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Abstract

The emphasis on fairness in predictive healthcare modeling has increased in popularity as an 

approach for overcoming biases in automated decision-making systems. The aim is to guarantee 

that sensitive characteristics like gender, race, and ethnicity do not influence prediction outputs. 

Numerous algorithmic strategies have been proposed to reduce bias in prediction results, mitigate 

prejudice toward minority groups and promote prediction fairness. The goal of these strategies 

is to ensure that model prediction performance does not exhibit significant disparity among 

sensitive groups. In this study, we propose a novel fairness-achieving scheme based on multitask 

learning, which fundamentally differs from conventional fairness-achieving techniques, including 

altering data distributions and constraint optimization through regularizing fairness metrics or 

tampering with prediction outcomes. By dividing predictions on different sub-populations into 

separate tasks, we view the fairness problem as a task-balancing problem. To ensure fairness 

during the model-training process, we suggest a novel dynamic re-weighting approach. Fairness 

is achieved by dynamically modifying the gradients of various prediction tasks during neural 

network back-propagation, and this novel technique applies to a wide range of fairness criteria. 

We conduct tests on a real-world use case to predict sepsis patients’ mortality risk. Our approach 

satisfies that it can reduce the disparity between subgroups by 98% while only losing less than 4% 

of prediction accuracy.
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1. Introduction

Healthcare professionals and policymakers recognize the importance of fairness in 

healthcare, often defining it as a state, condition, or quality of being fair, just, or free from 

bias or injustice in providing healthcare services. In recent years, there has been growing 

interest in ensuring that health policies and systems are designed to achieve good outcomes 

and be fair and equitable [1]. Fairness in healthcare requires addressing health disparities 

and reducing inequities in access to care and health outcomes [2]. This requires targeting 

policies and interventions toward underserved populations, addressing social determinants of 

health [3], and ensuring that patients receive appropriate and effective care tailored to their 

needs and preferences [4]. Additionally, the importance of model fairness and data science 

in healthcare has gained recognition, particularly in ensuring that risk prediction models or 

automated treatment planning remain fair and efficient for all subpopulations [5].

Predictive models using machine learning or deep learning approaches have achieved great 

success over the years in healthcare. Recent studies have concentrated on developing 

machine learning interpretability methods [6] and identifying biases in machine learning 

models [7]. However, the issue of unfairness in predictive models has been overlooked for 

many years. Researchers now recognize that decision-making based on machine learning 

models can result in unfair outcomes and perpetuate existing societal biases [8]. Therefore, 

developing models that are not only accurate but also objective and fair has become crucial 

[9]. Several factors can contribute to a machine learning model’s unfairness. Predictive 

models typically focus on optimizing accuracy rather than fairness, which can lead to biases 

against certain groups. Bias in datasets or models can also cause unfairness in machine 

learning models [10]. Machine learning models can reinforce pre-existing unfairness in 

datasets. For example, suppose specific sub-populations are underrepresented in a healthcare 

dataset. In that case, the predictive models may perform less accurately for these groups 

than the dominant subgroup when predicting a particular disease due to a lack of training 

samples.

The classic fairness-achieving methods in machine learning can be broadly classified into 

three categories: pre-processing, in-processing, and post-processing methods [9,11]. Pre-

processing involves cleaning, transforming, and preparing data before feeding it into the 

machine learning model, with typical methods including relabeling, generation, and fair 

representation [12]. In-processing incorporates fairness constraints or objectives directly 

into the machine learning model’s training process, with regularization techniques and 

adversarial training being two commonly used approaches. Lastly, post-processing applies 

a fairness correction technique after the model has made predictions to adjust the outputs 

for greater equity [13,14]. Each of these categories has its strengths and limitations, and the 

choice of method depends on the specific use case and data being analyzed. Pre-processing 

is versatile but limited by the information present in the data, while in-processing is more 
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complex and computationally expensive but offers more direct control over the model’s 

behavior. Post-processing is typically easier to implement but may not be as effective as 

in-processing in addressing the root causes of bias in the data or model.

In this work, we aim to propose a fairness-achieving predictive model using in-processing 

methods. Our goal is to achieve group fairness by mitigating bias concerning protected 

sensitive attributes such as gender, race, and ethnicity. Instead of using a constrained 

optimization approach by incorporating fairness constraints as additional regularization 

terms in the optimization objective function, we propose a new fairness-achieving method 

based on multitask learning [15]. The key observation is that balancing performances among 

subgroups is similar to the task balancing problem in multitask learning. This unique 

perspective of viewing the fairness problem makes our approach fundamentally different 

from the majority of in-processing methods. Based on this unique finding, we propose 

a dynamic re-weighting scheme that monitors the unfairness across subgroups during 

each epoch of the model training process and dynamically adjusts the attention weight 

on each task. The scheme has two main benefits. First, fairness is optimized implicitly 

during model training while the model is optimized for prediction accuracy. This does 

not require formulating fairness constraints into the loss function, which may induce cost 

on the utility, i.e. performance loss incurred due to adding additional constraints to the 

optimization problem [16]. Second, instead of directly optimizing fairness metrics in the 

objective function, we use them to adjust the gradients of tasks. This allows us to optimize a 

wide variety of fairness metrics without concerns about the non-differentiable nature of the 

fairness metric formulation. Moreover, the above scheme provides a mechanism that directly 

optimizes the fairness metric of interest, in contrast to the traditional constraint optimization 

approach, which only optimizes discrepancies in loss functions among subgroups but is not 

directly related to the fairness metric of interest (e.g., demographic parity, equalized odds, 

etc.).

We validate the proposed model’s performance on a mortality risk prediction problem for in-

hospital sepsis patients. The patients’ data come from a local academic medical center, and 

we select nearly 10,000 patients’ three-and-a-half-year medical history data. We demonstrate 

that the baseline models (without explicitly enforcing predictive fairness) can embed large 

performance discrepancies among different subgroups. Experimentally, our model achieves 

predictive fairness with a relatively small sacrifice in accuracy loss compared to traditional 

methods. To summarize, our contributions include:

• A dynamic weighting scheme based on multi-task learning to achieve prediction 

model fairness

• An approach that allows optimizing the specific fairness metric of interest 

directly

• A fairness-achieving method that does not limit by the non-differentiable nature 

of the fairness metric

The rest of the paper is organized as follows. Section 2 will summarize the related works 

of bias mitigation methods in healthcare. In Section 3, we will introduce the prediction 

encoder–decoder model and explain the two main contributions. Section 4 will discuss our 
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data source, data pre-processing, experiment settings, and the comparison study results. 

Section 5 will conclude this study and discuss a few open questions in Section 6.

2. Related works

Fairness-achieving methods in machine learning can generally be classified into three 

categories: data pre-processing, in-processing, and post-processing [17]. Pre-processing 

methods focus on removing discrimination to enhance the training set’s quality before 

learning a classifier. Correlation Remover is another pre-processing technique that aims 

to reduce the correlation between sensitive attributes and the target variable in the input 

data [18]. Jiang et al. demonstrated that training machine learning models on re-weighted 

datasets could lead to unbiased machine learning classifiers [19]. Kilbertus et al. proposed 

a solution to improve fairness and utility in situations where ground truth labels depend 

on specific decisions. They shifted the focus in fair machine learning from “learning 

to predict” to “learning to decide”, which involves learning to decide with exploring 

policies while considering fairness constraints and understanding the impact of decisions 

on future data collection [20]. Xu et al. proposed a fairness-aware generative adversarial 

network to mitigate discrimination in the training data [21]. Oneto et al. proposed a pre-

processing method similar to our work, where they also identified the similarity between 

the fairness-achieving problem and multi-task learning. Their method differs from ours 

using low-rank matrix factorization to discover task similarities and encourage shared fair 

representation across tasks [22]. Tan et al. observed that existing representation methods 

are model-agnostic, which can generate sub-optimal predictions in terms of both fairness 

and accuracy. They proposed a model-aware pre-processing method by learning a fair 

representation of the dataset [23].

Post-processing methods focus on calibrating model predictions to achieve fairness, such 

as calibrated equalized odds [24]. Noriega-Campero et al. also proposed a calibration 

method, suggesting that by jointly considering information collection, inference, and 

decision-making processes, automated decision systems can be designed to more flexibly 

optimize social objectives, including fairness, accuracy, efficiency, and privacy [25]. Post-

processing works well with black-box models where the training data and learning models 

cannot be modified, but balancing accuracy and fairness can be relatively challenging [17]. 

Iosifidis et al. proposed a fairness-aware ensemble framework that combines pre-and post-

processing steps (generating balanced training samples and shifting the decision boundary) 

to achieve fairness [26].

In-processing is the area where most works in the literature fall, which involves adding 

regularization terms and constraints to the overall objective function and fairness metric 

[27]. Agarwal introduced two in-processing techniques: grid search and exponentiated 

gradient reduction. Grid search is an approach used to find hyper-parameters by generating 

a sequence of relabeling and reweightings and training a predictor to find the one that 

maximumly minimizes the disparity between subgroups. Exponentiated gradient reduction is 

a fairness-aware algorithm that minimizes subgroup disparities by updating the classifiers’ 

weights using an exponentiated gradient descent approach [28]. Demographic parity loss 

adds a fairness constraint to promote different group’s average prediction probability be the 
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same. Chuang and Mroueh propose a data augmentation strategy to regularize the prediction 

models on paths of interpolated samples to achieve fairness [29]. Ding et al. proposed 

a fair machine learning framework for liver transplant graft failure prediction, utilizing 

knowledge distillation and a two-step debiasing method to enhance fairness and accuracy 

[30]. Build on this work, they proposed another model leveraging multi-task learning and 

tree distillation to effectively analyze post-transplant causes of death, assisting in clinical 

decision-making and organ allocation [31]. Liu and Avci incorporated prior knowledge in 

the model building when integrating feature attributions [32]. Ross et al. penalized the 

gradients of a neural network using a generalization of the right for the right reasons based 

on user explanations to train models [33]. Kim et al. proposed a new notion of fairness 

called metric multifairness, which is achieved by querying an arbitrary metric a bounded 

number of times. This approach guarantees that similar sub-populations are treated fairly 

[34]. Another study applied transfer learning and domain adaptation when the protected 

attributes were unavailable in either source or targeted dataset [35]. A recent study using 

TabTransformer in a multitask setting achieved promising results in task balancing and 

fairness-achieving [36]. This approach, similar to ours in leveraging multitask learning 

for fairness, highlights the versatility of such methods in addressing fairness objectives. 

Traditional constrained optimization approaches either achieve fairness by penalizing the 

loss function value discrepancy between different subgroups or by directly introducing the 

group-wise difference in terms of certain fairness metrics as a regularization term in the 

loss function to penalize it [37]. The former can be seen as an indirect fairness-achieving 

method that minimizes the difference in the loss function value but does not guarantee 

to minimize the real fairness metrics such as equalized odds, equal opportunity, etc. The 

latter methods are subject to the problem that most fairness metrics are non-convex, 

non-differentiable functions that will hinder back-propagation in neural network training. 

Recent works focused on studying transformation methods for commonly used fairness 

metrics to have such properties, for example, by using the proxy-Lagrangian formulation 

and searching for approximately optimal and feasible solutions [37]. However, such methods 

usually require strategic design (by using approximate functions [38,39]) and often sacrifice 

optimization accuracy, and sometimes the optimization may not even converge due to not 

having a stationary point.

3. Methods

Multi-task learning has demonstrated success in predicting multiple targets simultaneously. 

It is particularly effective when tasks are correlated, as multi-task models often outperform 

single-task models focusing on each task individually. One common approach is hard 

parameter sharing, which shares hidden layers among all tasks while maintaining task-

specific output layers. This approach aims to reduce overfitting and storage costs while 

improving prediction accuracy [40]. This study uses multi-task learning to achieve 

prediction fairness among different subgroups. Tasks are defined based on sensitive 

attributes (such as gender, race, and ethnicity), with each task representing a protected 

subgroup. We aim to optimize binary cross-entropy loss and balance tasks (subgroups) to 

achieve comparable predictive performance among them.
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3.1. The encoder–decoder multi-task learning model

We started proposing a novel multi-modal encoder–decoder deep learning model for sepsis 

mortality prediction. The proposed model adopted an encoder–decoder structure and took 

multi-modal medical data as input. Similar neural network structures have shown great 

potential in learning from multi-modal longitudinal data and demonstrated impressive 

performance in tasks such as COVID-19 risk prediction [41] and Multiple Sclerosis disease 

severity classification [42]. The dual-attention mechanism incorporated into the proposed 

neural network framework effectively handles EHR databases with multiple tables as input 

and leverages attention to improve prediction performance and interpretability of results. 

The uniqueness of the model is its attention mechanism for handling heterogeneous and 

irregularly sample temporal clinical data.

The model takes the input of K data tables, each containing a patient’s medical data 

history of a certain modality, such as lab tests, treatments, vital sign observations, diagnosis, 

etc. The rationale behind dividing a patient’s entire structured EHR data into separate 

homogeneous tables is to enable the encoder neural network to learn distinct patterns 

from different modalities using separate neural networks. For a patient i, each table 

Ti
k, k = 1,2, …, K  takes a matrix format of size ti

k-by-fk, where ti
k corresponds to the time 

points in the patient’s observation history (e.g., hospital visits) and fk denotes the number 

of features (e.g., the number of lab tests). It is worth noting that the observational variables 

in each table with fk features are shared among all patients and remain consistent across 

different patients.

Encoder.—The encoder network consists of multiple channels, each processing one type 

of table (modality) and generating a feature map for each patient. Each channel contains a 

series of stacked 1D convolution layers with the Rectified Linear Unit Activation (ReLU) 

layers and Random Dropout Layers. The encoder network employs an attention mechanism 

that learns to place different emphasis on different time points of time series data of the 

patient and generates a weighted feature map for each type of table. Ultimately, feature maps 

from different channels are concatenated as the input to the decoder network, and different 

channels share similar structures with different sizes.

Specifically, the kth table of patient i’s input data Tk will go through the encoder channel 

specified as follows,

ai
k = ReLU Dropout(1D‐CNNLayer) n Ti

k , (1)

ei
k = ai

k T ⋅ Ti
k, (2)

where ai
k is a ti

k-length vector, n is the number of repetitions of the layers (the last layer does 

not go through Dropout and ReLU functions), and ei
k is the feature map vector of length fk

generated, which can be seen as a condensed representation of the original data matrix Ti
k, 

see Fig. 1.
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Decoder.—The decoder network takes the format of a bi-directional GRU (Gated 

Recurrent Unit) network. The feature map outputs from all channels ei
k, k = 1, …, K will 

be zero-padded into the same length (maximal length d = max ei
k :k = 1, …, K ) and stacked 

as a regular matrix Ei to be fed into the Bi-GRU network,

Ei = zeropad ei
1 , …, zeropad ei

K , (3)

The matrix Ei will go through the decoder bi-directional GRU network followed by a second 

attention module, specifically

Si = Bi‐GRU Ei , (4)

bi = Attention Si , (5)

vi = Concat Flatten biSi , di , (6)

where Si is a matrix containing K state vectors and has shape K-by-2ℎ, ℎ is the hidden size 

of the GRU network (2 comes from the bi-direction network). The matrix Si goes through 

an attention layer specified by a 1D CNN neural network and generates an attention weight 

matrix bi. The attention matrix is multiplied by the state matrix, flattened, and concatenated 

with the demographics vector di. Vector vi is the final embedding vector of patient i, which 

embeds all medical history information of all modalities.

Suppose the sensitive attribute is denoted as A = 1, …, A , and a patient belongs to any of 

the A subgroups, for each subgroup a ∈ A, we create a separate prediction head which is 

a multiple perceptron layer (MLP) with multiple hidden layers. The vector v, depends on 

which subgroup a the patient i belongs to, will be fed through the corresponding prediction 

head MLPa  to predict the final label

ŷi = Sigmoid MLPa vi (7)

where ŷi is the predicted risk probability for patient i.

3.2. Dynamic re-weighting method

To achieve fairness among different tasks (groups), we propose the idea of task prioritization 

based on the model task-specific prediction performance. The fairness evaluation metrics 

(demographic parity, equalized odds, etc.) are evaluated on each subgroup and will be used 

to re-weighting the gradients during back-propagation for each task.

For multitask loss function, we introduce a dynamic fairness weighting factor wa t
dynamically adjust the weight on task a at epoch t, and the neural network optimizes the 

following Dynamic Fairness re-Weighted (DFW) loss,
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ℒDFW t = ∑
a = 1

A
wa t ℒa t , (8)

where ℒa t  is the loss function of task a.

For the dynamic weight function wi t , we design it to achieve the following purposes: (1) to 

ensure the gradient for different tasks on the same scale during backpropagation, therefore, 

the neural network has equal learning speed on each task; (2) to adjust the weight on each 

task dynamically based on the prediction performance of each task.

Task-wise gradient.—Let W  be the weight matrix of the last shared layer of the proposed 

neural network. We define

Ga W , t ≜ ∥ ∇W wa t ℒa t ∥2 (9)

to be gradient norm L2  of task a’s loss with respect to the weight matrix W  at epoch t, and 

we use

G‾ a W , t ≜ Ea ∈ A Ga W , t (10)

to denote the epoch-t’s average gradient norm.

Task-wise performance.—Let Fa t − 1  be the task-a’s prediction performance metric at 

epoch t − 1. The function F ⋅  is directly related to the model’s fairness, whose format can 

be easily determined depending on the specific fairness notion of interest, see Table 1. We 

define

qa t ≜ Fa t − Ea ∈ A Fa t (11)

which is the distance of task-a’s prediction performance relative to the average performance 

across all tasks.

The proposed dynamic re-weighting scheme achieves fairness by adjusting the magnitudes 

of each task’s gradient based on the previous training epoch’s performance, specifically, we 

adjust the task-specific gradient using the following formula

Ga W , t = 1 − qa t − 1 αG‾ a W , t (12)

where α is a hyper-parameter. Eq. (12) says the gradients of all tasks at training epoch t
are dynamically balanced according to their performance at training epoch t − 1. If a task’s 

performance is much better than the average performance, measured by qa t , we would like 

to underweight the neural network’s attention on this task and focus on the other tasks, and 

vice versa. Table 2 provides an example where the majority of the task’s F ⋅  function falls 

near some value (0.1) and the others (monitory) tasks’ F ⋅  function values (0.9) deviate 

from it. The different values of α can adjust the ratios of the gradients for tasks 1–9 and task 

10 to let the network decide how much attention should be put onto each task.

Li et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2023 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Fairness metrics

Model bias and fairness can be measured in a wide variety of metrics. Certain metrics can 

be more important than others, depending on the specific application and the optimization 

problem. Our fairness-achieving method is general and can be applied to a wide range of 

fairness metrics. In this study, we focus on the fairness metrics widely used to evaluate 

the healthcare predictive model’s fairness, including but not limited to equal accuracy, 

predictive parity, predictive equality, equal true negative rate, equal false negative rate, and 

equal AUROC. Their definitions are as follows (Ŷ  : prediction; Y  : true label; A : sensitive 

attribute),

Equal Accuracy:

I Ŷ = 1 ∣ A = a, Y = 1 + I Ŷ = 0 ∣ A = a, Y = 0 /I A = a = I Ŷ = 1 ∣ A = b, Y = 1 + I Ŷ = 0 ∣ A = b, Y
= 0 /I A = b , ∀a, b ∈ A

Equal Recall:

P Ŷ = 1 ∣ A = a, Y = 1 = P Ŷ = 1 ∣ A = b, Y = 1 , ∀a, b ∈ A

Equal False Positive Rate (FPR):

P Ŷ = 1 ∣ A = a, Y = 0 = P Ŷ = 1 ∣ A = b, Y = 0 , ∀a, b ∈ A

Equal True Negative Rate (TNR):

P Ŷ = 0 ∣ A = a, Y = 0 = P Ŷ = 0 ∣ A = b, Y = 0 , ∀a, b ∈ A

Equal Negative Predictive Value (NPV):

P Y = 0 ∣ A = a, Ŷ = 0 = P Y = 0 ∣ A = b, Ŷ = 0 , ∀a, b ∈ A

Predictive Parity (Equal Precision, Positive predictive value (PPV)):

P Y = 1 ∣ A = a, Ŷ = 1 = P Y = 1 ∣ A = b, Ŷ = 1 , ∀a, b ∈ A

Predictive Equality (Equal False Negative Rate):

P Ŷ = 0 ∣ A = a, Y = 1 = P Ŷ = 0 ∣ A = b, Y = 1 , ∀a, b ∈ A

Equal AUROC:

I Ŷ i ≥ Y i ∣ i ∈ k:A = a, Y = 1 , j ∈ k:A = a, Y = 0 /I A = a = I Ŷ i ≥ Y i ∣ i ∈ k:A = b, Y = 1 , j ∈ k
:A = b, Y = 0 /I A = b , ∀a, b ∈ A .
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4. Experiments

4.1. Data structure

We collected a large cohort of 17,197 sepsis patients from the UTHealth teaching hospital 

between January 2018 and June 2021. The selected patients included only those who were 

admitted to the hospital. To test the prediction accuracy of the proposed framework, we 

aimed to predict patient mortality 72 h ahead. For deceased patients, we used patients’ 

temporal data from hospital admission until 72 h before death. For the remaining patients 

(cured and discharged home), all temporal data from admission to discharge were used. 

Consequently, we filtered out patients with a hospital stay shorter than 72 h. The final cohort 

included 9353 patients with 2348 mortality cases. Fig. 2 shows the hospital stay length 

histogram of the patient cohort. Table 3 demonstrates the statistics of patients’ demographic 

information.

Patient’s longitudinal EHR data, including laboratory tests, vital sign observations, 

medication prescriptions, and demographic information, are used as model inputs. The 

specific feature names are provided in Table 4.

For each patient, the lab tests, vital signs, and medications are organized into three separate 

tables to be fed into the neural network. The lab test results and vital sign observations are 

represented as float number, and medications are represented as 0/1 to represent whether 

patient takes this medication. The rows of each table represent time stamps, and columns 

correspond to the features. It is important to note that for each type of table, all patients use 

the same set of features, ensuring the same number of columns across all patients. However, 

the number of rows in the tables for different patients may vary depending on the number 

of measurements performed during their hospital stay, as shown in Fig. 2. As discussed in 

the method section, the neural network structure does not rely on the row number of the 

input data, as it employs an attention mechanism to learn weights for different time stamps, 

mapping inputs of varying sizes to fixed-length vectors.

4.2. Experiment setting

We conducted an experimental study on a cohort of 9353 sepsis patients. The prediction 

goal was set to predict in-hospital patients’ risk of mortality 72 h ahead while ensuring the 

model’s prediction fairness among different subgroups. We tested the model’s performance 

on different subgroups defined by the sensitive attribute (gender, race, and ethnicity).

The hyper-parameters for the proposed model were chosen as follows. For the encoder 

network, there are three channels, each containing a two-layer CNN network. The specific 

network parameters are shown in Table 5. The decoder network is a four-layer bidirectional 

GRU network with a hidden state size of 512. We split the entire dataset into 70% training, 

15% validation, and 15% holdout test dataset. The model was trained on the training set for 

a pre-specified number of epochs, and the best model was selected based on its performance 

on the validation set. The final performance of the model was reported on the test dataset.

We conducted three sets of experiments to answer our research questions from three aspects: 

(I) We want to see whether the proposed fairness-achieving method works. We monitored 
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the performance metric disparity (related to the chosen fairness notion) among different 

subgroups to see whether they decreased as the training epoch increased, see Fig. 3; (II) 

Using our proposed method, whether the model’s performance on the test set demonstrated 

fairness improvements compared to the baseline model (without using the method), i.e. 

ablation study, see Fig. 4 and Table 6; (III) Since model fairness is usually achieved with a 

trade-off in prediction accuracy, we assessed the loss in prediction accuracy for the proposed 

model, and we compare our fairness-achieving method with several state-of-the-art methods, 

see Table 7.

4.3. Results

Our experiments demonstrate that the proposed model achieves fairness across multiple 

fairness metrics with only a marginal sacrifice in accuracy. Fig. 3 displays the model’s 

training process when the sensitive attribute is race, which divides patients into four 

subgroups: White, Asian, Black, and Others. By aiming to achieve different fairness 

criteria (equal accuracy, predictive parity, equal recall, equal false positive rate, and equal 

AUROC), we use the proposed model (DFW) to minimize disparities for each of the above 

metrics among the four subgroups. After each training epoch t − 1, the model evaluates its 

performance in terms of the metric on different subgroups on the training set and adjusts 

the dynamic weight wt t  before each task’s loss accordingly at the current epoch t. To show 

the proposed model indeed learns to minimize the metric gaps among different subgroups, 

Fig. 3 shows the evaluations of these metrics on the validation data. As seen in Fig. 3, the 

proposed methods encourage equal performance among different subgroups as the training 

proceeds, while the baseline model (without using the proposed fairness-achieving) does not 

demonstrate such performance.

Fig. 4 shows the fairness disparities of the proposed model compared to the baseline model 

on the test data. After the training process finishes, the model achieving the best equity on 

the validation dataset is chosen as the best model to be saved, which is true for both the 

proposed model (DFW) and the baseline model to keep the comparison fair. The figures 

in Fig. 4 show the saved model’s fairness performance on the test dataset under different 

experiment settings. The experiments were performed separately on three different sensitive 

attributes (gender, race, and ethnicity) when setting different fairness metrics to optimize 

(equal AUROC, equal accuracy, equal recall, equal TNR, equal NPV, and equal FPR). The 

disparity is defined as the largest absolute difference of a metric among different subgroups. 

As seen in the figure, the proposed method’s disparity across all metrics (color blue) has 

significantly decreased compared to the baseline model (color orange), exhibiting a large 

improvement in prediction fairness compared to the baseline model.

In Table 6, we compare the trade-off between prediction accuracy and fairness for our 

proposed method (DFW) and a baseline model without fairness enhancement (w/o DFW) in 

various experimental settings. The results are obtained by evaluating the best model on the 

test dataset. Each block entry represents the performance of the two models on a specific 

fairness metric under a particular sensitive attribute setting. For instance, when optimizing 

AUROC disparity between different ethnic groups (Hispanic vs. non-Hispanic), our model 

demonstrates a substantial improvement, achieving a much smaller disparity of 0.0002 
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compared to the baseline model’s 0.0167. While the proposed model enhances AUROC 

equality, there is a modest loss in AUROC values for both subgroups: a decrease of 0.0226 

(from 0.8573 to 0.8347) for the Hispanic group and 0.0395 (from 0.8740 to 0.8345) for 

the non-Hispanic group. This sacrifice in AUROC values is acceptable as it results in a 

significant improvement in AUROC equality between the groups. Our model significantly 

reduces the AUROC difference by 98%, with less than a 4% loss in AUROC for the two 

groups.

We compare the proposed model (DFW) and four other effective baseline methods, 

including Grid Search (GS), Exponentiated Gradient Reduction (EGR), Correlation 

Remover (CR), and Demographic Parity Loss function (DPL). The first three algorithms 

are applied to the XGBoost predictive model and the last approach is applied to the 

same neural network structure of this work. In Table 7, each block entry indicates the 

performance of the five models on a specific fairness metric under the same sensitive 

attribute setting. For example, when aiming to achieve equal Recall among different race 

groups, our model significantly reduces the Recall disparity to 0.0744. In comparison, other 

effective models GS, EGR, CR, and DPL achieve disparities of 0.2778, 0.2932, 0.2612, 

and 0.1342, respectively. Additionally, our model outperforms the other four models in 

terms of Recall on subgroups (White, Black, and Other race), demonstrating our model is 

able to achieve much better fairness performance with less sacrifice on prediction accuracy. 

Regarding Recall performance on ethnicity, the DPL method outperforms our proposed 

model; however, we are closely following it. Similar to the AUROC performance on race, 

GS has the best performance, but our model is not far behind.

In summary, the proposed model achieves fairness among ethnicity, gender, and race 

subgroups while maintaining high prediction accuracy across all six evaluation metrics. This 

performance is not only superior to the baseline model without fairness enhancement (w/o 

DFW) but is also competitive with other effective models.

5. Conclusion

In this paper, we develop a fairness-achieving framework using multitasking learning 

by separating subgroups into different learning tasks. Our novel dynamic reweighting 

scheme achieves model fairness with less prediction accuracy sacrifice comparing traditional 

fairness-achieving methods. Our new approach, which does not require expressing the 

fairness metric in a differentiable function, provides a flexible mechanism to optimize 

fairness across various fairness metrics of practical interest in healthcare.

The proposed fairness enhancing technique is also adaptable for other problems, such 

as non-binary classification tasks, regression tasks, and ranking tasks. While the task of 

sepsis mortality risk prediction is interesting, it is not the only application this model can 

accommodate. In general, it is well-suited for a wide range of predictive modelings in 

healthcare where fairness is an essential consideration.

Compared to some other fairness-achieving methods that minimize loss discrepancies 

between different subgroups, our proposed model directly optimizes the specific fairness 
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notion of interest. In contrast, these other methods represent an indirect approach that does 

not guarantee the exact fairness metric of interest. This limitation on the proposed method 

implies that two different fairness notions cannot be simultaneously optimized within the 

current framework, at least not with the existing design of the dynamic re-weighting 

formula. This challenge could potentially be addressed by adopting a more sophisticated 

design for the re-weighting function, incorporating multiple fairness notions in a weighted 

manner, thereby offering a more comprehensive fairness optimization solution.

6. Discussion

Fairness can be due to multiple reasons, and algorithmic fairness is just one aspect of 

it. In this study, we focus on achieving algorithmic fairness in predictive modeling tasks 

using a novel task-balancing idea. One promising future direction of this research is to 

investigate the interpretability of the proposed framework’s decision-making process, i.e., 

what causes the model to make unfair predictions. Explainable AI techniques can enhance 

the transparency and accountability of machine learning models and improve the trust 

and acceptance of their predictions by healthcare providers and patients. By knowing 

the reasons making the model makes unfair predictions, we can design better fairness-

achieving approaches. Another research direction is evaluating the effectiveness and impact 

of the proposed framework in real-world healthcare settings. Evaluating the framework’s 

effectiveness in practice can help identify potential challenges and opportunities for 

improvement and ensure that the model’s predictions are trustworthy and acceptable to the 

end-users. The framework may be tested on different healthcare applications with varying 

levels of complexity and heterogeneity to assess its generalizability and scalability to other 

datasets.
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Fig. 1. 
The proposed model structure, consists of (I) an Encoder Network, (II) a Decoder Network, 

and (III) the DFW Network.
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Fig. 2. 
The distribution of all patients’ length of hospital stay (in days).
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Fig. 3. 
Model fairness performance as training epoch. The figures are examples of the experiment 

setting when the sensitive attribute is race. DFW: baseline model with the fairness-achieving 

method. The figure shows performances on the validation set when optimizing for: Equal 

Accuracy, Predictive Parity (Precision), Recall, FPR, and AUROC, respectively. X-axis: 

training epoch, Y-axis: the fairness metric being optimized in the DFW method.
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Fig. 4. 
The fairness metric disparity comparison between the proposed model (DFW) and the 

baseline (w/o DFW) when setting different sensitive attributes, e.g. gender, race, and 

ethnicity, and optimizing for different fairness metrics: a. equal AUROC, b. equal accuracy, 

c. equal recall, d. equal TNR (true negative rate), e. equal NPV (negative predictive value), 

and f. equal FPR (false positive rate).
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