0.360
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Corrected p-values corresponding to each (metric, ensemble, standalone model vs. optimal ensemble) t-test.

ASSD Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.168 0.278 0.278 0.285 0.144 0.260

3D U-Net Cross-entropy 0.140 0.193 0.080 0.247 0.247 0.123

3D U-Net Weighted cross-entropy 0.116 0.116 0.000 0.072 0.096 0.002

Residual 3D U-Net Dice 0.252 0.312 0.246 0.252 0.246 0.314

Residual 3D U-Net Cross-entropy 0.053 0.061 0.037 0.037 0.065 0.037

Residual 3D U-Net Weighted cross-entropy | 0.247 0.256 0.055 0.246 0.246 0.246
VDSC Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.297 0.297 0.297 0.297 0.144 0.297

3D U-Net Cross-entropy 0.292 0.292 0.198 0.292 0.312 0.249

3D U-Net Weighted Cross-entropy 0.215 0.163 0.010 0.085 0.180 0.133

Residual 3D U-Net Dice 0.353 0.353 0.326 0.326 0.326 0.353

Residual 3D U-Net Cross-entropy 0.136 0.153 0.105 0.105 0.205 0.050

Residual 3D U-Net Weighted cross-entropy | 0.304 0.304 0.132 0.214 0.304 0.214
SDSC2 Model Comparison GTV | G. maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.283 0.283 0.283 0.283 0.132 0.283

3D U-Net Cross-entropy 0.215 0.215 0.129 0.265 0.265 0.129

3D U-Net Weighted cross-entropy 0.173 0.105 0.000 0.084 0.140 0.036

Residual 3D U-Net Dice 0.297 0.297 0.270 0.297 0.270 0.297

Residual 3D U-Net Cross-entropy 0.026 0.039 0.028 0.028 0.058 0.014

Residual 3D U-Net Weighted cross-entropy | 0.246 0.258 0.075 0.210 0.246 0.178
SDSC3 Model Comparison GTV | G.maximus | G.medius | G. minimus | Paraspinal | Piriformis

3D U-Net Dice 0.270 0.343 0.343 0.343 0.270 0.343

3D U-Net Cross-entropy 0.204 0.258 0.204 0.323 0.323 0.204

3D U-Net Weighted cross-entropy 0.156 0.123 0.004 0.115 0.146 0.038

Residual 3D U-Net Dice 0.298 0.298 0.270 0.298 0.174 0.298

Residual 3D U-Net Cross-entropy 0.102 0.143 0.143 0.143 0.196 0.102

Residual 3D U-Net Weighted cross-entropy | 0.336 0.336 0.216 0.328 0.336 0.328
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