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Early-life stress perturbs the epigenetics of Cd36 concurrent
with adult onset of NAFLD in mice
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BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the U.S. and worldwide. The
roles of early postnatal life stress (EPLS) and the fatty acid translocase (CD36) on the pathogenesis of adult-onset NAFLD remain
unknown. We hypothesized that EPLS, in the form of neonatal maternal separation (NMS), would predispose mice towards
developing adult NAFLD, increase hepatic CD36 expression, and differentially methylate Cd36 promoter concurrently.
METHODS: NMS was performed on mice from postnatal day 1 to 21 and a high-fat/high-sucrose (HFS) diet was started at 4 weeks
of age to generate four experimental groups: Naive-control diet (CD), Naive-HFS, NMS-CD, and NMS-HFS.
RESULTS: NMS alone caused NAFLD in adult male mice at 25 weeks of age. The effects of NMS and HFS were generally additive in
terms of NAFLD, hepatic Cd36 mRNA levels, and hepatic Cd36 promoter DNA hypomethylation. Cd36 promoter methylation
negatively correlated with Cd36mRNA levels. Two differentially methylated regions (DMRs) within Cd36 promoter regions appeared
to be vulnerable to NMS in the mouse.
CONCLUSIONS: Our findings suggest that NMS increases the risk of an individual, particularly male, towards NAFLD when faced
with a HFS diet later in life.
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IMPACT:

● The key message of this article is that neonatal maternal separation and a postweaning high-fat/high-sucrose diet increased the
risk of an individual, particularly male, towards NAFLD in adult life.

● What this study adds to the existing literature includes the identification of two vulnerable differentially methylated regions in
hepatic Cd36 promoters whose methylation levels very strongly negatively correlated with Cd36 mRNA.

● The impact of this article is that it provides an early-life environment-responsive gene/promoter methylation model and an
animal model for furthering the mechanistic study on how the insults in early-life environment are “transmitted” into adulthood
and caused NAFLD.

INTRODUCTION
Experiencing stress or adversity during early development
increases the likelihood of developing chronic health disorders
such as obesity1–3 and insulin resistance4,5 later in adulthood in
both humans and animal models. As a result, a plethora of studies
now exist exploring how early-life stress initiates the pathogenesis
of obesity and insulin resistance. In contrast, the influence of early
life stress on the pathogenesis of non-alcoholic fatty liver disease
(NAFLD) remains largely unknown and receives relatively little
attention.
NAFLD stands as the most common liver disease in the United

States and worldwide. NAFLD is characterized primarily by
excessive triglycerides (TG) in hepatocytes.6–8 The pathogenesis
of NAFLD is multifactorial and remain elusive. Studies in recent

years suggest that fatty acid translocase or cluster of differentia-
tion 36 (CD36) plays a causal role in the pathogenesis of NAFLD.
CD36 is a multifunctional membrane receptor involved in long-

chain fatty acid uptake, lipid metabolism, and inflammation.9–12

Hepatocytes normally express low levels of CD36 though CD36
expression increases with lipid-rich diets in humans and mouse
models.13–18 Upregulation of CD36 membrane protein in liver
elevates cellular uptake of fatty acids and positively correlates with
hepatic steatosis.14,19–21 Liver-specific CD36 knockout attenuates
steatosis in mouse models of NAFLD.22,23

Previously, our group demonstrated that an adverse early-life
environment consisting of late pregnancy maternal stress and a
maternal high-fat/high-sucrose (HFS) diet upregulated hepatic
CD36 in a mouse model of adult NAFLD. The NAFLD occurred
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predominantly in male offspring, and a postweaning HFS diet
further exacerbated the hepatic steatosis and upregulation of
CD36.24 The increases in CD36 expression in this model occurred
within the context of differentially methylated regions of the
Cd36 promoter that correlated directly with hepatic NAFLD.24

A question exists as to whether other mouse models of early-life
stress exposure will induce Cd36 promoter differential DNA CpG
methylation, CD36 upregulation, and adult NAFLD, and, if so, this
would suggest a potentially common conserved mechanism for
the pathogenesis of NAFLD.
To answer this question, we used a previously established mouse

model of neonatal maternal separation (NMS), that demonstrates
increased susceptibility to weight gain, particularly on a HFS diet.5

We hypothesized that NMS mice would have greater incidence of
NAFLD in adulthood. We also hypothesized that these phenotypical
changes would be associated with Cd36 promoter differential DNA
CpG methylation and CD36 upregulation.

METHODS
Animals
All animal procedures were approved by the University of Kansas Medical
Center Institutional Animal Care and Use Committee in compliance with
the National Institute of Health Guide for the Care and Use of Laboratory
Animals. Male and female C57Bl/6 mice (Charles River, Wilmington, MA)
were housed in the Research Support Facility at the University of Kansas
Medical Center. Mice were housed at 22 °C on a 12-h light cycle (600–1800)
and received water and food ad libitum.
The NMS mouse model has been published preciously,5,25 with some

modifications in this study. Briefly, pregnant C57Bl/6 dams were delivered to
the animal facility between 14 and 16 days of gestation. Litters were divided
equally into NMS and naive groups. From postnatal day (P) 1 until P21, all
pups from a single cohort of pregnant dams were used for this study. NMS
pups were removed en masse and placed in a clean glass beaker with
bedding from their home cage for 180min (11 a.m.–2 p.m.). The beaker was
placed in an incubator maintained at 33 °C and 50% humidity. Naive mice
remained undisturbed in their home cage except for normal animal
husbandry. All mice were weaned on P22 and pair-housed with same sex
litter mates and ad libitum access to water and a control diet (CD) composed
of 20% kcal protein, 70% kcal carbohydrate (3.5% sucrose), and 10% kcal fat
(Research Diets, Inc. New Brunswick, NJ, Cat. No. D12110704).
At 4 weeks of age, half of the naive and NMS groups were randomly

placed on a high-fat/high-sucrose (HFS) diet, consisting of 20% kcal protein,
35% kcal carbohydrate (15% sucrose), and 45% kcal fat (4.73 kcal/g; Research
Diets Cat. No. D12451, Supplementary Table 1) to mimic the higher fat and
simple sugar content in a western-style diet.
At week 25 of life, mice were overdosed with inhaled isoflurane (>5%).

Liver was dissected and weighed. Half of the liver was flash frozen in liquid
nitrogen and stored at −80 °C. Half was fixed in 10% formalin.

Hepatic histology
Formalin-fixed livers were paraffin embedded. Slices (4 µm) were stained
by hematoxylin and eosin and Masson’s trichrome. The NAFLD activity
score (NAS) was evaluated by a pathologist blinded to the experimental
groups by using the Kleiner scoring system.26 Briefly, the score is defined
as the unweighted sum of the scores for steatosis (0–3), lobular
inflammation (0–3), and ballooning (0–2). Fibrosis was recorded separately.
A minimum of 5% steatosis (NAS score 1) was used for the operational
minimal definition of histological NAFLD. NAS score 1–2 were largely
considered mild NAFLD and considered “not nonalcoholic steatohepatitis
(NASH)”. A score of ≥5 is interpreted as NASH.26

Hepatic TG quantification
Liver tissues were ground in liquid nitrogen. A portion of the grinds was
weighed followed by TG isolation and quantification using Triglyceride
Quantification Kit (MAK266, Sigma-Aldrich) following the manufacturer’s
manual. The hepatic TG levels were expressed as mg/g of liver tissue.

Membrane protein extraction and immunoblotting
Liver membrane protein was extracted using a Mem-PER Plus Membrane
Protein Extraction Kit (Thermo Scientific) and quantified using a Pierce BCA

Protein Assay Kit (Thermo Scientific). Quantification of CD36 membrane
protein was done using capillary immunoassay using Wes Simple Western
system (Proteinsimple) as described previously.24 1:100 dilution of anti-
CD36 antibody (ab133625, abcam) was used. 1:2000 pan Cadherin
(ab51043, abcam) was used as an internal control.

RNA isolation and real-time reverse transcriptase (RT)–PCR
Total RNA isolation was performed by using RNeasy Mini Kit (74904,
Qiagen) following the manufacturer’s instructions, including DNase I
treatment. RNA was quantified spectrophotometrically. The integrity of
RNA was assessed with an Agilent 2100 bioanalyzer in conjunction with
the RNA 6000 Nano kit (Agilent). cDNA was synthesized using a High-
capacity cDNA Reverse Transcription Kit (4368814, Thermo Fisher
Scientific). Real-time RT-PCR was performed as described earlier.24 Target
primers and probes for Cd36 total mRNA, Cd36 transcripts initiated from
promoter 1 (P1 transcripts) and promoter 2 (P2 transcripts) were described
previously.24 Transcripts initiated from promoter 3 (P3 transcripts) were
calculated by subtracting P1 and P2 transcripts from total Cd36 since no
specific assays can be designed for P3 transcripts.24 Primer efficiencies for
these three sets of Cd36 primers/probes were tested and calculated from
the slope using the formula Efficiency (%)= (10–1/slope− 1) × 100. Pepti-
dylprolyl isomerase A (Ppia) was chosen as an internal control after
assessing Ppia, glyceraldehyde-3-phosphate dehydrogenase (Gapdh),
beta-actin (Actb), beta-2 microglobulin (B2m), beta-glucuronidase (Gusb),
hydroxymethylbilane synthase (Hmbs), and hypoxanthine guanine phos-
phoribosyl transferase (Hprt) as candidate housekeeping genes. PCR
conditions and calculations of mRNA expression were performed as
demonstrated previously.24

Bisulfite pyrosequencing
Genomic DNA was isolated from liquid nitrogen-ground liver powder by
using the DNeasy Blood & Tissue Kit (Qiagen) including RNase treatment.
DNA quantity and purity were estimated spectrophotometrically. Bisulfite
treatment of genomic DNA was performed using an EpiTect Plus Bisulfite
Kit (Qiagen) as instructed in the manual.
For each PCR, bisulfite-treated DNA equivalent to 20 ng of the DNA prior

to bisulfite treatment was used. Primers for PCR and sequencing were
designed by using PyroMark Assay Design 2.0 software (Qiagen). Primer
sequences, PCR conditions, and pyrosequencing for the three promoters
were published previously.24 Promoter 2 has total 7 CpG sites within the
proximal promoter. No specific assays can be designed for CpGs (-558,
-556, and -241). Besides CpGs (-845, -740) studied previously, CpGs (-664,
-645) were also added to this study by using the forward primer
5’TGAGTGAATAGAGAGATTGTTGTGGGATA and the reverse primer
5’Biosg/ACACACACCCCAAAAACAAA. PCR condition was 95 °C for 10min,
followed by 50 cycles of 94 °C for 30 s, 62 °C for 30 s, and 72 °C for 30 s.
Pyrosequencing was performed using Q48 Autoprep (Qiagen) with
sequencing primer 5’AGATTGTTGTGGGATAT.

Statistics
Statistical analysis was performed using GraphPad Prism 8 software
(GraphPad Software). Chi-square tests were performed to evaluate the
diagnosis and severity of NAFLD between groups. To evaluate the severity
of NAFLD, Chi-square tests were performed by subcategorizing NAS scores
into NAS 0 (no steatosis), NAS 1–2 (steatosis, no NASH), NAS 3–4 (possible
NASH or NASH), and NAS 5 and above (NASH) for evaluating the severity of
NAFLD. Data are expressed as mean ± standard deviation (SD). Data were
analyzed for normality or lognormality first and then analyzed by using
2-way ANOVA to assess main and interaction effects, with NMS and diet as
independent variables. When significant main or interaction effect was
detected, Bonferroni post hoc testing was used to identify the means that
differ. An additive effect was reported when significant p values of both
NMS-HFS compared with NMS-CD and NMS-HFS compared with Naive-HFS
were found, but p interaction was not significant.24,27 Correlation analyses
were computed using Pearson correlation coefficients. The level of
significance was set at p < 0.05 for all statistical tests.

RESULTS
NMS and HFS significantly increased the body fat percentage
Both NMS and HFS significantly increased body fat percentage in
both male (Supplementary Fig. 1) and female mice28 at 14 and
25 weeks of life. In this model, NMS significantly decreased serum
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corticosterone (CORT) in males29 and resulted a trend toward
increased serum CORT in female mice.28

NMS and HFS significantly increased the prevalence and
severity of hepatic steatosis in adult mice
Hepatic steatosis was diagnosed based on NAS scores, with the
criteria of 5% steatosis as the operational minimal definition of
histological NAFLD.26 In males, Chi-square analysis revealed that
all the three experimental groups had significantly more hepatic
steatosis diagnosed compared to Naive-CD mice (Naive-HFS:
p= 0.0004, NMS-CD: p= 0.0117, NMS-HFS: p= 0.0004) (Fig. 1a). In
females, NMS-HFS mice had a significantly higher incidence of
steatosis compared with Naive-CD (p= 0.0455) and Naive-HFS
mice (p= 0.0455), but not with NMS-CD mice (p= 0.0721) (Fig. 1b).
Only a few mild fibrosis cases were observed among the groups
with no statistical significance detected (data not shown).
Next, the impact of NMS and HFS diet on the severity of

steatosis was determined. Chi-square analyses were performed by
subcategorizing NAS scores into NAS 0 (no steatosis), NAS 1–2
(steatosis, no NASH), NAS 3–4 (possible NASH or NASH), and NAS 5
and above (NASH).26 In males, NMS-CD mice had more severe
steatosis than Naive-CD mice (p= 0.0209) and NMS-HFS mice had
significantly more cases of severe steatosis than Naive-HFS mice
(p= 0.0389) (Fig. 1a). These data indicated that NMS significantly
worsened the development of severe NAFLD in male mice,
regardless of diet. However, in females, most of the observed
steatosis was mild (only 2 with NAS 3–4 and no NAS 5) and only
NMS-HFS mice had more severe steatosis compared to Naive-CD
(p= 0.0455) or Naive-HFS mice (p= 0.0455) (Fig. 1b).
To further confirm these histological findings, hepatic TG

content was quantified. Both NMS and HFS diet had significant
main effects on increasing hepatic TG contents in male livers
(p= 0.0154 and p < 0.0001, respectively) (Fig. 1c). Only a

significant diet effect was found to increase hepatic TG levels in
females (p= 0.0047) (Fig. 1d).

HFS diet significantly upregulated hepatic CD36 membrane
protein in both sexes
HFS diet had a significant effect on increasing hepatic CD36
membrane protein levels in male and female mice (p= 0.0021 and
0.0024, respectively) (Fig. 2a, b). NMS did not significantly impact
hepatic CD36 membrane protein levels in either sex (p > 0.05);
however, NMS-HFS mice had significantly higher CD36 membrane
protein levels compared to NMS-CD in both male and female mice
(p= 0.025 and 0.0405, respectively) (Fig. 2a, b).
A significant positive correlation was found between the levels

of CD36 membrane protein and hepatic TG contents in male mice
(p= 0.0227) (Fig. 2c), with a similar trend in female mice
(p= 0.116) (Fig. 2d).

NMS and HFS diet synergistically upregulated Cd36 total
mRNA and P2-initiated transcripts in male livers
Three different promoters ((P)1, P2, or P3) initiate transcription of
the Cd36 gene, with P3 serving as the primary promoter under
“normal” conditions.24 To determine whether NMS or HFS diet
impacted transcriptional initiation of Cd36, specific primers/probes
were designed for RT-PCR.24 The assay efficiencies for the total Cd36
mRNA, P2 transcripts, and P1 transcripts were 91.89%, 90.84%, and
91.75%, respectively, allowing for comparisons of the impact of NMS
and HFS on the transcriptional activity between promoters.
As expected, in the male Naive-CD mice, P3-initiated transcripts

were the major mRNA variant species in the liver (Fig. 3a and
Supplementary Fig. 2a). However, P3- and P2-initiated transcripts
were similarly expressed in female Naive-CD livers (Fig. 3b and
Supplementary Fig. 3a). P1 transcripts were negligibly expressed
in both sexes indicating that promoter 1 is minimally used for
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transcription in mouse livers (Fig. 3), which is consistent with our
previous data.24

In male mice, both NMS and HFS diet had significant main
effects on the upregulation of Cd36 total mRNA (p < 0.0001 and
p= 0.0003, respectively) and P2 transcripts (p < 0.0001 and

p= 0.0003, respectively) (Fig. 3a). Importantly, NMS and HFS diet
synergistically upregulated both Cd36 total mRNA and P2
transcripts (p= 0.0417 and 0.0333, respectively) with significantly
higher levels in NMS-HFS mice compared to Naive-HFS mice
(p= 0.0009 and 0.0007, respectively). Only a significant effect of
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HFS diet was found on P3 transcripts upregulation (p < 0.0001)
(Fig. 3a). No significant difference was found for P1 transcripts
between groups (Fig. 3a). Strikingly, in comparison to Naive-CD
male livers, NMS-HFS increased the expression of P2 transcripts by
21.63-folds (0.173 ± 0.065 vs 0.008 ± 0.009), of P3 by 2.36-folds
(0.066 ± 0.015 vs 0.028 ± 0.008), and of total Cd36 mRNA by 6.21-
folds (0.242 ± 0.067 vs 0.039 ± 0.017). Altogether, NMS and HFS
diet shifted the major promoter from P3 to P2 in male livers
(Fig. 3a and Supplementary Fig. 2b).
In female mice, only a significant effect of HFS diet was found

on the upregulation of total Cd36 mRNA (p < 0.0001), P2-initiated
transcripts (p= 0.0005), and P3 transcripts (p < 0.0001) (Fig. 3b).
Relative to Naive-CD mice, exposure to NMS and HFS diet
increased the expression of P2 transcripts by 3.39-folds
(0.073 ± 0.044 vs 0.022 ± 0.013), of P3 transcripts by 1.56-folds
(0.047 ± 0.010 vs 0.030 ± 0.007), and of total Cd36 mRNA by 2.26-
folds (0.123 ± 0.049 vs 0.054 ± 0.019). Both P2 and P3 were the
main transcription initiating promoters without significant differ-
ence between the two (Fig. 3b and Supplementary Fig. 3a, b).

Cd36 total mRNA, P2- and P3-initiated transcripts were
significantly positively correlated with the hepatic TG
contents
Expression levels of Cd36 total mRNA and the P2 and P3
transcripts were correlated with hepatic TG contents. As with
the protein expression data, the Cd36 total mRNA, P2 transcripts,
and P3 transcripts were significantly positively correlated with the
hepatic TG contents in both male and female livers (Fig. 4). P1
transcript levels were not correlated with hepatic TG (Fig. 4).

NMS and HFS significantly hypomethylated promoters 2 and 3
of Cd36 in male liver
DNA hypomethylation has previously been associated with
transcriptional upregulation of hepatic Cd36 promoters.24 To
determine if NMS and/or HFS diet-increased expression of P2 and
P3 was related to DNA hypomethylation, bisulfite pyrosequencing
of all three promoter regions was carried out. As expected, in the
male livers, both NMS and HFS diet had significant main effects on
the hypomethylation of two (CpGs (-845) and (-740)) out of four
CpG sites studied around P2 and all six CpG sites around P3
(Fig. 5a). Importantly, additive effects of NMS and HFS diet were
found on the hypomethylation of CpG (-740) in P2 and five (CpGs
(-846, -835, -286, -269, -254)) out of the six CpG sites in P3, with
NMS-HFS mice having significantly lower methylation compared

to either Naive-HFS or NMS-CD mice (p < 0.05) (Fig. 5a). We
defined the regions around CpG (-845, -740) of P2 and the regions
around all the six CpG sites as differentially methylated regions
(DMRs), which were sensitive to both NMS and postweaning HFS
diet.
Paralleling the more moderate impacts of NMS and HFS diet on

the expression of Cd36 mRNA, female liver exhibited less DNA
hypomethylation, compared to the male mice (Fig. 5b). Only a
NMS effect was observed for two (CpG (-845) and (-740)) of the
four CpGs in P2 (p= 0.0132 and 0.0136, respectively) (Fig. 5b).
NMS and HFS diet had significant main effects on the
hypomethylation of five (-846, -835, −804, -269, -254) out of the
six CpGs in P3. A synergistic effect between NMS and HFS was
found on CpG (-269) and CpG (-254) (p= 0.0266 and 0.0197,
respectively) (Fig. 5b). Altogether, the environment sensitive DMRs
identified in male livers were similarly impacted by NMS and HFS
diet in female livers, although to a lesser extent.

Cd36 total mRNA, P2- and P3-initiated transcripts were
strongly and negatively correlated with promoter methylation
in a CpG- and RNA variant-specific manner
Correlation analysis revealed strong negative correlations between
the methylation of promoters and the levels of Cd36 total mRNA
or variant transcripts in both sexes (Fig. 6). Specifically, CpG (-845)
and (-740) of P2 and all six CpGs of P3 were very strongly and
negatively correlated with total Cd36 mRNA and P2 transcripts,
and moderately, with P3 transcripts (Fig. 6 and Supplementary
Table 2). Importantly, these correlations were CpG site specific
because the methylation status of the two studied CpGs in P1 and
CpG (-664) and (-645) in P2 was not correlated with expression of
any mRNA species of Cd36. Similarly, these correlations were Cd36
mRNA variant specific because the levels of P1-initiated transcripts
were not correlated with methylation of any CpG site tested across
the three promoters.
These results, together with our previous findings in an

independently conducted study in a mouse model of different
early life environment (Table 1),24 indicated that the DMRs in P2
and P3 have conserved transcriptional regulatory roles in mouse
liver that are sensitive to early life environments.

DISCUSSION
The core findings of this study suggest that NMS in mice
decreases DNA CpG methylation in the hepatic Cd36 promoter,
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increases hepatic Cd36 mRNA and protein levels, and causes
NAFLD in adult male mice. Specific findings of this study include
(1) the observation that postweaning HFS diet exacerbates the
impact of NMS on NAFLD, and the putative associated mechan-
isms included in this study; (2) the positive correlation of Cd36
mRNA and protein levels with hepatic TG content; and (3) the
identification of two vulnerable DMRs in the Cd36 promoter
whose methylation levels very strongly negatively correlated with
Cd36 mRNA in a mRNA variant- and CpG site-specific manner. The
findings in males parallel similar findings from a previous model
involving a maternal adverse early-life environment conducted at
another institution (Table 1). Considering the methodological
differences between the two model, we speculate that hypo-
methylation of the hepatic Cd36 DMRs represents a conserved
mechanism through which adverse early life event and stressors
initiate the pathogenesis of later life NAFLD.
A link between early life events and the development of NAFLD

later in life does exist in the literature. For example, prenatal
hypoxia followed by subsequent hypoxia at 6 months of life led to
NALFD in male rats.30 This model of NAFLD is striking as it
occurred in the absence of an obesogenic diet.30 Our previous
study demonstrating a link between early life events and NAFLD
described the impact of an adverse maternal environment (AME)
consisting of both maternal chronic stress during late pregnancy,
induced by non-invasive environmental perturbation such as

reduced bedding, and maternal HFS diet from 5 weeks pre-
conception through lactation.24 AME-exposed male offspring
developed more frequent hepatic steatosis than the controls
from this model despite consuming a low-fat control diet for
14 weeks after weaning. Interestingly, a postweaning HFS diet
exacerbated the hepatic steatosis phenotype in the AME male
offspring. In this previous study, the influence of prenatal stress on
adult-onset NAFLD could not be determined because early-life
exposure to obesogenic diet alone has been shown to cause the
NAFLD phenotype.31,32 In contrast, the current study demon-
strates that NMS alone increased the risk of developing NAFLD
later in adulthood in a sex-specific manner.
A link between CD36 and adult NAFLD has been well-

established in prior studies. Upregulation of CD36 membrane
protein positively correlates with elevated hepatocyte uptake of
fatty acids and hepatic steatosis in models of NAFLD originating in
adulthood.14,19,20 Conversely, hepatocyte-specific deletion of
CD36 attenuates steatosis in rodent models of adult NAFLD.22,23,33

Our previous study and the current data further support a role of
CD36 in NAFLD development, as both showed a strong correlation
between hepatic Cd36 mRNA and protein levels with TG content,
as well as increased steatosis. The similarities of the findings
between the two disparate models of early life stress suggest that
upregulation of CD36 may provide a conserved mechanism
underlying the pathogenesis of NAFLD. Further work is needed to
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determine the necessity of CD36 in early life stress-mediated
NAFLD development, particularly in the absence of a HFS diet.
Epigenetic modifications are also associated with early life stress

exposure and the development of negative health outcomes.34 As
such, the two models of early life stress appear to share a
conserved mechanism of increasing CD36 through the hypo-
methylation of the differentially methylated regions (DMRs) of the
hepatic Cd36 promoters 2 and 3 (Table 1). Both P2 and P3 of Cd36
function as active promoters that nature conserves between
mouse and human.22,35–38 Literature focusing upon transcriptional
regulation of P2 is rare. Multiple transcription factor response
elements have been reported within promoter 3.22,33,39,40 These
transcription factors include liver X receptor (LXR), prognane X
receptor (PXR), peroxisome proliferator activated receptor (PPAR)
gamma, and the aryl hydrocarbon receptor (AhR).22,33,39,40 These
TFs bind to their cognate cis-regulatory elements around −230 bp
for PPAR, −400bp for PXR, −1080 bp for LXR, and −1250 bp for
AhR upstream of the P3 transcription start site (TSS), respec-
tively.22,33,39,40 Binding of these transcription factors to their
respective response elements upregulates total Cd36 mRNA.
Functional studies of these two promoters suggest that they

operate somewhat independently. For example, a diet containing
a PPARα ligand upregulates hepatic P2-initiated transcripts, but
not P3 transcripts.36,37 We specifically found that exposure to both
NMS and HFS diet increased P2 transcripts approximately 22
(male) and 3.4 (female) fold, whereas increased P3 transcripts only
2.4 (male) and 1.6 (female) fold. Of importance, methylation levels
of the identified DMRs in P2 and P3 significantly correlated with
P2 transcript levels. These significant changes and correlations
suggest that the methylation status of these DMRs are responsive
to environmental exposures, such as stress and diet, and play a
key role in the transcriptional regulation of hepatic Cd36 gene.41

Further studies are needed to elucidate other pathways by which
the early postnatal life environment mediate changes in Cd36
gene expression and epigenetics, including how promoter 2 is
activated.
Cd36 promoters 2 and 3 are CpG sparse with most of the CpG

sites intermediately methylated. Genome-wide studies have
shown that the genomic regions with intermediate DNA
methylation (IM) is a conserved chromatin signature of genome
regulation.42 These IM regions have average 57% methylation and
are allele-independent. The IM signature enriches for regions with
multiple indicators of regulatory functions, particularly those
associated with enhancers, however, the precise function of
intermediate DNA methylation states is not clear.42 Sae-Lee et al.
have shown that the IM regions had binding specificity to certain
DNMT isoforms over others using overexpression experiments in a
human cell line.43 Importantly, DMRs in IM regions have been
reported to be enriched among those associated with human
diseases, such as allergic sensitization, in human association
studies.44 Our methylation data of the mouse Cd36 promoters 2
and 3 had the feature of IM [except the CpGs (-664 and -665 of
P2), which are inside the simple repeats and to be expected to be
highly methylated] and responsive to early-life environments.
Therefore, our animal/disease/gene model provides a unique
opportunity to study epigenetic regulation of IM chromatin
signature.
Consistent with human observations and previous rodent

models, male mice in the study had more severe outcomes
compared to the female mice.45,46 Both showed similar trends in
terms of NAFLD prevalence/score, CD36 levels, and methylation
changes, as well as hypomethylation at the same DMRs. Also, the
severity of hepatic steatosis positively and significantly correlated
with hepatic CD36 expression and negatively correlated with DNA
CpG methylation of hepatic Cd36 P2 and P3, suggesting a
conserved mechanism between the sexes. Future work will be
necessary to understand how sex is influencing the impact of early
life stress and HFS diet on hepatic outcomes, particularly

considering that previous studies of the same NMS model have
shown similar changes in urogenital hypersensitivity and function
in male and female mice.47,48

Caution is always necessary when attempting to apply data
from mouse models to human pathophysiology. Studies have
shown that the development and severity of induced NAFLD is
dependent on strain and species of the mice.49 Further studies are
needed to see if the findings in the current and the comparator
studies are applicable to other species, especially in humans.
In summary, exposure to NMS in mice resulted in adult-onset

NAFLD, concurrent with upregulation of hepatic CD36 expression
and hypomethylation of Cd36 promoter DMRs. The remarkable
similarity of these findings to that of another model suggest that
this may be a conserved response to early life stress. Regardless,
these findings highlight the importance of the early postnatal life
environment on the health in later life and provide a gene/animal
model tool to further understanding the mechanisms at play.
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