
Automated Segmentation of Sacral Chordoma and Surrounding 
Muscles Using Deep Learning Ensemble

Léonard Boussioux*,[1], Yu Ma*,[1], Nancy Knight Thomas[1], Dimitris Bertsimas[1], Nadya 
Shusharina[2], Jennifer Pursley[2], Yen-Lin Chen[2], Thomas F. DeLaney[2], Jack Qian^,[2],[3], 
Thomas Bortfeld^,[2]

[1]Operations Research Center, Massachusetts Institute of Technology, Cambridge, 
Massachusetts

[2]Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts

[3]Harvard Radiation Oncology Program, Boston, MA

Abstract

Background and Purpose.—The manual segmentation of organ structures in radiation 

oncology treatment planning is a time-consuming and highly skilled task, particularly when 

treating rare tumors like sacral chordomas. This study evaluates the performance of automated 

deep learning (DL) models in accurately segmenting the gross tumor volume (GTV) and 

surrounding muscle structures of sacral chordomas.

Materials and Methods.—An expert radiation oncologist contoured five muscle structures 

(Gluteus Maximus, Gluteus Medius, Gluteus Minimus, Paraspinal, Piriformis) and sacral 

chordoma GTV on CT images from 48 patients. We trained six DL auto-segmentation models 

based on 3D U-Net and Residual 3D U-Net architectures. We then implemented an average 

and an optimally weighted average ensemble to improve prediction performance. We evaluated 

algorithms with the average and standard deviation of the Volumetric Dice Similarity Coefficient 

(VDSC), Surface Dice Similarity Coefficient (SDSC) with 2 and 3 mm thresholds, and Average 

Symmetric Surface Distance (ASSD). One independent expert radiation oncologist assessed the 

clinical viability of the DL contours and determined the necessary amount of editing before they 

could be used in clinical practice.

Results.—Quantitatively, the ensembles performed the best across all structures. The optimal 

ensemble (VDSC, ASSD) was (85.5±6.4, 2.6±0.8; GTV), (94.4±1.5, 1.0±0.4; Gluteus Maximus), 
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(92.6±0.9, 0.9±0.1; Gluteus Medius), (85.0 ± 2.7, 1.1 ± 0.3; Gluteus Minimus), (92.1 ± 1.5, 0.8 ± 

0.2; Paraspinal), and (78.3±5.7, 1.5±0.6; Piriformis). The qualitative evaluation suggested that the 

best model could reduce the total muscle and tumor delineation time to a 19-minute average.

Conclusion.—Our methodology produces expert-level muscle and sacral chordoma tumor 

segmentation using DL and ensemble modeling. It can substantially augment the streamlining 

and accuracy of treatment planning and represents a critical step towards automated delineation of 

the Clinical Target Volume (CTV) in sarcoma and other disease sites.
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1. Introduction

A sarcoma is a rare and heterogeneous group of malignant tumors that arises from 

mesenchymal tissue, including soft tissue and bone. Among these tumors, chordomas are 

a particularly rare form of spine sarcoma that often involves the sacrum. Although surgery 

is considered the mainstay of treatment, patients with locally advanced diseases often cannot 

be easily resected without severe morbidity. As a result, highdose definitive radiation has 

emerged as a treatment option for these patients, with comparable local control rates and 

acceptable toxicity [1].

Target delineation is a critical task in the radiotherapy workflow that can considerably 

impact the overall treatment outcome, particularly given the increasing dose conformality 

offered by modern radiotherapy techniques. Accurate delineation is associated with better 

local tumor control and reduced radiation dose to non-target tissues leading to an improved 

therapeutic ratio [2].

The delineation of the gross tumor volume (GTV) and clinical target volume (CTV) for 

sarcomas can be time-consuming, given the often large size of these tumors as well as their 

propensity to spread along muscle fibers while respecting other anatomic barriers (such as 

bone or fascial planes). While prior studies have shown reasonable inter-observer variability 

in the delineation of extremity sarcomas [3], sacral chordomas may represent a particularly 

challenging contouring task given their anatomic location (with multiple adjacent muscle 

compartments extending in oblique directions) and propensity to grow to large sizes before 

the initial diagnosis.

Artificial Intelligence (AI) in healthcare is a driving force for improving patient care and 

efficiency [4, 5, 6].

AI-assisted segmentation of the GTV and neighboring muscles could substantially reduce 

the time required to contour these patients and lay the foundations for eventual semi-

automatic or fully automatic CTV delineation. However, there is a lack of studies on soft 

tissue segmentation. Although DL techniques have demonstrated great potential for medical 

image segmentation, their evaluation is often not pushed enough to enable a translation to 

clinical practice.
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This work investigates these bottlenecks and uses machine learning and DL methodologies 

to automatically segment sacral chordoma GTV and surrounding muscle structures that 

serve as tumor spread pathways.

2. Materials and Methods

The contributions of this study are highlighted in the first part of this section. We then 

describe the critical steps involved in processing patient CT scan data for model training 

and provide details of the DL architectures and training mechanisms. We also explain how 

ensemble methods were utilized to improve the performance of individual models. Finally, 

we describe the qualitative assessment of the automated contours.

2.1. Contributions

Our contributions are the following:

• We train a strong and diverse pool of Convolutional-Neural-Network-based 

segmentation models using different 3D U-Net architectures, loss functions, and 

hyperparameters that can simultaneously segment the six different structures 

of interest with high accuracy. To the best of our knowledge, this is the first 

time such models are trained on these specific muscle compartments and GTV, 

which paves the way toward an automated workflow for future CTV delineation. 

Segmenting patients with a tumor represents the additional challenge of higher 

muscle shape and texture variability than more traditional segmentation studies 

because large tumors can lead to substantial deformations of the surrounding 

healthy tissue anatomy.

• We investigate two methodologies to ensemble the pool of standalone models 

into a superior consensus model that can outperform any individual ensemble 

members: (i) an average of standalone models and (ii) an optimally weighted 

average of these models.

• We evaluate our models quantitatively with the Volumetric Dice Similarity 

Coefficient, the Surface Dice Similarity Coefficient with tolerance 2 and 3 mm, 

and the Average Symmetric Surface Distance.

• We provide a qualitative evaluation of our best standalone model and our optimal 

ensemble contour predictions based on the assessment of an independent expert 

radiation oncologist. In particular, we provide the estimated amount of time 

required to edit our automated contours before clinical use and describe the 

extent and location of the delineation discrepancies.

2.2. Dataset

2.2.1. Patient Selection—48 consecutive patients with sacral chordomas treated with 

high-dose, definitive proton beam radiation without surgery between 1999 and 2019 

who had original simulation CT scans available were retrospectively identified from the 

Anonymized Database. The CT scans were acquired on GE scanners following the standard 

protocol for radiotherapy treatment planning in use when the patient was simulated, using 
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140 kVp for all scans. The image acquisition was performed in prone (n=45) and supine 

(n=3) positions. The initial CT image resolutions are listed in Table 2. The average patient 

age was 64, the median was 65, and the range was 31 to 90 years old. 20 patients were 

females.

2.2.2. Expert Delineation of Muscles and Sarcoma GTV—The gross tumor 

volume contours from each patient’s original treatment were extracted and exported into 

MIM Maestro (MIM Software Inc, Ohio, USA, version 7.0.5) and reviewed by a radiation 

oncologist. These GTV contours were delineated by six different radiation oncologists over 

20 years, with expertise ranging from 5 to 20 years (3 with 20+ years of experience, 2 

with 10–15 years, and 1 with 5), and were peer-reviewed to ensure discrepancies were 

corrected before finalizing the treatment plans. Adjacent muscles of interest, including 

the gluteus maximus, gluteus medius, gluteus minimus, paraspinal, and piriformis, were 

manually contoured again for this study by a single radiation oncologist, with left and right 

muscles recorded as separate contours. Areas inside the body yet outside the muscles of 

interest and sarcoma GTV were also identified. Similarly, areas within the CT field of view 

but outside of the patient’s body were identified separately.

5 patients were set aside owing to radiographic obliteration of the piriformis muscles 

by the primary tumor, meaning these were completely infiltrated by the tumor and thus 

not distinguishable. However, because these patients still have contours for other muscles 

(though often still substantially deformed by the GTV), we include them as an outlier test 

set to evaluate our models’ generalizability to extreme cases. The average GTV volume for 

in-sample data is 378 cm3 with a standard deviation of 388 cm3. In the outlier test set, the 

GTV volume average is 1622 cm3, with a standard deviation of 421 cm3. We do not report 

results on the piriformis muscle group for the outlier test set as there is no ground truth. If 

one of our models still classifies a few voxels as piriformis during evaluation, we consider 

such predictions misclassified.

In the end, we randomly split 30 patients in the training set, 5 in the validation set, and 8 in 

the testing set after putting aside the 5 patients from the outlier testing set.

2.2.3. CT Image Pre-processing—The original CT images comprised samples with 

different element spacing and image orientation with respect to patient anatomy. To 

standardize the data into a uniform format suitable for DL networks, we fixed a specific 

image orientation, aligned all cases, and re-sampled all 3D images to the same element 

spacing of 2 × 2 × 2 mm, to ensure sufficient resolution for future treatment planning and 

faster downstream DL model training. We then cropped the images to restrict the field of 

interest as the smallest bounding box that contained all structures segmented in all patients. 

We also padded the images on all 3 axes to obtain a common final image dimension of 182 

× 157 × 216 voxels. We then re-scaled each CT image so that the overall voxel values of 

each patient have zero mean and unit variance. Finally, due to the symmetric structure of all 

contoured muscles, we merged the left and right contours of the same muscle type into a 

single structure which helped the models capture muscle geometry better (see an illustration 

in Figure 1).
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Appendix A provides more detailed explanations of the pre-processing steps.

2.3. Deep Learning Architectures

Recently, DL techniques using neural networks, particularly convolutional neural networks 

(CNNs), have demonstrated remarkable potential in medical image processing and 

automated segmentation of normal anatomy [5, 7, 8, 9, 10] and gross tumor volume (GTV) 

[10, 11, 12, 13, 14], with high accuracy and reduced processing time, outperforming the 

current atlas-based segmentation methods [15, 16].

2.3.1. 3D U-Net—We based our CNNs used for the DL segmentation tasks on the 3D 

U-Net architecture [17]. We trained both standard 3D U-Nets and Residual 3D U-Nets [18]. 

The network’s input is a three-dimensional CT volume of size (182 × 157 × 216) and the 

ground truth labels of the GTV and muscles. The output is a four-dimensional segmentation 

mask of size 8 × 182 × 157 × 216 where 8 corresponds to the number of anatomical 

structures concurrently segmented (GTV, 5 muscle pairs, regions of no interest in the body, 

and region outside of the body). The 3D U-Net network is divided into 4 downsampling 

blocks (encoder), 4 upsampling blocks (decoder), and a middle part. All parts of the network 

use blocks of Group Normalization, 3D convolutions, and rectified linear units (ReLU). 

We used max-pooling for downsampling and interpolation for upsampling. The difference 

between the 3D U-Net and Residual 3D U-Net lies in the basic block scheme: the Residual 

3D U-Net has 5 block levels in the encoder-decoder path instead of 4, uses summation 

joining instead of concatenation joining, and transposed convolutions for upsampling. More 

details on the architectures can be found in Appendix B. We trained the two network 

architectures with different loss functions, including Dice loss, standard cross-entropy loss, 

and class-weighted cross-entropy loss.

We adopted a final softmax activation function with cross-entropy-based training losses to 

produce the segmentation mask of probabilities for each voxel and classification class. We 

used a final sigmoid activation function when training with a Dice Loss.

Finally, we converted the output probabilities into a discrete label mask to visualize 

predictions and compute metrics by choosing the class with the highest probability for each 

voxel.

2.3.2. Training and Validation Mechanism—We trained the models on the 30 image 

sequences from the training set and validated the performance with the 5 image sequences 

in the validation set using the Intersection over Union score averaged over all classes (see 

definition in section (2.5)). For each one of the six (loss, architecture) combinations, we 

executed a hyperparameter search on the Adam optimizer [19] learning rate and learning rate 

scheduler, weight decay (L2 weight regularization), image patch shape, and stride shape to 

obtain the best model performance. For the case of the weighted cross-entropy loss, we also 

tuned the weights given to each class. The details about the hyperparameter search are given 

in Appendix B.

During training, we further regularized the models by 7 consecutive data augmentation 

transformations with on-the-fly random flips on the horizontal and vertical axis, random 
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rotations of 90 degrees, random rotations in the ZY axis, elastic deformation, random 

contrast changes, additive Gaussian noise, and additive Poisson noise. The ZY rotations 

were normally distributed with an angle spectrum of 15 degrees in each direction.

Based on validation performance, the best hyperparameter combination was an initial Adam 

learning rate of 10−4, decayed by a factor of 0.7 every 15 epochs, a weight decay of 10−5, a 

patch shape of 128 × 128 × 128 with a stride shape of 16 × 16 × 32 which gave 60 patches 

per image. For the weighted cross-entropy loss, the best weights were 0.25 for GTV, 0.1 for 

G. Maximus, G. Medius, and G. Minimus, 0.15 for Paraspinal, 0.2 for Piriformis, 0.05 for 

Out-of-the-body regions and In-the-body regions of no interest.

For each (loss, architecture) combination, we chose the model checkpoint with the lowest 

validation loss to be evaluated on the test set. We stopped the training when there was 

no improvement in the validation loss for more than 10 epochs, which typically happened 

after 40–60 epochs. One epoch represents one iteration when the entire training set passes 

through the neural network. The training was generally completed in two days, using a GPU 

TeslaV100 and 4 CPU cores.

We obtained six trained models that we included in the pool of base learners for ensemble 

modeling (see the summary in Figure 2).

2.3.3. Testing Protocol—At test time, we used the same patch and stride shapes as in 

training time and mirror-padded the raw data patches by 4 pixels on each axis for sharper 

prediction near the volume boundaries. We averaged the overlapping patch predictions to 

avoid checkerboard artifacts in the output prediction masks. We tested the standalone models 

and the ensemble models in the test set of 8 image sequences and the additional outlier 

test set of 5 image sequences from patients with very large tumors. The trained models 

performed the segmentation task in under one minute for each patient.

2.4. Ensemble Modeling

Ensemble methods are a popular technique in machine learning that aims to improve 

prediction accuracy and robustness by leveraging the diversity of individual models to form 

a consensus. Individual models are susceptible to data uncertainty, training randomness, and 

overfitting. However, by combining their knowledge and insights, an ensemble can generate 

a final consensus that benefits from the “wisdom of the crowd” [20, 21].

In this study, we investigate two stacking [22] ensemble techniques for muscle and sarcoma 

segmentation: voxel-wise average and optimally weighted average of a specific pool of 3D 

base learners. We aim to determine if these techniques can lead to superior performance 

compared to using a single model.

2.4.1. Average Ensemble—For the Average Ensemble, we combined the six top-

performing models described in Section 2.3.2 using a simple average of their probability 

predictions voxel-wise. The final class probabilities of each voxel are the average of the 

probabilities given by each model. This methodology requires no additional training and has 
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been shown to achieve superior performance in other healthcare segmentation tasks [23, 24, 

25].

2.4.2. Optimal Ensemble—We also developed an optimally-weighted combination of 

the models that we call Optimal Ensemble to further leverage their strengths. Instead of 

weighting each model equally, we allowed the weights to increase or decrease, including 

the possibility of setting a model’s weight to 0. The optimal set of weights w1
*, w2

*, ⋯, w6
*

associated with each model was defined as the solution that maximizes the Intersection 

over Union (see metric definition in Section 2.5) for all eight segmented structures on the 

validation set:

w1
∗, w2

∗, ⋯, w6
∗ : = arg max

w1, ⋯, w6

∑kwk = 1

 IoU ensemble = arg max
w1, ⋯, w6

∑kwk = 1

∑
i = 1

8 Xe
i ∩ Xensemble 

i

Xe
i ∪ Xensemble 

i , with 
(1)

Xensemble  = ∑
k = 1

6
wkXmodel k, (2)

where Xe
i represents the expert manual ground truth of the structure i, Xmodel k represents the 

automated segmentation of model k, and ⋅  corresponds to the cardinality of the set, i.e., the 

number of voxels equal to 1 in our binary mask scenario.

Contrary to standard weighted average ensembles in machine learning that can be obtained 

with linear regression (e.g., on a tabular task), this 3-dimensional objective function (1) is 

not convex. Therefore, we optimized the models’ weights using gradient ascent with the 

Adam optimizer with a learning rate of 10−3 until reaching convergence with a tolerance of 

10−4.

To train the Optimal Ensemble, we optimized the weights using the models’ predictions 

made on the validation set.

After training ended, 4 models had a non-zero weight: the 3D U-Nets trained with Dice 

loss w1 = 0.2  and Cross-Entropy loss w2 = 0.2 , and the Residual 3D U-Nets trained with 

Dice loss w4 = 0.28  and Weighted Cross-Entropy loss w6 = 0.32  (see pipeline summary in 

Figure 2).

2.5. Metrics

To assess the accuracy of auto-delineation with respect to the ground-truth contours during 

validation, we used the Intersection over Union (Jaccard score). At test time, we computed 

four metrics and report their average and standard deviation across the testing sets. We 

used the Volumetric Dice Similarity Coefficient, the Surface Dice Similarity Coefficient 

with tolerances of 2 mm and 3 mm, and the Average Symmetric Surface Distance. We 

chose these four test metrics to provide insights into how well segmentations overlap, how 

much the structure borders should be corrected, and how far the contour predictions are 

from the ground truth. We utilized distinct validation and test metrics to make the testing 

Boussioux et al. Page 7

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process more robust and check models generalize well, not because they are overfitted to the 

validation metric.

The Intersection over Union (IoU), also called the Jaccard index, is a similarity measure 

between a finite number of sets. For two segmentation masks Xe (expert manual ground 

truth) and Xa (automated segmentation), it can be defined as follows:

J Xe, Xa = Xe ∩ Xa
Xe ∪ Xa

= Xe ∩ Xa
Xe + Xa − Xe ∩ Xa

.

As mentioned in section 2.3.2, we used the IoU score to compare the models during 

validation and determine when to stop the training.

The Volumetric Dice Similarity Coefficient (VDSC) is a voxel-wise measure of the overlap 

of two image regions. It normalizes the overlap size to the average size of the two structures:

VDSC Xe, Xa = 2 . Xe ∩ Xa
Xe + Xa

,

where Xe represents the expert manual ground truth and Xa represents the automated 

segmentation. The VDSC ranges from 0 to 1, where 1 indicates perfect performance. A 

larger VDSC corresponds to a higher degree of coincidence between the auto-segmented and 

ground truth volumes.

The Surface Dice Similarity Coefficient (SDSC) [26] calculates the distance between two 

surfaces relative to a given tolerance τ, providing a measure of agreement between the 

borders of manually and automatically defined structures:

SDSC Se, Sa, Be, Ba = Se ∩ Ba + Sa ∩ Be
Se + Sa

,

where Se, Sa are surface areas of structures e (expert manual ground truth) and a (automated 

segmentation). Be (resp. Ba) is the surface area of the part of Se (resp. Sa) such that any voxel 

in this part is no further than τ from Sa (resp. Se). The SDSC ranges from 0 to 1, representing 

the fraction of the structure border that must be manually corrected because it deviates from 

the ground truth by more than the acceptable distance defined by the tolerance τ.

In this study, we report results for the 2 mm and 3 mm distance tolerances τ.

We calculated the shortest distances between structures in the 3-dimensional space. 

Specifically, the 2 mm SDSC considers a predicted contour that is one perpendicular pixel 

apart from the ground truth as correct, while the 3 mm SDSC considers a predicted contour 

that is one diagonal pixel apart (i.e., 2 2 ≈ 2.83 mm) from the ground truth as correct. 

The selection of 2 mm and 3 mm thresholds was driven by computational and clinical 

considerations. Since we had previously chosen a 2 mm image resolution to ensure adequate 

resolution for future treatment planning and faster, more stable deep learning model training, 
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evaluating for a finer threshold was not appropriate. Conversely, selecting a threshold greater 

than 3 mm was deemed too clinically imprecise for accurate radiotherapy planning.

The Average Symmetric Surface Distance (ASSD) [27] is the average of all the shortest 

distances from points on the boundary of the machine segmented region to the boundary of 

the ground truth, and vice versa. The ASSD, therefore, complements the previous metrics 

by taking voxel localization into consideration. Smaller values represent better segmentation 

accuracy.

2.6. Qualitative assessment of the segmentation

A separate expert radiation oncologist assessed the average amount of editing time necessary 

for clinical use of the ground truth, the best standalone model with respect to VDSC 

(Residual 3D U-Net Dice), and optimal ensemble contours, for five random patients from 

the test set. We previously anonymized each contour to avoid a biased evaluation. The 

radiation oncologist examined all muscle and GTV contours on every single slice of each 

patient to make their evaluation. We also asked this expert radiation oncologist to determine 

the typical faults made by the models for every structure segmentation.

3. Results

3.1. Quantitative assessment

The performance of the two ensemble models and six base learners is shown in Table 1a. 

We report the average, standard deviation, and performance range of each model for each 

metric. We found that the ensembles perform consistently better than the standalone models: 

they have a higher average and a lower variance. Moreover, each standalone model has at 

least one poor score for one of the patients and structures, while the ensemble models never 

suffer such degradation. For instance, among the 6 × 6 = 36 (standalone models, structure) 

VDSC (respectively ASSD) worst scores (i.e., the minimum of the metric range), the two 

ensemble models had a better minimum range 31 (resp. 35) times.

The average ensemble (resp. optimal ensemble) improves the top-performing standalone 

model with respect to each metric by an average of 1.5% (resp. 1.7%) on VDSC, 2.8% (resp. 

3.3%) on SDSC 2 mm, 2.1% (resp. 2.5%) on SDSC 3 mm, and 11% (resp. 14%) on ASSD.

We saw a very high and stable performance of the ensembles on the Gluteus Maximus, 

Gluteus Medius, and Paraspinal muscles, with scores above 90% for VDSC, SDSC 2 

mm, and SDSC3 mm. We noticed, in general, high performance on the GTV and Gluteus 

minimus with an average VDSC above 85%. The Piriformis muscle had the lowest 

performance, although it maintained scores above 77%. Across structures, the VDSC 

standard deviations were within 1 – 3%, except for GTV (around 6.5% for the ensembles) 

and Piriformis (in the 5% for the ensembles).

The average ensemble (resp. optimal ensemble) has an average VDSC standard deviation 

37% (resp. 36%) lower than the best standalone model with respect to VDSC, an average 

SDSC 3 mm standard deviation 14% (resp. 15%) lower than the best standalone model with 

Boussioux et al. Page 9

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respect to SDSC 3 mm, and an average ASSD standard deviation 0% (resp. 14%) lower than 

the best standalone model with respect to ASSD.

The different SDSC thresholds show that most contours are within one diagonal pixel away 

from the ground truth. With the optimal ensemble, the average SDSC 3 mm is higher than 

89% for all structures except for the GTV (74%). The average SDSC 2 mm results show that 

both ensembles have very strong performance for G. Maximus, G. Medius, G. Minimus, and 

Paraspinal (88%+) and strong performance for the Piriformis (82%+). The average ASSD 

scores confirm this conclusion: under 1.1 mm for all structures, except Piriformis (under 1.6 

mm) and GTV (under 2.7 mm).

The results on the outlier test set, in Table 1b, show the performance of the ensemble models 

decreases but still maintains a VDSC within 80–90% for all structures and an SDSC 3 mm 

higher than 80% for all structures except the GTV, where it reaches 51%. The ASSD also 

increases for all structures, most notably for the GTV (7.0 mm on the outlier test set vs. 

2.6 mm on the test set for the optimal ensemble). On the outlier test set, the two ensemble 

models no longer systematically outperform the best standalone model for every structure. 

However, they are the only models to maintain consistent performance, at least always close 

to the best one reported.

Qualitative Assessment.—We report the qualitative assessment results in Table 1c.

In particular, the best standalone model with respect to VDSC would require the same 

amount of editing as the ground truth contours for all structures and patients: on average, 

under 3 minutes for muscles and under 6 minutes for the GTV. The optimal ensemble 

contours would require, on average, under 3 minutes to correct each structure except for the 

Gluteus Maximus (4 minutes) and GTV (11 minutes).

Although our automated muscle segmentation can provide reasonably accurate muscle 

contours, including most muscle origins and insertions, we noted some potential limitations 

and areas for improvement. Firstly, while the gluteus maximus contours were largely 

accurate, there were minor areas where their origins were not predicted with complete 

fidelity. Overall, the paraspinal muscles demonstrated good accuracy in all patients, with 

only the superior border requiring slight improvements. The gluteus medius and gluteus 

minimus muscles had some issues with their distal edges but were otherwise generally 

suitable for clinical use. The piriformis contours demonstrated some inaccuracies where 

the muscle inserted into the femur. Furthermore, delineating the tumor/bone interface can 

be difficult, as illustrated in Figure 3a, where the GTV extension through the bone is 

less defined. Finally, automated delineation of the tumor-muscle interface can also be 

challenging, mainly where tumor emboli invade muscles, as indicated by the green arrow in 

Figure 3b.
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4. Discussion

4.1. Results Interpretation

The high accuracy for automated contouring of the Gluteus muscles and Paraspinal is likely 

due to these muscles’ large size and generally consistent structure. The Piriformis has a 

slightly poorer performance, likely because of the thin shape of this muscle and the difficulty 

in distinguishing the boundary between the lateral edge of this muscle and the medial edge 

of the Gluteus Medius on axial imaging. The model achieves remarkably strong performance 

in general, including on the GTV, despite the variability of its shapes and textures in the 

images. Moreover, the qualitative assessment confirmed the very satisfactory performance 

for clinical use.

4.2. Ensemble Models Improve Score Performance and Decrease Variance

By incorporating various model predictions, ensemble models effectively leverage the 

insights obtained from multiple sources and provide more robust predictions. Table 1a 

shows that ensemble models largely outperform standalone models for the hardest patients. 

Ensembles advantageously smooth predictions and may avoid failures cases that a specific 

model may face for a specific patient. The ensemble models substantially reduced the 

variance across predictions, which is an important step toward offering physicians robust and 

stable treatment planning options. We further report t-tests comparing if the ensembles are 

significantly better than the standalone models in Appendix C.

It also appears possible to obtain valuable auto-delineations of relevant structures for CTV 

definition using training datasets from only 30 patients. It is remarkable and promising for 

other rare diseases when it is challenging to acquire large and consistent datasets.

4.3. Advantages of an Automated Approach

Overall, we conclude that AI-assisted muscle contouring and most of the GTV contouring 

along tumor-fat tissue planes would represent substantial time savings for clinical use. The 

manual labor of contouring sarcoma tumors and the surrounding muscles of interest is 

burdensome and tedious for physicians. Clinicians from [Anonymized Hospital] reported a 

typical 40-minute duration to contour muscles from all groups for one patient. The time 

required to contour the GTV could range from 10 minutes to an hour depending on its 

size, the reference sequence (e.g., additional availability of an MRI sequence), and the 

extent of tumor invasion into adjacent bone and muscle. In comparison, AI-assisted muscle 

contouring can typically save 30–80 minutes per patient.

Furthermore, at the [Anonymized Hospital], in the case of complex and large soft tissue 

sarcomas (such as retroperitoneal) or spine or pelvic bone sarcomas, the manual delineation 

can take up to several hours of the radiation oncologists’ time for a single patient. 

The automation of the proposed approach is easily applicable and understandable and 

offers excellent potential to relieve the physicians and free up time. We expect that our 

segmentation models could be extended to other important structures, such as cauda equina, 

sacral, sciatic nerves, rectum, and other pelvic organs, if the ground truth labels were 

available.
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4.4. Limitations

On the one hand, the optimal ensemble outperforms, in general, the best standalone model, 

particularly for the GTV segmentation. On the other hand, the qualitative analysis revealed 

that the optimal ensemble segmentation of the GTV would require more adjustments than 

the one from the best standalone model (11 minutes vs. 6 minutes on average). We explain 

this discrepancy by the subtle flaws in the ground truth contours of the GTV according to 

the independent assessment. Since the optimal ensemble is trained to replicate the ground 

truth even more closely, we conjecture that it is more susceptible to intra-observer variability 

and, thus, is less robust across physicians and may be more biased towards the contouring 

of those samples. This reflects the limitations of only using quantitative metrics and the 

importance of complementing with a qualitative clinical use assessment.

Furthermore, since we tackled a rare tumor type, we could only perform our study on a 

small dataset. While a single radiation oncologist generated the ground-truth contours of the 

muscle structures, the GTV contours were delineated by six different physicians over 20 

years, which may have led to different contouring styles. However, it appeared not to be a 

problem for our DL models, which displayed great generalization capacity.

The results of Table 1b suggest the models show lower performance when the tumor is 

huge. This is within expectation as no such cases were present in the training set, and 

extensive tumor growth can substantially deform adjacent muscles. A larger and more 

diverse training set would likely improve performance. However, although less accurate, our 

optimal ensemble remains a valuable tool for fast preliminary segmentation.

We also acknowledge that no dosimetric evaluation was performed. A geometric evaluation 

like the one investigated in this paper tends to show bigger differences than a dosimetric 

evaluation because physical phenomena such as radiation scattering blur out geometric 

differences and lead to more similar radiation dose distributions. Our evaluation can thus be 

considered a worst-case analysis.

Lastly, further preprocessing of the CT images could potentially improve performance: for 

example, by increasing the muscle-to-tumor contrast with specific windowing.

Moreover, although we demonstrated that CT images already yield sufficient predictive 

power, the ideal scenario would combine diagnostic MR images with CT images. MRI offers 

superior image contrast of soft tissue than CT and would provide an additional modality 

to analyze the same patient’s muscle and tumor structures. However, our methodology can 

scale to include other images: MR images can be input as additional channels into the 3D 

U-Nets, and the ensemble model would work similarly. It is also possible to train models on 

the MRI alone that could later be combined as distinct standalone models in the ensemble 

stage.

4.5. Towards Clinical Target Volume (CTV) Delineation

A standard CT simulation scan lacks intrinsic physiologic or anatomic compartment 

information, making it necessary for annotators to rely on their expertise to identify relevant 

structures. The CTV delineation process is complex and requires incorporating information 
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about the natural history of a particular tumor’s modes of local extension based on patterns 

of failure after surgery and/or radiation therapy, as well as anatomic factors that affect tumor 

dissemination (i.e., fascial barriers to spread).

The automated method of segmenting GTV and surrounding muscles offers several benefits 

to physicians. The technique represents a critical first step toward automating the CTV 

delineation process and subsequent treatment planning by accurately identifying natural 

anatomical barriers and musculoskeletal compartments that are not typically delineated for 

treatment planning purposes and which otherwise require advanced expertise in recognizing 

anatomy on CT scans. The automated process also incorporates prior experience information 

to guide CTV delineation and make it more efficient. Given the rarity of chordomas and 

other sarcomas in this region, this AI-based tool may prove invaluable in improving target 

delineation for less experienced clinicians.

5. Conclusion

When combined with ensemble modeling, deep learning methods can effectively solve 

segmentation problems for rare tumor types, such as sacral chordomas, that typically 

require substantial clinical expertise for appropriate target delineation. Our analysis of 

48 patients demonstrates the ability to reliably auto-segment the GTV and surrounding 

muscle structures. Overall, we highlight the power of an optimal ensemble which provides 

a quantifiable advantage, improving the top-performing standalone model by an average 

of 2% on VDSC and 14% on ASSD. We also qualitatively evaluated and demonstrated 

a substantial reduction of time spent on manual labor for physicians when using machine-

generated contours. Despite the difficulty at the muscle and tumor interface, the automated 

definitions serve as valuable starting points for clinicians, making the final modifications and 

confirmation a quick and easy task.
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Appendix

A.: Data

CT Image Acquisition

The CT scans were acquired with a GE scanner following the standard protocol for 

radiotherapy treatment planning. The image acquisition was performed in prone (n=45) and 

supine (n=3) positions. The initial CT image resolutions are listed in Table 2.

GTV Contouring Procedure

All GTV contouring procedures were executed by radiation oncologists with specialized 

expertise in sarcoma treatment. Before 2015, additional staff members participated 

in the peer review of contours and treatment plans during weekly chart rounds. In 

2015, [Anonymized Hospital] introduced a contour review system that incorporated 

the involvement of an additional radiation oncologist, also with sarcoma subspecialty 

expertise, before commencing the treatment planning process. At this point, 3–4 radiation 

oncologists managed these patients, ensuring that at least one participated in contour 

review. Furthermore, the treatment plans continued to undergo peer review by multiple staff 

members during weekly chart rounds as before.

CT Image Pre-processing

This section outlines more precisely our pipeline to pre-process the data.

1. CT scans and RT structures were converted to MHA format.

2. We manually fixed some CT image orientations, which were found to be 

wrongly recorded due to the patient’s prone vs. supine position during CT image 

acquisition. Moreover, we recentered the offsets of all image sequences to be 

observed in the same field of view by applying axial translations in 3D Slicer.

3. We rigidly aligned all images to Right-Anterior-Inferior (RAI) anatomical 

position and applied a transformation to align all patients to one randomly 

selected reference based on the pelvic bony anatomy. The resulting 

transformation was applied to the structure files for alignment. We used a rigid 

registration with 6 degrees of freedom to assign voxel positions of each image 

relative to one common coordinate system.

4. We resampled image and structure files to the same 2 × 2 × 2 mm resolution 

with linear interpolation applied to the images and nearest-neighbor interpolation 

applied to the structures. The 2 × 2 × 2 mm element spacing ensured sufficient 

resolution for future treatment planning and faster and more stable DL model 

training.

5. We manually merged all structure segmentation into a single image file.

6. We manually cropped all images to restrict the field of interest as the smallest 

bounding box that contained all structures segmented in all patients (see Figure 
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1 as an example). If needed, we padded the images on all 3 axes to obtain a 

standard final image dimension of 182 × 157 × 216 voxels, where one voxel still 

corresponds to a 2 mm cube.

7. We re-scaled each image so that voxel values had zero mean and unit variance by 

calculating the mean and standard deviation of the Hounsfield units of all voxels 

in a given CT image and then subtracting from each voxel the mean and dividing 

by the standard deviation.

The final image sequences had 8 anatomical structures: 5 left-right merged muscle 

structures, sarcoma GTV, other areas inside the body of no interest in this study, and areas 

outside of the body (see Figure 1).

We converted all data from DICOM image sequences to .mha files for image processing, 

which we then converted to .h5 files for model training and testing.

B.: U-Net Architectures Details

As suggested by [17] and [18], we used the following specific hyperparameters for our 3D 

U-Nets and Residual 3D U-Nets:

• 64 feature maps at each level of the encoder,

• For each block, a layer order of group normalization, 3D convolution operation, 

and ReLU activation function,

• 8 groups for the GroupNorm operation,

• 4 levels in the encoder/decoder path for the 3D U-Nets and 5 levels for the 

Residual 3D U-Nets (since the model effectively becomes a residual net, it 

allows for deeper networks).

• 1-pixel zero-padding added to all three sides of the input,

• Size of the convolving kernel in the basic blocks: 3,

• Size of the window in the pooling operation: 2,

• Nearest neighbor upsampling in the decoder for 3D U-Nets and transposed 

convolutions for upsampling in the decoder for Residual 3D U-Nets.

We based our U-Net architecture and training code from [28].

3D U-Net Hyperparameter Search

For each one of the six (loss, architecture) combinations, we concurrently validated the 

following hyperparameters in the provided sets:

• the Adam optimizer learning rate: [5 ⋅ 10−5, 10−4, 3 ⋅ 10−4, 5 ⋅ 10−4, 7 ⋅ 10−4, 

10−3]

• learning rate scheduler: learning rate×[1, 0.7, 0.5] every [5, 10, 15] epochs
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• weight decay (L2 weight regularization): [0, 10−6, 10−5, 5 ⋅ 10−5, 10−4, 5 ⋅ 10−4, 

10−3]

• image patch shape: [128 × 128 × 128, 64 × 64 × 64, 32 × 32 × 32]

• stride shape: [32 × 32 × 32, 32 × 32 × 64, 16 × 16 × 32, 16 × 16 × 16, 8 × 8 × 16]

For the specific case of the weighted-cross-entropy loss, once we found the best 

hyperparameters corresponding to the standard cross-entropy loss, we fixed these 

hyperparameters and validated the weights given to each class in the weighted-

cross-entropy loss. We tested the following weights with the intuition that we 

wanted to increase the weight on the hardest classes to predict (GTV, G. minimus, 

Piriformis): [(0.25,0.1,0.1,0.1,0.15,0.2,0.05,0.05), (0.25,0.05,0.05,0.25,0.05,0.25,0.05,0.05), 

(0.2,0.1,0.1,0.2,0.1,0.2,0.05,0.05), (0.3,0.05,0.05,0.1,0.1,0.3,0.05,0.05)], where we give 

tuples corresponding to (GTV, G. Maximus, G. Medius, G. Minimus, Paraspinal, Piriformis, 

Out-of-the-body regions, In-the-body regions of no interest).

The hyperparameter search revealed the following insights:

• The Adam optimizer learning rate was the best in the ballpark of 10−4 as smaller 

led the model to train too slowly, and larger led to less stable training and poorer 

generalization.

• The learning rate scheduler was not the most crucial hyperparameter, but it was 

important to decrease the learning rate during the training process to refine the 

weights.

• The weight decay had to be present but low enough.

• The image patch shape was a critical factor: too small led to much slower 

training and poorer generalization as the model had less context for predictions.

• The stride shape was less crucial. It was a trade-off to avoid too many or too few 

samples from each image sequence.

• The weights of the weighted-cross-entropy loss subtly impacted the 

performance; different combinations had about the same results.

C.: Statistical Tests

We conducted t-tests to investigate whether the performance of the average or optimal 

ensembles surpassed that of each standalone model across the four metrics and six 

anatomical structures. We employed a two-stage Benjamini and Hochberg procedure for 

non-negative multiple comparisons correction with a false discovery rate of 0.1 [29]. 

We conducted the tests for every combination of metric and structure, comparing each 

standalone model against the average or optimal ensemble. Subsequently, we corrected 

the p-values model-wise across the six structures under investigation. We reported the 

corrected p-values in Tables 3a (Standalone Models vs. Average Ensemble) and 3b 

(Standalone Models vs. Optimal Ensemble). We observe many statistically significant model 

comparisons at the 0.2 level, indicating that both the average and optimal ensemble models 

perform significantly better than individual models across several structures and metrics. 
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However, it is important to exercise caution when interpreting the results of the statistical 

testing due to the limited sample size of the validation cohort. All statistical analysis was 

executed in Python using the scikit-learn [30] and statsmodels packages [31].
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Figure 1: 
Illustration of an axial CT slice (left) from two different patients after processing the full 

image. We show the manual segmentation (center) and the final automated segmentation 

(right) using our optimal ensemble model.
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Figure 2: 
Illustration of the pipeline to utilize the different top standalone models (base learners) into 

the average and optimal ensemble.
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Figure 3a: 
Example of a patient where the extension of the average ensemble GTV contour (magenta) 

through the bone does not match the ground truth contour (green) and would require 

adjustments before clinical use.
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Figure 3b: 
Example of a patient where the interface delineation between the GTV (green contour) and 

muscle (yellow contour) is harder because tumor emboli are invading into muscle (area with 

red dashes in the figure).
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Table 1a:

Segmentation results for each structure averaged over the 8 test patients. We provide the standard deviation 

and range of the results. The best performance for each metric is in bold.

Model Metric GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net 
Dice

VDSC

82.8 ± 5.7 
(73.6,90.1)

93.9 ± 1.5 
(91.3,95.8)

92.3 ± 0.8 
(91.2,93.4)

84.3 ± 2.5 
(79.5,88.8)

90.6 ± 1.1 
(88.4,91.9)

74.7 ± 7.3 
(62.6,84.5)

3D U-Net 
Cross-entropy

82.7 ± 6.6 
(70.0,89.6)

93.6 ± 2.0 
(89.4,95.8)

91.6 ± 1.0 
(90.3,93.0)

84.1 ± 2.3 
(80.5,87.4)

91.8 ± 0.8 
(90.5,92.9)

73.6 ± 6.4 
(58.0,79.4)

3D U-Net 
Weighted 

cross-entropy

79.3 ± 11.2 
(52.2,88.8)

93.5 ± 1.7 
(90.7,95.4)

91.7 ± 1.0 
(89.9,93.2)

82.9 ± 2.1 
(79.1,86.2)

91.2 ± 3.1 
(83.6,94.3)

68.9 ± 7.5 
(52.2,77.5)

Residual 3D 
U-Net Dice

81.8 ± 14.7 
(43.8,91.0)

94.0 ± 1.7 
(90.7,96.0)

92.1 ± 1.1 
(90.3,93.4)

83.3 ± 2.6 
(79.1,86.5)

90.7 ± 3.0 
(83.1,93.0)

77.1 ± 6.1 
(68.9,84.5)

Residual 3D 
U-Net Cross-

entropy

83.1 ± 7.1 
(71.1,91.4)

93.1 ± 2.6 
(87.0,95.6)

90.2 ± 1.6 
(87.6,92.4)

80.7 ± 5.2 
(70.4,88.0)

91.3 ± 1.8 
(87.2,93.8)

72.2 ± 9.3 
(49.3,81.9)

Residual 3D 
U-Net 

Weighted 
Cross-entropy

83.4 ± 8.2 
(64.7,90.0)

94.0 ± 1.5 
(91.0,95.5)

91.4 ± 1.1 
(89.5,92.7)

82.8 ± 2.8 
(78.6,86.6)

91.5 ± 2.6 
(85.6,93.8)

74.5 ± 5.2 
(65.9,81.5)

Average 
Ensemble

85.1 ± 6.5 
(70.5,91.5)

94.4 ± 1.6 
(91.3,96.1)

92.6 ± 0.9 
(91.1,93.7)

85.0 ± 2.7 
(81.4,90.1)

92.2 ± 1.3 
(89.3,93.3)

77.7 ± 5.4 
(66.5,84.9)

Optimal 
Ensemble

85.5 ± 6.4 
(70.7,91.5)

94.4 ± 1.5 
(91.6,95.9)

92.6 ± 0.9 
(91.1,93.7)

85.0 ± 2.7 
(81.7,89.9)

92.1 ± 1.5 
(88.6,93.4)

78.3 ± 5.7 
(67.4,85.3)

3D U-Net 
Dice

SDSC 2 
mm

61.0 ± 7.5 
(49.0,70.2)

90.4 ± 5.0 
(80.8,96.6)

91.2 ± 2.2 
(86.4,93.9)

86.6 ± 5.1 
(77.8,94.3)

88.2 ± 3.5 
(82.7,93.8)

80.5 ± 8.7 
(63.0,91.9)

3D U-Net 
Cross-entropy

60.2 ± 8.7 
(49.1,73.7)

89.1 ± 5.6 
(77.2,93.9)

89.3 ± 2.4 
(85.1,93.3)

86.6 ± 3.8 
(80.1,91.4)

90.8 ± 4.1 
(83.6,96.8)

75.9 ± 8.6 
(56.9,86.0)

3D U-Net 
Weighted 

cross-entropy

53.4 ± 12.9 
(30.6,73.7)

88.6 ± 5.2 
(79.7,96.8)

89.3 ± 2.9 
(82.3,91.8)

84.3 ± 3.6 
(78.2,89.8)

90.3 ± 3.8 
(84.3,95.8)

71.5 ± 8.8 
(52.0,82.2)

Residual 3D 
U-Net Dice

61.1 ± 16.9 
(21.1,79.5)

90.4 ± 5.9 
(77.3,97.1)

90.3 ± 1.9 
(87.2,92.7)

85.7 ± 4.0 
(78.0,92.1)

88.8 ± 3.8 
(82.2,94.2)

81.6 ± 7.8 
(71.1,90.8)

Residual 3D 
U-Net Cross-

entropy

62.1 ± 13.4 
(35.4,77.7)

87.8 ± 7.6 
(69.9,94.5)

84.0 ± 4.0 
(78.4,91.6)

82.3 ± 8.5 
(63.2,93.5)

90.5 ± 2.9 
(85.5,93.8)

72.2 ± 10.8 
(46.8,85.5)

Residual 3D 
U-Net 

Weighted 
Cross-entropy

62.3 ± 10.5 
(47.9,74.5)

90.9 ± 4.7 
(81.6,96.5)

88.3 ± 3.1 
(82.7,92.2)

85.1 ± 5.1 
(74.1,91.9)

90.7 ± 4.1 
(81.3,95.1)

77.9 ± 6.9 
(67.9,88.0)

Average 
Ensemble

65.3 ± 9.1 
(54.1,80.5)

91.9 ± 5.1 
(80.9,96.8)

91.9 ± 2.5 
(86.2,94.5)

88.2 ± 5.1 
(77.5,96.1)

92.1 ± 2.5 
(86.5,95.2)

82.5 ± 7.2 
(67.5,92.5)

Optimal 
Ensemble

66.2 ± 9.1 
(55.1,81.6)

92.2 ± 4.8 
(82.0,97.0)

91.9 ± 2.4 
(86.6,94.9)

88.3 ± 5.1 
(77.4,95.7)

92.0 ± 2.7 
(85.6,95.2)

83.9 ± 7.5 
(69.5,93.9)

3D U-Net 
Dice

SDSC 3 
mm

68.1 ± 7.1 
(57.0,78.0)

94.1 ± 3.8 
(86.3,98.1)

95.4 ± 1.8 
(91.3,97.5)

91.0 ± 4.0 
(84.1,96.9)

93.1 ± 3.0 
(87.1,97.1)

86.0 ± 8.0 
(69.4,95.4)

3D U-Net 
Cross-entropy

68.0 ± 8.1 
(57.9,81.0)

93.3 ± 4.7 
(82.1,96.6)

94.4 ± 2.0 
(90.5,97.5)

91.1 ± 3.4 
(85.6,95.6)

94.8 ± 2.7 
(89.8,98.5)

82.3 ± 8.1 
(63.4,90.1)

3D U-Net 
Weighted 

cross-entropy

62.0 ± 13.6 
(36.0,81.4)

92.9 ± 4.3 
(84.4,98.8)

94.4 ± 2.3 
(88.5,96.4)

89.4 ± 2.9 
(85.1,94.5)

94.3 ± 2.9 
(89.3,98.2)

79.3 ± 9.3 
(58.0,90.5)

Residual 3D 
U-Net Dice

68.4 ± 17.5 
(25.3,86.2)

94.2 ± 4.6 
(83.4,98.5)

94.4 ± 1.6 
(91.2,96.0)

90.1 ± 3.6 
(82.9,95.8)

92.6 ± 3.1 
(87.9,96.2)

87.1 ± 6.7 
(77.8,95.3)
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Model Metric GTV G. maximus G. medius G. minimus Paraspinal Piriformis

Residual 3D 
U-Net Cross-

entropy

69.6 ± 12.3 
(44.2,83.5)

92.0 ± 6.7 
(75.3,97.1)

89.7 ± 3.5 
(83.7,95.1)

87.4 ± 7.4 
(70.3,96.4)

94.5 ± 1.9 
(91.3,97.1)

78.5 ± 9.9 
(54.6,89.4)

Residual 3D 
U-Net 

Weighted 
Cross-entropy

71.0 ± 10.2 
(56.1,83.4)

94.6 ± 3.8 
(86.0,98.4)

93.4 ± 2.6 
(88.2,96.0)

89.6 ± 4.7 
(79.7,95.6)

94.5 ± 3.1 
(87.4,97.3)

85.3 ± 6.6 
(75.5,94.0)

Average 
Ensemble

72.9 ± 7.9 
(63.5,85.8)

95.3 ± 4.1 
(85.4,98.7)

95.9 ± 2.0 
(90.8,97.4)

91.9 ± 4.2 
(82.9,98.2)

95.7 ± 1.8 
(91.5,97.3)

87.9 ± 6.6 
(73.5,96.1)

Optimal 
Ensemble

73.7 ± 7.7 
(63.3,85.9)

95.5 ± 3.7 
(86.9,98.6)

95.8 ± 2.0 
(91.0,97.6)

92.0 ± 4.3 
(82.6,97.8)

95.5 ± 1.9 
(91.0,97.3)

89.0 ± 6.9 
(75.1,97.2)

3D U-Net 
Dice

ASSD

3.7 ± 1.4 
(2.1,6.3)

1.2 ± 0.5 
(0.6,2.2)

0.9 ± 0.1 
(0.8,1.1)

1.2 ± 0.3 
(0.8,1.6)

1.1 ± 0.2 
(0.6,1.4)

1.9 ± 0.9 
(0.9,3.3)

3D U-Net 
Cross-entropy

3.3 ± 0.9 
(2.1,4.7)

1.4 ± 1.0 
(0.7,3.9)

1.0 ± 0.1 
(0.9,1.2)

1.2 ± 0.3 
(0.9,1.7)

0.9 ± 0.3 
(0.5,1.4)

2.3 ± 1.0 
(1.4,4.6)

3D U-Net 
Weighted 

cross-entropy

4.7 ± 3.4 
(1.9,13.4)

1.5 ± 0.8 
(0.6,3.5)

1.0 ± 0.1 
(0.9,1.3)

1.4 ± 0.2 
(1.0,1.8)

1.0 ± 0.3 
(0.6,1.4)

2.6 ± 1.5 
(1.3,6.4)

Residual 3D 
U-Net Dice

5.0 ± 6.1 
(1.6,20.9)

1.2 ± 0.9 
(0.6,3.5)

1.0 ± 0.1 
(0.8,1.1)

1.3 ± 0.2 
(0.9,1.6)

1.0 ± 0.2 
(0.6,1.3)

1.6 ± 0.6 
(0.9,2.6)

Residual 3D 
U-Net Cross-

entropy

3.5 ± 2.1 
(1.9,8.3)

1.7 ± 1.8 
(0.7,6.4)

1.3 ± 0.2 
(0.9,1.6)

1.5 ± 0.6 
(0.8,2.7)

0.9 ± 0.1 
(0.8,1.1)

3.4 ± 1.2 
(2.2,6.0)

Residual 3D 
U-Net 

Weighted 
Cross-entropy

3.0 ± 0.9 
(1.8,4.3)

1.1 ± 0.6 
(0.6,2.5)

1.1 ± 0.2 
(0.9,1.4)

1.3 ± 0.3 
(0.9,1.8)

0.9 ± 0.2 
(0.7,1.3)

1.8 ± 0.6 
(1.1,2.6)

Average 
Ensemble

2.7 ± 0.8 
(1.6,3.7)

1.1 ± 0.7 
(0.6,2.9)

0.9 ± 0.1 
(0.7,1.1)

1.1 ± 0.3 
(0.6,1.6)

0.8 ± 0.2 
(0.6,1.1)

1.6 ± 0.7 
(0.9,3.2)

Optimal 
Ensemble

2.6 ± 0.8 
(1.5,3.6)

1.0 ± 0.4 
(0.6,2.0)

0.9 ± 0.1 
(0.7,1.1)

1.1 ± 0.3 
(0.6,1.6)

0.8 ± 0.2 
(0.6,1.1)

1.5 ± 0.6 
(0.8,2.9)
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Table 1b:

Segmentation results for each structure averaged over the 5 outlier test patients. We provide the standard 

deviation and range of the results. The best performance for each metric is in bold.

Model Metric GTV G. maximus G. medius G. minimus Paraspinal

3D U-Net Dice

VDSC

81.1 ± 7.4 
(69.5,90.7)

85.4 ± 6.6 
(73.8,93.3)

88.1 ± 4.6 
(79.0,91.6)

83.7 ± 3.4 
(77.9,86.7)

78.9 ± 10.4 
(67.9,91.8)

3D U-Net Cross-
entropy

81.4 ± 6.0 
(73.0,90.9)

87.2 ± 2.8 
(83.2,91.7)

88.3 ± 3.9 
(80.7,91.1)

81.2 ± 3.7 
(74.4,84.4)

79.5 ± 9.6 
(69.5,92.2)

3D U-Net 
Weighted cross-

entropy

82.7 ± 6.8 
(72.8,93.0)

85.0 ± 5.2 
(77.0,91.1)

87.8 ± 4.1 
(80.6,91.7)

82.5 ± 3.2 
(76.7,86.1)

78.0 ± 15.4 
(50.5,92.8)

Residual 3D U-
Net Dice

82.0 ± 6.9 
(72.6,90.9)

87.1 ± 3.9 
(81.1,93.0)

88.9 ± 3.4 
(82.6,92.2)

81.9 ± 4.2 
(74.5,86.1)

84.7 ± 7.2 
(71.9,93.2)

Residual 3D U-
Net Cross-

entropy

78.4 ± 6.8 
(68.2,88.3)

85.4 ± 2.6 
(81.9,88.4)

84.8 ± 4.8 
(75.5,88.7)

79.2 ± 6.5 
(66.7,84.8)

81.9 ± 9.8 
(64.0,92.1)

Residual 3D U-
Net Weighted 
Cross-entropy

78.8 ± 5.0 
(71.4,86.2)

86.5 ± 3.6 
(80.2,91.3)

88.5 ± 3.1 
(83.2,92.0)

81.7 ± 4.4 
(74.2,87.4)

85.7 ± 7.0 
(74.7,92.8)

Average 
Ensemble

82.1 ± 6.4 
(72.9,91.7)

87.9 ± 3.1 
(82.4,91.5)

89.4 ± 3.3 
(83.1,92.0)

83.6 ± 3.6 
(77.2,87.5)

83.8 ± 7.0 
(75.0,93.1)

Optimal 
Ensemble

81.9 ± 6.6 
(72.6,91.8)

87.8 ± 3.1 
(82.4,91.1)

89.4 ± 3.2 
(83.3,92.1)

83.4 ± 3.9 
(76.4,87.7)

84.9 ± 6.6 
(75.0,93.2)

3D U-Net Dice

SDSC 2 
mm

41.7 ± 9.6 
(27.1,52.6)

71.8 ± 11.7 
(54.6,89.4)

82.8 ± 5.6 
(72.0,87.5)

84.8 ± 4.3 
(77.2,90.3)

68.2 ± 17.2 
(40.0,87.6)

3D U-Net Cross-
entropy

40.8 ± 8.5 
(29.6,52.8)

73.8 ± 7.9 
(66.0,87.5)

83.0 ± 5.1 
(73.3,87.2)

80.7 ± 6.0 
(70.1,87.5)

68.5 ± 16.6 
(45.9,90.2)

3D U-Net 
Weighted cross-

entropy

46.9 ± 10.9 
(32.8,64.3)

71.2 ± 8.4 
(60.4,84.7)

81.6 ± 5.9 
(72.3,89.6)

82.7 ± 5.6 
(75.6,90.6)

69.2 ± 22.4 
(33.6,92.1)

Residual 3D U-
Net Dice

45.3 ± 10.2 
(34.3,61.7)

76.2 ± 8.6 
(66.6,88.4)

83.9 ± 6.7 
(72.1,91.7)

83.4 ± 6.1 
(74.2,90.3)

78.5 ± 11.6 
(61.4,93.3)

Residual 3D U-
Net Cross-

entropy

35.5 ± 7.3 
(26.4,45.5)

72.0 ± 7.1 
(64.5,82.1)

74.3 ± 7.8 
(59.8,82.0)

77.7 ± 9.6 
(60.5,89.2)

74.3 ± 13.4 
(50.7,89.9)

Residual 3D U-
Net Weighted 
Cross-entropy

43.8 ± 6.4 
(35.1,52.4)

76.8 ± 6.6 
(69.1,88.5)

81.6 ± 6.1 
(71.2,87.9)

81.9 ± 6.0 
(72.3,87.8)

81.2 ± 9.6 
(64.2,92.0)

Average 
Ensemble

44.0 ± 8.7 
(31.0,55.9)

76.7 ± 7.7 
(67.2,88.8)

85.0 ± 5.3 
(75.1,89.7)

85.0 ± 5.5 
(76.1,91.0)

76.5 ± 13.4 
(56.6,92.4)

Optimal 
Ensemble

44.2 ± 8.7 
(31.6,56.4)

76.9 ± 7.4 
(67.9,88.4)

84.9 ± 5.5 
(74.7,90.1)

84.9 ± 5.8 
(75.4,90.9)

79.3 ± 10.6 
(66.3,93.0)

3D U-Net Dice

SDSC 3 
mm

49.2 ± 10.8 
(33.3,62.8)

78.3 ± 11.0 
(61.5,94.1)

88.5 ± 5.1 
(78.3,92.2)

90.4 ± 3.3 
(84.7,94.1)

74.6 ± 15.9 
(49.4,92.5)

3D U-Net Cross-
entropy

48.1 ± 9.6 
(35.9,62.6)

80.1 ± 6.9 
(72.4,91.9)

88.6 ± 4.4 
(80.3,92.4)

87.1 ± 5.1 
(78.6,92.2)

74.9 ± 16.0 
(55.5,94.5)

3D U-Net 
Weighted cross-

entropy

54.0 ± 11.7 
(39.2,73.3)

76.7 ± 9.3 
(63.4,90.3)

87.4 ± 5.2 
(79.1,94.0)

88.4 ± 4.8 
(83.1,94.9)

74.3 ± 22.0 
(38.1,96.0)

Residual 3D U-
Net Dice

52.4 ± 11.6 
(39.3,69.6)

81.8 ± 7.8 
(71.5,93.0)

89.2 ± 5.8 
(79.6,95.6)

89.4 ± 5.3 
(81.9,94.3)

83.5 ± 10.8 
(64.9,96.3)
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Model Metric GTV G. maximus G. medius G. minimus Paraspinal

Residual 3D U-
Net Cross-

entropy

42.1 ± 8.3 
(31.6,51.9)

78.0 ± 5.8 
(70.9,86.2)

81.6 ± 7.1 
(68.8,88.2)

84.3 ± 8.9 
(67.9,93.9)

79.7 ± 13.7 
(54.2,93.7)

Residual 3D U-
Net Weighted 
Cross-entropy

50.0 ± 7.4 
(39.8,60.5)

82.3 ± 6.1 
(73.6,92.4)

87.7 ± 5.2 
(78.6,92.5)

87.4 ± 5.5 
(79.4,92.4)

85.8 ± 9.7 
(68.2,95.6)

Average 
Ensemble

51.3 ± 10.0 
(36.8,66.1)

82.7 ± 6.8 
(73.1,92.7)

90.2 ± 4.5 
(82.0,94.4)

90.5 ± 4.5 
(84.0,94.7)

82.1 ± 11.7 
(67.4,95.9)

Optimal 
Ensemble

51.4 ± 10.1 
(37.1,66.6)

82.8 ± 6.7 
(73.2,92.4)

90.1 ± 4.7 
(81.7,94.6)

90.3 ± 4.9 
(83.2,94.7)

84.6 ± 9.6 
(69.9,96.3)

3D U-Net Dice

ASSD

7.1 ± 3.5 
(3.5,13.0) 2.8 ± 1.4 (1.0,5.0) 1.9 ± 1.2 (1.1,4.2) 1.3 ± 0.2 (1.0,1.7) 2.5 ± 1.3 (1.1,4.4)

3D U-Net Cross-
entropy

6.8 ± 3.1 
(3.3,12.1) 2.8 ± 1.2 (1.3,4.9) 1.8 ± 0.8 (1.2,3.3) 1.6 ± 0.4 (1.2,2.2) 4.2 ± 3.9 

(1.0,11.4)

3D U-Net 
Weighted cross-

entropy

6.3 ± 3.1 
(2.5,11.2)

6.2 ± 7.1 
(1.4,20.3) 2.3 ± 1.1 (1.1,4.3) 1.4 ± 0.3 (1.0,1.8) 3.0 ± 2.7 (0.9,8.1)

Residual 3D U-
Net Dice

6.8 ± 3.3 
(3.1,12.0) 2.4 ± 0.9 (1.1,3.8) 1.7 ± 0.8 (1.0,3.1) 1.5 ± 0.4 (1.0,2.2) 2.8 ± 3.0 (0.8,8.7)

Residual 3D U-
Net Cross-

entropy

8.1 ± 3.6 
(4.3,14.4) 3.3 ± 1.5 (1.9,6.3) 2.4 ± 0.8 (1.7,3.9) 1.9 ± 0.8 (1.1,3.3) 3.2 ± 3.3 (1.0,9.8)

Residual 3D U-
Net Weighted 
Cross-entropy

7.6 ± 2.8 
(4.6,12.2) 2.5 ± 0.9 (1.4,4.1) 1.7 ± 0.5 (1.2,2.6) 1.5 ± 0.4 (1.2,2.2) 1.8 ± 1.1 (0.9,3.9)

Average 
Ensemble

6.9 ± 3.4 
(3.0,12.5) 2.3 ± 0.8 (1.4,3.5) 1.6 ± 0.7 (1.0,2.9) 1.3 ± 0.3 (0.9,1.8) 2.0 ± 1.1 (0.8,3.9)

Optimal 
Ensemble

7.0 ± 3.4 
(3.0,12.6) 2.3 ± 0.8 (1.4,3.6) 1.6 ± 0.7 (1.0,2.9) 1.3 ± 0.3 (0.9,1.8) 1.9 ± 1.1 (0.8,3.9)
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Table 1c:

Independent qualitative assessment by a separate expert radiation oncologist on 5 random patients from our 

test set. We report the range and average editing time in minutes necessary for clinical use.

Structure Ground Truth Best Model Optimal Ensemble

GTV 6 (3, 13) 6 (3, 8) 11 (7, 13)

Gluteus Maximus 2 (0, 4) 2 (0, 4) 4 (0, 7)

Gluteus Medius 2 (0, 4) 2 (0, 4) 2 (0, 4)

Gluteus Minimus 3 (1, 4) 3 (1, 4) 3 (1, 4)

Paraspinal 3 (1, 4) 3 (1, 4) 3 (1, 4)

Piriformis 3 (1, 4) 3 (1, 4) 3 (1, 4)
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Table 2:

Original resolutions of the image sequences of the 48 patients in our cohort.

Resolution (mm) Number of cases

1 × 1 × 2.5 22

0.9 × 0.9 × 2.5 10

1.3 × 1.3 × 2.5 4

1 × 1 × 3.75 4

0.8 × 0.8 × 3.75 3

0.9 × 0.9 × 3.75 2

1.8 × 1.8 × 2.5 1

0.7 × 0.7 × 2.5 1

1.8 × 1.8 × 5 1
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Table 3a:

Corrected p-values corresponding to each (metric, ensemble, standalone model vs. average ensemble) t-test.

ASSD Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.210 0.398 0.356 0.374 0.120 0.371

3D U-Net Cross-entropy 0.185 0.248 0.070 0.270 0.248 0.185

3D U-Net Weighted Cross-entropy 0.133 0.133 0.000 0.077 0.077 0.006

Residual 3D U-Net Dice 0.266 0.450 0.228 0.266 0.228 0.517

Residual 3D U-Net Cross-entropy 0.078 0.130 0.064 0.064 0.090 0.078

Residual 3D U-Net Weighted cross-entropy 0.347 0.385 0.050 0.283 0.283 0.347

VDSC Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.255 0.255 0.255 0.255 0.055 0.255

3D U-Net Cross-entropy 0.254 0.254 0.198 0.254 0.254 0.254

3D U-Net Weighted Cross-entropy 0.246 0.138 0.010 0.088 0.138 0.138

Residual 3D U-Net Dice 0.397 0.397 0.314 0.314 0.314 0.418

Residual 3D U-Net Cross-entropy 0.156 0.167 0.110 0.110 0.178 0.060

Residual 3D U-Net Weighted cross-entropy 0.337 0.337 0.132 0.234 0.337 0.274

SDSC2 Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.268 0.268 0.268 0.268 0.075 0.268

3D U-Net Cross-entropy 0.258 0.258 0.210 0.268 0.268 0.210

3D U-Net Weighted cross-entropy 0.202 0.110 0.000 0.091 0.110 0.056

Residual 3D U-Net Dice 0.362 0.362 0.288 0.332 0.210 0.415

Residual 3D U-Net Cross-entropy 0.031 0.047 0.031 0.032 0.047 0.022

Residual 3D U-Net Weighted cross-entropy 0.284 0.296 0.080 0.232 0.264 0.232

SDSC3 Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.342 0.342 0.342 0.342 0.198 0.342

3D U-Net Cross-entropy 0.280 0.293 0.270 0.339 0.293 0.270

3D U-Net Weighted cross-entropy 0.188 0.116 0.004 0.116 0.116 0.058

Residual 3D U-Net Dice 0.392 0.392 0.228 0.386 0.126 0.415

Residual 3D U-Net Cross-entropy 0.135 0.155 0.155 0.155 0.155 0.135

Residual 3D U-Net Weighted cross-entropy 0.385 0.385 0.186 0.360 0.360 0.360
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Table 3b:

Corrected p-values corresponding to each (metric, ensemble, standalone model vs. optimal ensemble) t-test.

ASSD Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.168 0.278 0.278 0.285 0.144 0.260

3D U-Net Cross-entropy 0.140 0.193 0.080 0.247 0.247 0.123

3D U-Net Weighted cross-entropy 0.116 0.116 0.000 0.072 0.096 0.002

Residual 3D U-Net Dice 0.252 0.312 0.246 0.252 0.246 0.314

Residual 3D U-Net Cross-entropy 0.053 0.061 0.037 0.037 0.065 0.037

Residual 3D U-Net Weighted cross-entropy 0.247 0.256 0.055 0.246 0.246 0.246

VDSC Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.297 0.297 0.297 0.297 0.144 0.297

3D U-Net Cross-entropy 0.292 0.292 0.198 0.292 0.312 0.249

3D U-Net Weighted Cross-entropy 0.215 0.163 0.010 0.085 0.180 0.133

Residual 3D U-Net Dice 0.353 0.353 0.326 0.326 0.326 0.353

Residual 3D U-Net Cross-entropy 0.136 0.153 0.105 0.105 0.205 0.050

Residual 3D U-Net Weighted cross-entropy 0.304 0.304 0.132 0.214 0.304 0.214

SDSC2 Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.283 0.283 0.283 0.283 0.132 0.283

3D U-Net Cross-entropy 0.215 0.215 0.129 0.265 0.265 0.129

3D U-Net Weighted cross-entropy 0.173 0.105 0.000 0.084 0.140 0.036

Residual 3D U-Net Dice 0.297 0.297 0.270 0.297 0.270 0.297

Residual 3D U-Net Cross-entropy 0.026 0.039 0.028 0.028 0.058 0.014

Residual 3D U-Net Weighted cross-entropy 0.246 0.258 0.075 0.210 0.246 0.178

SDSC3 Model Comparison GTV G. maximus G. medius G. minimus Paraspinal Piriformis

3D U-Net Dice 0.270 0.343 0.343 0.343 0.270 0.343

3D U-Net Cross-entropy 0.204 0.258 0.204 0.323 0.323 0.204

3D U-Net Weighted cross-entropy 0.156 0.123 0.004 0.115 0.146 0.038

Residual 3D U-Net Dice 0.298 0.298 0.270 0.298 0.174 0.298

Residual 3D U-Net Cross-entropy 0.102 0.143 0.143 0.143 0.196 0.102

Residual 3D U-Net Weighted cross-entropy 0.336 0.336 0.216 0.328 0.336 0.328

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2024 November 01.


	Abstract
	Introduction
	Materials and Methods
	Contributions
	Dataset
	Patient Selection
	Expert Delineation of Muscles and Sarcoma GTV
	CT Image Pre-processing

	Deep Learning Architectures
	3D U-Net
	Training and Validation Mechanism
	Testing Protocol

	Ensemble Modeling
	Average Ensemble
	Optimal Ensemble

	Metrics
	Qualitative assessment of the segmentation

	Results
	Quantitative assessment
	Qualitative Assessment.


	Discussion
	Results Interpretation
	Ensemble Models Improve Score Performance and Decrease Variance
	Advantages of an Automated Approach
	Limitations
	Towards Clinical Target Volume CTV Delineation

	Conclusion
	Data
	U-Net Architectures Details
	Statistical Tests
	References
	Figure 1:
	Figure 2:
	Figure 3a:
	Figure 3b:
	Table 1a:
	Table 1b:
	Table 1c:
	Table 2:
	Table 3a:
	Table 3b:

