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Abstract

Recently, there has been an increasing need for tools to simulate cell size regulation due to 

important applications in cell proliferation and gene expression. However, implementing the 

simulation usually presents some difficulties, as the division has a cycle-dependent occurrence 

rate. In this article, we gather a recent theoretical framework in PyEcoLib, a python-based library 

to simulate the stochastic dynamics of the size of bacterial cells. This library can simulate cell 

size trajectories with an arbitrarily small sampling period. In addition, this simulator can include 

stochastic variables, such as the cell size at the beginning of the experiment, the cycle duration 

timing, the growth rate, and the splitting position. Furthermore, from a population perspective, 

the user can choose between tracking a single lineage or all cells in a colony. They can also 

simulate the most common division strategies (adder, timer, and sizer) using the division rate 

formalism and numerical methods. As an example of PyecoLib applications, we explain how to 

couple size dynamics with gene expression predicting, from simulations, how the noise in protein 

levels increases by increasing the noise in division timing, the noise in growth rate and the noise 

in cell splitting position. The simplicity of this library and its transparency about the underlying 

theoretical framework yield the inclusion of cell size stochasticity in complex models of gene 

expression.
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1. Introduction

The origin of random fluctuations (noise) of gene products in cells is currently an 

important research field [1, 2]. This randomness can explain processes such as cell fate 

decision [3], survival in complex environments [4], and cell proliferation [1, 5]. Noise from 

intrinsic sources in gene expression, such as random binding of molecules and spontaneous 

degradation, can be transmitted to the concentration of the gene product [6, 7]. Other sources 

of noise, also known as extrinsic, affect all physiological processes of cells; however, their 

understanding is not yet complete [8]. In this article, we present methods for simulation 

of one particular extrinsic source of noise: fluctuations in cell size. These fluctuations 

originated from the randomness of variables such as growth rate, cell division times, and 

partitioning position.

Fluctuations in cell size have recently been studied thanks to the development of techniques 

for high-throughput cell imaging and tracking [9, 10]. Among the mechanisms responsible 

for the transmission of cell size fluctuations to gene expression, we can mention the 

random segregation of low number molecules during division [11] and variability in reactant 

concentrations, dilution rates, and division times [12]. However, it is currently not clear 

how to link gene expression mechanisms to stochastic size dynamics because the relation 

between expression rates and growth is still being studied [13]. Some attempts have been 

made [11, 14–16], but the inter-division times do not follow size-dependent statistics, as 

recently found [17].

In a recently proposed mathematical framework [18], we describe division as a continuous-

time Markov chain that can be coupled with gene expression. Here, we synthesize this 

framework into an easy-to-use tool by developing PyEcoLib; a python based library that 

can model the stochastic cell size dynamics. This library reproduces most of the known 

properties of bacterial division, such as division strategies [17, 19], bacterial proliferation 

[20], known distributions of division times [21], and stochastic fluctuations in both growth 

rate and septal position [22]. The user can incorporate the library into any simulation 

script to model gene expression, including size and growth effects on bacterial physiology. 

PyEcoLib can be found in our repository [23], and can also be installed using the Python 

Package Index (pip install PyEcoLib).

The structure of this article is as follows: first, we provide an overview of the basic 

uses implemented in PyEcoLib with figures demonstrating an example of each feature. 

Next, we provide a detailed explanation of the implemented classes with a focus on the 

basic class Simulator, which simulates cell size dynamics by discarding descendant cells. 

We also introduce the more advanced class PopSimulator, which simulates the dynamics 

of a small cell colony and considers all cells descending from a single ancestor. In 

addition, PopSimulator generates highly accurate division times, cell growth rates, and 

sizes of mother and newborn cells, providing the necessary parameters for simulating gene 

expression from cell size trajectories. Finally, we present the results of simulations that 

demonstrate how noise in cell size dynamics may increase noise in protein concentration for 

a basic example of open-loop bursty gene expression.
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2. Basic uses for PyEcoLib

The algorithm behind PyEcoLib considers cell size dynamics as a hybrid process, in which 

the size grows exponentially, and divisions occur as a jump process with a size-dependent 

rate [18]. As observed in figure 1(A), the division is triggered after the accumulation of 

a given number of division stages as other similar models [24–26]. Regarding the most 

recent version, 2.0.3, we can find several uses, among which we can highlight the following 

applications:

• Generating trajectories of exponentially growing cells following the adder 

division strategy (figure 1). The trajectories can present any arbitrary small 

sampling time allowing the study of cell size dynamics with arbitrary precision 

(figure 1(B), tables 1 and 3).

• Estimate the bacteria division times with arbitrary precision (actually 14 decimal 

digits). This accuracy level is mainly intended to ensure the computational 

stability of simulation algorithms that could been built over PyEcoLib outputs. 

As simulation parameters, we can set the mean cell size, growth rate, and noise 

in added size. Since the obtained times are highly precise (table 4), they can be 

coupled to classic stochastic simulation algorithms for gene expression.

• Including variability in the septal position during cell splitting [22]. This can be 

used to simulate the segregation of molecules (figure 1(B)).

• Setting an arbitrary distribution of cell sizes at the beginning of the experiment 

with particular applications in statistics of cell proliferation (figure 1(B)).

• Including fluctuations in cell-to-cell growth rate to study the effects of memory 

across generations on physiological variables of cells (figure 1(B)).

• Computing trends in added size versus size at division for different division 

strategies (adder, timer-like, sizer-like) that can vary depending on the species of 

the organism to simulate [19] (figure 2(A) and table 2).

• Estimation of the dynamics of the mean and coefficient of variance of the size 

distribution for bacteria that grow and divide continuously (figures 2(B) and (C)). 

This can be useful in estimating some variables of cell regulation, such as the 

effects of cell regulation noise on size dynamics [27].

• Simulating regulation of cell size along a single lineage (tracking one cell after 

division and discarding the other cell) or considering the entire population as we 

explored before [20] (figure 3).

In this tutorial, we introduce the PyEcoLib available tools to address the mentioned 

applications.

3. Classes implemented in PyEcoLib

PyEcoLib is a library implemented in Python version 3.8.1. The user should pre-install the 

libraries numpy, scipy, math, and platform. PyEcoLib consists on a set of three classes:
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• Cell: it is the basic class corresponding to one cell with all parameters such as 

size, growth rate, division steps (see figure 1(A)), next time to reaction, division 

exponent, partitioning noise, growth rate noise and division rate. This class has 

functions used by other classes and the user does not have access to its functions.

• Simulator: this class implements most of the functions to calculate the cell size 

dynamics. It is implemented in such a way that it considers only one descendant 

cell after each division. In more technical terms, it tracks only a single lineage 

of the lineage tree [5]. Among the implemented functions, we can highlight 

stochastic simulations of cell size dynamics, numerical methods for estimating 

moments, and numerical and stochastic methods for estimating the division 

strategy.

• PopSimulator: this class is implemented for stochastic simulation of cell 

colonies up to approximately five generations. In addition to cell size dynamics, 

this class can also return the exact time of cell division, as it can be coupled with 

other simulations of molecular reactions.

In the next section, we explain more thoroughly the features of the classes Simulator and 

PopSimulator.

3.1. Class Simulator

Simulator is a class implemented in the first version of PyEcoLib (1.0.8). This class 

contains most of the PyEcoLib functions to study cell size regulation. To import the library, 

use the folowing line:

from PyEcoLib.simulator import Simulator

An object of this class can be called, as an example, by writing the following lines:

sim = Simulator(ncells = 1000, gr = 0.7, sb = 1, steps = 20, CV2div = 0, CV2gr = 0, lamb = 

1, V0array = None)

After defining the name of the object Simulator (denoted sim here), the user simply needs 

to define the following parameters.

• ncells: number of cells to simulate (positive integer number, 1000 in the 

example).

• gr: cell growth rate (positive real number). gr is related to the doubling time, 

that is, the mean time between divisions, by the formula gr = ln(2)/doubling 

time).

• sb: mean size of the newborn cell (positive real number). After defining this size, 

the library estimates the division rate so that the mean size at birth is equal to this 

value.

• steps: division steps (positive integer number). This parameter defines the 

number of stages that cells have to complete to trigger division (figure 1(A)). 
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The greater the number of steps, the less stochastic the division process. The 

deterministic division is achieved when the number of steps is infinite. A typical 

value for this parameter can be 20 steps [17].

3.1.1. Optional parameters for class Simulator—In addition to the parameters 

mentioned above, there are some other variables that make the simulation more complex and 

closer to the experimental size regulation, which can be listed as follows.

• V0array: array with the initial sizes of the cells. By default, all cells start at size 

sb. This array has to have the same dimension as the number of cells.

• CV2div: partitioning noise (figure 1(B)) measured as the squared coefficient of 

variation (which is given by the variance over the mean squared) of the position 

of cell splitting (positive number between zero and one third). If this parameter 

is defined, during each division, the cell partitioning consists of multiplying the 

cell size times a beta-distributed random variable with mean 0.5 and the specified 

coefficient of variation. A typical value for CV2div is 0.002 [28]. By default, 

CV2div is zero, which means that the cell splitting is perfectly symmetric.

• CV2gr: noise from the growth rate (figure 1(B)), measured as the squared 

coefficient of variation (continuous number between 0 and 1). If this parameter 

is greater than zero, after every division, the growth rate is picked randomly 

as a gamma-distributed random variable with the specified mean and the given 

squared coefficient of variation. By default ((CV2gr) = 0), which means that all 

cells have the same growth rate. A typical value is 0.005 [29].

• lamb: the division strategy parameter [17] (in the library, lamb is a continuous 

variable taking values between 0.5 and 2 due to stability of the cycles). By 

default, lamb is equal to one, which means that the division strategy is adder (see 

figure 1(C)) [21]. Following the adder strategy, the added size before division 

is, on average, constant. If lamb < 1, the division strategy is timer-like, that 

is, the added size, on average, increases with the size at birth. Finally, if lamb 

> 1 the added size decreases with size at the beginning of the cycle (sizer-like 

strategy). Under optimal growth conditions, it has been found that lamb = 1 

[17]. In slow-growing Escherichia coli cells, lamb is close to 1.5 [17]. Some 

other rod-shaped cells show different lamb between 0.5 and 2 [19] (see figure 

2(A)).

It is important to note that lamb or λ serves as a phenomenological parameter, providing 

an approximation for division strategies that differ from the adder. This parameter is useful 

in approximating the observed statistics of cell size regulation [17]. A division rate of kdSλ

where kd is a constant and s is the cell size results in an adder when λ = 1. This rate 

resembles the timer strategy when the division rate does not depend on s (that is, λ 0). 

In contrast, a strong dependence of the division rate on s leads to an sizer strategy (that 

is, λ ∞). While there exist molecular mechanisms explaining the sizer-like strategy (an 

strategy between sizer and adder), such as the degradation of FtSZ polymers [30] and the 
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presence of a commitment size to initiate division [20, 31], their implementation can be 

complex and require a greater number of parameters, which can complicate simulations.

3.2. Implemented functions in class Simulator

In this section, we present and discuss the properties of the main functions implemented in 

PyEcoLib:

szdyn: this function is used to obtain the stochastic size dynamics for all cells in the 

simulation. As an example, the user can run this function using the following lines:

sim.szdyn(tmax = 10, sample_time = 0.01, nameCRM = "dataCRM.csv")

Defining a maximum time tmax (in this case 10) and a sampling time sample_time (in this 

case 0.01), with units of inverse growth rate, the function returns a .csv file with default 

name dataCRM.csv.
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Regarding the output file, the first column is the time from 0 to tmax, sampled periodically 

with period sample_time. Subsequent columns correspond to the size of each cell at the 

corresponding times. An example of a data set consisting of three cells is presented in table 

1. An example of simulated cell size trajectories is shown in figure 1(B).

Algorithm 1 shows the algorithm implemented in PyEcoLib to calculate the cell size 

dynamics. The theoretical details behind the used formulas have already been discussed 

in previous works [17, 18].

szdynFSP: this function estimates numerically the dynamics of the mean and variance of 

the size distribution. The numerical algorithm used for the calculation of the mentioned 

moments can be found in previous articles [18, 32]. As an example, szdynFSP can be called 

using the following lines:

sim.szdynFSP(tmax = 10,sample_time = 0.01,CV2sz = 0.01,nameFSP = "./dataFSP. 

csv").

The user has to provide the maximum simulation time (tmax) which in this example is tmax 

= 10. In addition, the sampling time (sample_time), in this example sample_time = 

0.01, refers to the frequency with which the user takes measurements. The variability in 

the starting cell size can be set by the parameter CV2sz (in this example CV2sz = 0.01) 

corresponding to the squared coefficient of variation of the cell size at the beginning of 

the simulation (see figure 1(B)). The resulting data frame corresponds to three columns, as 

shown in table 2.

The first column in table 2 corresponds to the time (taking samples at every sample_time), 

the second column is the mean size at the corresponding time, while the third column 

represents the variance of the size distribution at the given time. An example of the 

dynamics of the mean distribution is shown in figure 2(B), while the dynamics of the 

variability of cell size is shown in figure 2(C).

SdStat: this function uses numerical methods to return an array of two elements consisting 

on the mean added size at division (Added) and the squared coefficient of variation of this 

added size (cv2) as explained in the next line:

Added,cv2 = sim.SdStat(sb = 1.0)# returns (1,0.05)

The main parameter of this function is sb corresponding to the size at birth. We recommend 

using values close to the given sb defined in the simulator. An example of the results of this 

function of different sb is shown in figures 1(C) and 2(A) (solid line).

3.3. Class PopSimulator

In the release of the second version of PyEcoLib (2.0.3), we implemented a new class called 

PopSimulator. This class only contains the function szdyn. Unlike Simulator, which 

keeps the bacterial number constant throughout the simulation by discarding one of the 
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descendants after division, PopSimulator can simulate the entire population. To import the 

class, use the following line:

from PyEcoLib.PopSimulator import PopSimulator

An object of class (denoted as sim) can be called using the following line:

sim = PopSimulator(ncells = 1, gr = 0.7, sb = 1, steps = 10, nu = 2)

PopSimulator has the same parameters used in the class Simulator (ncells, gr, sb, 

steps, CV2div, CV2gr, lamb and V0array) plus the parameter nu. With nu = 1, 

PopSimulator simulates a class equivalent to Simulator. On the other hand, with nu = 

2, all lineages are tracked. when the entire lineage tree is simulated, it is run until a limit 

tmax<7doubling time such as the population number does not reach a very high value.

To run the function szdyn, the user should write a line as: sim. szdyn(tmax = 5, 

sample_time = 0.01, FileName = ‘./dynamics.csv’, DivEventsFile = ‘./

divevents.csv’).

As specified in the call to the function szdyn, PopSimulator generates two files: one 

mandatory, called FileName and the other optional, called DivEventsFile. FileName 

contains the size dynamics for different cells. An example of the data set obtained using this 

function is presented in table 3.

The first column of table 3 shows the time that is sampled with a period specified with the 

parameter sample_time. The colony label that corresponds to the column Sample. The 

cell ID in the column Cell. The cell size of the given cell at that instant in time represented 

in the column Size and the number of division stages at that time of five in the column 

DivSteps.

In the optional file, DivEventsFile, szdyn exports the exact time at which each division 

event occurs. The user should define the path where this file will be stored using the 

parameter DivEventsFile in szdyn. An example of the first lines of this kind of file is 

presented in table 4.

DivEventsFile presents the colony ID (Sample), the cell ID (Cell) which is uniquely 

defined among a colony, the ID of the cell’s mother (Mother) and the size of its mother 

before the division (MotherSize), the time instant at which the cell got born (BirthTime) 

measured from the beginning of the simulation; its size at birth (Sb), its growth rate 

(GrowthRate) that can take an stochastic value depending on the parameter CV2gr defined 

at defining PopSimulator object. Finally, the division parameter; DivPar (the size of the 

future daughter cell over the size at division in the division following this division event).

Using the data provided in DivEventsFile, the user can simulate, for example, gene 

expression knowing exactly when each cell is born, which cell was its mother, what was the 

size of its mother (if you want to calculate the binomial partition ratio), the size at birth and 
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its growth rate if the user wants to predict the cell size at any time, and DivPar, which tells 

you how asymmetric their descendant cells are going to be.

4. Example of stochastic simulation that includes gene expression

The field of gene expression that explicitly includes size dynamics has become very active 

in recent years [33–37]. In this article, we adapt these models by proposing size-dependent 

protein production, as explicitly explained in some previous articles [38, 39]. Using the 

division times generated by PyEcoLib, algorithm 2 shows an example of how to pair the 

PyEcoLib data with more elaborate simulations of gene expression.

Figure 4 shows the results of gene expression simulations using PyEcoLib to obtain division 

times. For simulation, we consider the protein to be produced by burst events with burst 

sizes distributed as geometric distributions. Degradation is neglected, and decay in protein 

concentration occurs only by dilution. Figure 4(A) shows some trajectories of cell size and 

variability in cell size over time, measured as the squared coefficient of variation. Figure 

4(B) shows the number of simulated proteins of different cells assuming a steady-state 

concentration of 100 proteins per unit of cell size. Fluctuations over time are also presented. 

Finally, figure 4(C) shows the trajectories, mean, and variability of protein concentration.

5. Exploring the noise transmission from cell size to protein levels using 

PyEcoLib

Figure 5 illustrates an advanced application of PyEcoLib, depicting the impact of changes 

in various parameters of cell regulation on gene expression. The simulation was carried 

out by following algorithm 2, which can be found in our repository, using the division 

times obtained through PyEcoLib. The main focus of the study was on the noise in protein 

concentration while varying the noise in different parameters of cell size regulation, such as 

division timing, growth rate, and splitting position.

Figure 5(A) shows trajectories of cell size dynamics and protein concentration for different 

levels of control of division timing. As we explained earlier, the division timing can be 

controlled by increasing the number of division steps before division. As a result, if the 

division is triggered by a single step process (steps = 1) the division timing is noisier than 

for higher division steps (steps = 10). In figure 5(B), we can observe how the noise in 

protein concentration decreases as the number of division steps increases.

Similar trends can be found in figures 5(C) and (D) when, assuming a given number of 

division steps (steps = 10) and perfect cell division CV2div = 0, protein concentration 

noise increases with growth rate noise CV2gr. These graphs were obtained assuming that the 

dilution rate is equivalent to the growth rate obtained using PyEcoLib, as presented in table 

4. Therefore, cells that grow faster also have a faster dilution rate.

Finally, we examined the impact of increasing the noise in cell splitting position over 

the protein levels. Specifically, we held the division steps (steps = 10) constant and 

maintained a noiseless growth rate (CV2mu = 0). During division, PyEcoLib generates the 
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size of the mother cell (MotherSize) and the size of the cell after division (Sb) as shown 

in table 4. It is assumed that the number of molecules during division segregates according 

to the binomial distribution with parameter Sb/MotherSize. Figure 5(E) illustrates the cell 

size and protein concentration trajectories, while figure 5(F) displays the trend of increasing 

noise in protein concentration as the noise in the variable Sb/MotherSize rises. These 

findings provide valuable insights into the relationship between the noise in cell regulation 

and protein expression noise, which may prove useful for studying gene expression in 

different cellular contexts.

6. Discussion

In this article, we present PyEcoLib, a Python-based library that uses the current continuous 

rate theory of bacterial cell division models [17, 18]. This theory considers division as a 

time-continuous stochastic jump process triggered by the occurrence of a given number 

of division steps. PyEcoLib can estimate the stochastic dynamics of cell size from two 

population perspectives. The first is to keep the population constant by discarding one of 

the two divisions of descendants cells by each division as experimentally obtained using 

microfluidic devices [21]. The second perspective consists of tracking all cells in the colony, 

as done in pico-droplet assays.
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PyEcoLib approximates the population dynamics by simulating cell cycles in a trajectory-

wise way. This method is a useful approach to comparing statistics with a finite number 

of cells in experiments. However, this method is not well-suited for studying the statistics 

at the population level due to the exponential increase in cell number, which can quickly 

exhaust CPU and memory resources. To address this issue, we limited the number of cells 

for the simulation. It should be noted that population-level dynamics can be modeled using 

the Fokker–Planck equation, master equation, or Kolmogorov equation, which can overcome 

the challenges posed by CPU and memory limitations [26, 40].

In addition, this library includes some tools to estimate the cell size dynamics, such as 

simulating most of the division strategies found in E. coli: timer-like, adder, and sizer-like 
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[19, 41] and estimating the distribution of division times, size at division, and size at birth 

in a population of constant number. PyEcoLib can be coupled to stochastic simulation of 

gene expression with reactions occurring at arbitrary distributed times. This library can also 

induce other kinds of noises, such as noise in the placement of the septum ring and the 

cell-to-cell growth rate [22]. Although the user can set an arbitrary cell size distribution of 

the precursor cells; PyEcoLib cannot set an arbitrary starting distribution of division steps, 

and all cells must start from zero division steps.

As shown in figure 4, oscillations in mean size s  and size variability CV s
2 were found. As 

we have shown in previous articles [18], considering only stochasticity in the division steps, 

these oscillations are maintained over an arbitrarily long period of time. These oscillations 

are damped when other sources of noise such as the cell-to-cell growth rate variability and 

the septal position are added.

Including cell size stochasticity in gene expression can be an important tool to understand 

the origin of fluctuations in molecule concentration. The use of PyEcoLib in more complex 

gene regulatory architectures can improve understanding of the effects of stochasticity on 

division timing. Other more complex sources of noise such as division strategy, noise in 

growth rate, and asymmetric cell splitting can be included in gene expression as well.

In supplementary material the reader can study the implementation of PyEcolib in the 

notebook SimulatorProt2023.ipynb.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Data availability statement

The data that support the findings of this study are openly available at the following URL/

DOI: 10.5281/zenodo.4579183.
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Figure 1. 
Schematic model and an example of the basic properties of cell regulation, which can be 

simulated using PyEcoLib. (A) The division is modeled as a stochastic process that occurs 

after completion of the M stages. During division, the cell resets the stages to zero. The 

transition rate from any stage m to another stage m + 1 is given by kdSλ
, where kd is a 

constant, s is the cell size, and λ > 0 defines the strength of division control. Throughout 

the cell cycle, the cell grows exponentially with an exponential growth rate μ and is halved 

during division. (B) Cell size dynamics. Top: time series of a cell growing and dividing. 

one of the two descendant cells (gray) is discarded. Bottom: example of cell size trajectories 

that can be simulated using PyEcoLib. These trajectories can include different sources of 

noise, such as initial size noise, growth rate noise, and partition noise. (C) The adder division 

strategy for simulated trajectories. Following this strategy, the cell size added during each 

cell cycle does not show a correlation with the cell size at birth.
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Figure 2. 
Division strategy and dynamics of the cell size statistics. (A) Cell division strategy left: 
added size versus size at birth, right: noise in added size versus size at birth. Different colors 

represent different parameters lamb. red: lamb = 2 (sizer-like strategy), blue: lamb = 1 

(adder strategy), green: lamb = 0.5 (timer-like strategy). (B) Mean size across time for 

different strategies. (C) Noise in cells size as the squared coefficient of variation across time. 

(Parameters: gr = ln(2), sb = 1, steps = 10, CV2sz = 0.02, CV2div = 0.0, 

CV2gr = 0.0.)
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Figure 3. 
Simulation of the dynamics of a colony using PyEcoLib. (A) Example of the simulated 

lineage tree over time. Different colors represent different cells. (B) Size dynamics for cells 

that were presented in (A) with their respective color. The gray line corresponds to the mean 

cell size for 1000 colonies. (C) Dynamics of the population number for different replicas 

(gray), while the population of the colony in (A) and (B) is depicted in blue. Parameters: 

gr = ln(2), sb = 1, steps = 10, nu = 2, CV2gr = 0.01, CV2div = 0.01, 

V0array = array of gamma-distributed variables with mean = 1 and CV2 = 0.03.

Nieto et al. Page 17

Phys Biol. Author manuscript; available in PMC 2024 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Example of gene expression trajectories including cell size dynamics. (A) Top: some cell 

size trajectories and mean size in darker blue. Bottom: dynamics of cell size fluctuations 

as the cell size squared coefficient of variation. (B) Top: some trajectories of the protein 

number and the mean protein number in darker red. Bottom: dynamics of the noise in 

protein number as the Fano factor of the protein number (variance over the mean). (C) Top: 
some protein concentration trajectories and mean protein concentration in darker purple. 

Bottom: dynamics of the noise in protein concentration as the protein concentration squared 

coefficient of variation. Parameters: ncells = 5000, sb = 1, gr = ln(2), steps 

= 10, nu = 1. The protein is produced by burst events that occur at a rate kp = 10ln 2  with 

a burst size distributed following a geometric distribution with mean b = 10.
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Figure 5. 
Changing variables that influence noise in cell size regulation can result in variation to 

the level of noise in protein concentration. (A) Left: some trajectories of cell size and 

protein concentration for relatively regulated cell cycle timing (steps = 10). Right: 
trajectories of cell size and protein concentration for a less regulated cell cycle timing 

(steps = 1). (B) Protein noise as the squared coefficient of variation for different levels 

of regulation of cell cycle timing measured as the CV 2 of the added size which theoretically 

is the multiplicative inverse of the division steps. (C) Left: some trajectories of cell size 

and protein concentration for relatively regulated growth rate CV gr
2 = 10−3 . Right: some 

trajectories of cell size and protein concentration for relatively less regulated growth rate 

CV gr
2 = 10−1 . (D) Protein noise for different levels of noise in cell growth rate. (E) Left: 

some trajectories of cell size and protein concentration for relatively regulated cell splitting 

CV div
2 = 10−3 . Right: trajectories of cell size and protein concentration for a less regulated 

cell splitting CV div
2 = 10−1 . (F) Protein noise for different levels of noise in cell splitting 

position. The protein is produced by burst events that occur at a rate kp = 4ln 2  with a burst 

size distributed following a geometric distribution with mean b = 5. Error bars represent 

the 95% confidence interval of the simulations using bootstrapping methods.
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Table 1.

Example of a data set obtained using the function szdyn of the class Simulator in PyEcoLib.

time Cell1 Cell2 Cell3

0 3 3 3

0.01 3.215 3.215 3.2153

0.02 3.446 3.446 3.446

0.03 3.693 3.693 3.693
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Table 2.

Example of data obtained using szdynFSP from the class Simulator in PyEcoLib.

Time Meansize VarSize

0.01 3.1057 1.60×10−11

0.02 3.1273 9.57×10−11

0.03 3.1491 4.34×10−10

0.04 3.1710 1.61×10−09
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