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Summary
Background Preterm birth preceded by spontaneous preterm labour often occurs in the clinical setting of sterile
intra-amniotic inflammation (SIAI), a condition that currently lacks treatment.

Methods Proteomic and scRNA-seq human data were analysed to evaluate the role of IL-6 and IL-1α in SIAI. A
C57BL/6 murine model of SIAI-induced preterm birth was developed by the ultrasound-guided intra-amniotic
injection of IL-1α. The blockade of IL-6R by using an aIL-6R was tested as prenatal treatment for preterm birth
and adverse neonatal outcomes. QUEST-MRI evaluated brain oxidative stress in utero. Targeted transcriptomic
profiling assessed maternal, foetal, and neonatal inflammation. Neonatal biometrics and neurodevelopment were
tested. The neonatal gut immune-microbiome was evaluated using metagenomic sequencing and
immunophenotyping.

Findings IL-6 plays a critical role in the human intra-amniotic inflammatory response, which is associated with
elevated concentrations of the alarmin IL-1α. Intra-amniotic injection of IL-1α resembles SIAI, inducing preterm
birth (7% vs. 50%, p = 0.03, Fisher’s exact test) and neonatal mortality (18% vs. 56%, p = 0.02, Mann–Whitney
U-test). QUEST-MRI revealed no foetal brain oxidative stress upon in utero IL-1α exposure (p > 0.05, mixed linear
model). Prenatal treatment with aIL-6R abrogated IL-1α-induced preterm birth (50% vs. 7%, p = 0.03, Fisher’s
exact test) by dampening inflammatory processes associated with the common pathway of labour. Importantly,
aIL-6R reduces neonatal mortality (56% vs. 22%, p = 0.03, Mann–Whitney U-test) by crossing from the mother to
the amniotic cavity, dampening foetal organ inflammation and improving growth. Beneficial effects of prenatal IL-
6R blockade carried over to neonatal life, improving survival, growth, neurodevelopment, and gut immune
homeostasis.
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Interpretation IL-6R blockade can serve as a strategy to treat SIAI, preventing preterm birth and adverse neonatal
outcomes.
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Research in context

Evidence before this study
Prematurity remains as the leading cause of neonatal
morbidity and mortality before five years of age globally. One
in every three preterm infants is born to a pregnant individual
with inflammation of the amniotic cavity (i.e., intra-amniotic
inflammation), which is diagnosed by elevated concentrations
of IL-6 in amniotic fluid. Most cases of intra-amniotic
inflammation occur in the absence of microbes, a condition
that was recently termed sterile intra-amniotic inflammation.
Despite its prevalence and severe consequences, to date there
is no approved treatment for this devastating obstetrical
disease. Tocilizumab, an anti-IL-6 receptor monoclonal
antibody, has been successfully utilised in pregnant
individuals with inflammatory conditions such as rheumatoid
arthritis. The recent COVID-19 pandemic further
demonstrated the successful use of the anti-IL-6 receptor
monoclonal antibody to reduce the inflammatory phase of
infection caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) in pregnant patients, with no
reported detrimental maternal or foetal effects. Yet,
treatment of sterile intra-amniotic inflammation with an
anti-IL-6 receptor monoclonal antibody has not been
investigated.

Added value of this study
We applied a multidisciplinary approach including human data
together with the development of an animal model of sterile
intra-amniotic inflammation-induced preterm birth to show
that the blockade of IL-6R in the mother prevents preterm
birth and mitigates adverse neonatal outcomes. Moreover, we
demonstrated that the beneficial effects of prenatal IL-6
receptor blockade extend to neonatal life, thereby avoiding
the long-term consequences of in utero exposure to sterile
intra-amniotic inflammation for the health of the offspring.

Implications of all the available evidence
This study demonstrates the previously untested application
of IL-6 receptor blockade for the prevention of preterm birth
and adverse neonatal outcomes driven by sterile intra-
amniotic inflammation. Importantly, our findings from this
clinically relevant animal model provide a proof-of-concept
for undertaking future studies in larger animals, and
eventually humans, using aIL-6R to prevent preterm birth and
adverse neonatal outcomes.
Introduction
Preterm birth (PTB) is the primary cause of mortality
worldwide for children under five years of age.1–3 Pre-
term neonates are at increased risk for a host of long-
term consequences, including impaired growth and
development during infancy4–6 as well as multiple
chronic diseases in adulthood.7,8 Two out of three pre-
term deliveries are preceded by spontaneous preterm
labour, a syndrome caused by multiple pathologic pro-
cesses.9,10 Among these, the best causal link to preterm
labour and birth is intra-amniotic inflammation.10–12

Clinically, intra-amniotic inflammation is diagnosed by
elevated amniotic fluid concentrations of pro-
inflammatory cytokines.13–16 Such a local inflammatory
response can be triggered by invading microorganisms
(i.e., microbial intra-amniotic inflammation or intra-
amniotic infection)9,10,17–19 or by the release of
endogenous danger signals, or alarmins, in the absence
of microorganisms20–22 (i.e., sterile intra-amniotic
inflammation; hereafter referred to as SIAI).20,23–27

Importantly, SIAI is more common than microbial
intra-amniotic inflammation in patients with sponta-
neous preterm labour and intact membranes20; however,
to date, there is no approved therapy to treat this
obstetrical condition.12

The mechanisms of disease implicated in the intra-
amniotic inflammatory response observed in patients
with SIAI are still under investigation. A cytokine
network analysis of amniotic fluid from patients with
spontaneous preterm labour showed that the most
interconnected node of cytokine interactions in patients
with SIAI was led by interleukin (IL)-1α,21 an alarmin
that is causally linked to preterm birth.28–30 Furthermore,
the perturbation of intra-amniotic cytokines displayed by
www.thelancet.com Vol 98 December, 2023
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patients with SIAI included a positive correlation be-
tween IL-1α and IL-6, the latter being a pleiotropic
cytokine that can regulate the timing of parturition.31,32

Indeed, IL-6 is the most reliable biomarker utilised to
diagnose intra-amniotic inflammation in patients with
spontaneous preterm labour.13 Thus, IL-6 signalling is
an ideal target for the treatment of SIAI and subsequent
prevention of PTB; however, the potential utility of
blocking or inhibiting this pathway has yet to be
explored. Notably, antibody-mediated blockade of the IL-
6 receptor (IL-6R) has been previously utilised as a
treatment for pregnant patients with inflammatory
conditions such as rheumatoid arthritis33–35 or corona-
virus disease-2019 (COVID-19).36–41 Specifically, the anti-
IL-6 receptor monoclonal antibody (aIL-6R) has been
successfully used to reduce the inflammatory phase of
infection caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) with no reported detri-
mental maternal or foetal effects.39–41 Previous studies in
pregnant animals have utilised the administration of
aIL-6R prior to42 or at the same time as43 the systemic
administration of lipopolysaccharide (LPS), a model that
resembles systemic inflammation. Such pre-treatment
strategies require a reliable predictive disease model to
ensure that prophylactic drugs are administered to the
correct patients. Therefore, targeting the IL-6 pathway
using aIL-6R has potential translational value and may
be considered for the treatment of patients with SIAI to
prevent preterm labour and birth and its related adverse
neonatal outcomes.

In the current study, we employ data derived from
human and murine samples to provide confirmatory
evidence showing the critical role of IL-6 and IL-1α as key
mediators of SIAI within the intraamniotic space. Next,
we utilised a mouse model of SIAI induced by the intra-
amniotic injection of IL-1α to investigate whether aIL-6R
can serve as a treatment for the prevention of PTB and
adverse neonatal outcomes. To evaluate the specificity of
aIL-6R treatment for the prevention of PTB, a model of
microbial intra-amniotic inflammation was also tested
and contrasted with that of SIAI. In addition, foetal brain
injury was evaluated using magnetic resonance imaging
(MRI) in both animal models of PTB. Consequently, we
mechanistically determined the effects of IL-6R blockade
on the inflammatory responses in the maternal and
foetal components of the common pathway of labour as
well as in foetal organs involved in neonatal injury.
Furthermore, the effects of prenatal treatment with aIL-
6R on neonatal outcomes, including neurodevelopment
and intestinal immune-microbiome interactions, were
also evaluated using neuromotor assessment, meta-
genomic sequencing, and immunophenotyping. Overall,
this study provides a mechanistic investigation support-
ing the use of aIL-6R as a potential therapy for prevent-
ing PTB and adverse neonatal outcomes induced by
SIAI, offering an intervention for a clinical condition
with no current treatment.
www.thelancet.com Vol 98 December, 2023
Methods
Animals
C57BL/6 (strain #000664) mice were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA) and
housed in the animal care facility at the C.S. Mott
Center for Human Growth and Development at Wayne
State University (Detroit, MI, USA). Mice were kept
under a circadian cycle (light:dark = 12:12 h) with
environmental enrichment consisting of nesting
squares and plastic igloos. Eight-to 12-week-old female
C57BL/6 mice were mated with males of proven
fertility. Females were checked daily (8–9 a.m.) to detect
the presence of a vaginal plug, which indicated 0.5 days
post coitum (dpc). Plugged females were then housed
separately, and their weights were monitored daily. A
weight gain of ≥2 g by 12.5 dpc confirmed pregnancy.
The study objective was to determine whether the
blockade of IL-6R using a monoclonal antibody could
prevent PTB and adverse neonatal outcomes in a mouse
model of alarmin-induced intra-amniotic inflammation.
Research subjects were pregnant mice and their
offspring. All mice were randomly assigned to the
different treatment or control groups (described below),
and investigators were not masked to the group
assignment. Numbers of biological replicates are indi-
cated in each figure legend. Power analysis was per-
formed based on the rate of preterm birth induced by
IL-1α compared to controls previously established by our
group,30 resulting in a power of 0.68. Based on these
data, a sample size of n = 6 mice per group would be
necessary to achieve a power of 0.8. The minimal
number of mice was considered, following the “Three
Rs” for animal use alternatives.44

Single-cell RNA sequencing (scRNA-seq) analysis of
the human placental tissues
Publicly available scRNA-seq data were used to explore
the expression of IL6 in the human chorioamniotic
membranes. Briefly, raw fastq files were downloaded
from previously established resources in NCBI dbGaP
phs001886.v1.p1.45 The fastq files were then aligned
using kallisto,46 and bustools47 summarised the cell/
gene transcript counts in a matrix for each sample using
the “lamanno” workflow for scRNA-seq. Each sample
was then processed using DIEM48 to eliminate debris
and empty droplets. All count data matrices were then
normalised and combined using the “NormalizeData,”
“FindVariableFeatures,” and “ScaleData” methods
implemented in the Seurat package in R (Seurat v3.1, R
v3.6.1).49,50 Afterward, the Seurat “RunPCA” function
was applied to obtain the first 50 principal components,
and the different batches and locations were integrated
and harmonised using the Harmony package in R.51 The
top 30 harmony components were then processed using
the Seurat “runUMAP” function to embed and visualise
the cells in a two-dimensional map via the Uniform
Manifold Approximation and Projection (UMAP)
3
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algorithm for dimension reduction. To label the cells,
the Seurat “FindTransferAnchors” and “TransferData”
functions were used for each group of locations sepa-
rately to assign a cell type identity based on our previ-
ously labeled data as reference panel (as performed in45).
We used only the subset of samples from the cho-
rioamniotic membranes of patients who underwent
term labour (TIL) or preterm labour (PTL) (n = 3 per
group). Normalisation of gene expression of IL6 for
each cell type was scaled to transcripts per million
(TPM), and only the subset of cells that expressed IL6
were used in the boxplots.

Single-cell RNA sequencing (scRNA-seq) analysis of
gestational tissues in a mouse model of preterm
labour
Publicly available scRNA-seq data were used to explore
the expression of Il6 in the uterus, decidua, and cervix of
a mouse model of preterm labour.52 The processed
Seurat object was downloaded from GEO accession
number GSE200289. The same cell type labelling and
UMAP coordinates were used as reported in our previ-
ous study (Garcia-Flores et al., 2023).52 We visualised the
UMAP plot while showing the expression levels for Il6
for the three tissues combined, contrasting the two
conditions: preterm labour/birth mice compared to
controls (n = 4 per group). Normalisation of gene
expression for each cell type was scaled to transcripts
per million (TPM) and log10 (1 + x) transformed.

Intra-amniotic administration of IL-1α or LPS
Ultrasound-guided intra-amniotic injection of IL-1α
(Cat# 200-LA/CF; R&D Systems, Minneapolis, MN,
USA) or LPS (Cat# L4391; Escherichia coli O111:B4;
Sigma–Aldrich, St. Louis, MO, USA) were used to
model sterile or microbial intra-amniotic inflammation
in mice, respectively, as previously reported.30,53–56

Briefly, dams were anesthetised at 16.5 dpc by inhala-
tion of 1.75–2% isoflurane (FlurisoTM/Isoflurane, USP;
VetOne, Boise, ID, USA). Mice were positioned on a
heating pad and stabilised with adhesive tape, and fur
was removed from the abdomen using Nair cream
(Church & Dwight Co., Inc., Ewing, NJ, USA) as pre-
viously described.57 Dams were intra-amniotically
injected with IL-1α at concentrations of 10, 20, 25, or
50 ng dissolved in 25 μL of sterile 1X phosphate-
buffered saline (PBS; Fisher Scientific Bioreagents,
Fair Lawn, NJ, USA or Life Technologies Limited, Pai-
ley, UK) or LPS at concentrations of 100 ng dissolved in
25 μL of sterile PBS in each amniotic sac under ultra-
sound guidance using the Vevo® 2100 Imaging System
(VisualSonics Inc., Toronto, Ontario, Canada) and a 30G
needle (BD PrecisionGlide Needle, Becton Dickinson,
Franklin Lakes, NJ, USA). Control dams were intra-
amniotically injected with 25 μL of PBS. Successful
intra-amniotic injection was confirmed by using colour
Doppler ultrasound to identify the “injection jet
sign”.58,59 Following intra-amniotic injection, mice were
placed under a heat lamp until recovery, which was
typically 5–10 min after removal from anaesthesia.

Anti-IL-6 receptor (aIL-6R) blockade
Six h after injection with IL-1α or LPS, pregnant mice
were intra-peritoneally injected with the anti-IL-6 re-
ceptor (aIL-6R; 10 mg/kg) monoclonal antibody (Invi-
voMab rat anti-mouse IL-6R, clone 15A7, Cat# BE0047,
Bio X Cell Inc, Lebanon, NH, USA) or IgG2b isotype
(10 mg/kg) as control (InVivoMAb rat IgG2b isotype
control, anti-keyhole limpet hemocyanin, clone LTF-2,
Cat# BE0090, Bio X Cell Inc). The 6 h timepoint was
chosen based on our previous work showing that PTB
can be prevented by an anti-inflammatory drug in a
model of systemic inflammation.60

Video monitoring of perinatal outcomes
Primary observational outcomes included the rates of
PTB and neonatal mortality, which were recorded with a
video camera system (Sony Corporation, Tokyo, Japan).
Gestational length was calculated as the time from the
presence of the vaginal plug (0.5 dpc) until the detection
of the first pup in the cage bedding. Preterm birth was
defined as delivery before 18.5 dpc. The rate of PTB was
calculated as the proportion of females delivering pre-
term out of the total number of mice per group. The rate
of neonatal mortality was defined as the proportion of
delivered pups found dead among the total number of
pups.

Neonatal outcomes
Neonatal survival and weights were monitored weekly
until postnatal day (PND) 21. Head biparietal diameter
was measured at week 3 by using a digital calliper
(Chemglass Life Sciences, Vineland, NJ, USA). Neuro-
motor behaviour was examined on the morning of
PND 5 and included the following tests: surface right-
ing, negative geotaxis, and cliff aversion. For the surface
righting test, each pup was placed on its back on a flat
table, and the ability and time required to flip onto its
feet from a supine position were recorded (maximum
time 60 s). For the negative geotaxis test, each pup was
placed on a board inclined at a 45◦ angle with the head
pointing downwards, and the ability and time required
to turn 180◦ with the head, trunk, and forepaws facing
upwards were recorded (maximum time 120 s). For cliff
aversion, pups were placed on a cliff with forepaws over
the edge, and the ability and time to turn at least 90◦
away from the edge were recorded (maximum time
30 s).61,62

QUEST MRI-based detection of elevated free radical
production in the foetal brain
Six h after intra-amniotic injection with LPS or IL-1α,
dams were intraperitoneally injected with 10 mg/kg of
rosiglitazone (ROSI, Cat# S2556, Selleckchem,
www.thelancet.com Vol 98 December, 2023
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Houston, TX, USA) dissolved in 200 μL of sterile PBS,
as previously reported.63 QUEnch-assiSTed magnetic
resonance imaging (QUEST MRI) was performed
9–10 h after injection with ROSI similar to a procedure
previously described.63 Briefly, high-resolution T1
relaxation rate (R1) data were acquired on a 7T system
(Bruker BioSpec AV4 Neo, Billerica, MA, USA), using a
commercial receive-only surface coil (1.0 cm diameter)
that was part of the coil set for the BioSpec. In all cases,
several single spin-echo (time to echo [TE] 13 ms,
7 × 7 mm2, matrix size 160 × 320, slice thickness
600 μm, in-plane resolution 21.875 μm) images were
acquired. Different repetition times (TRs) were used in
the following order (number of scans per TR in paren-
theses): TR 0.15 s (6), 3.50 s (1), 1.00 s (2), 1.90 s (1),
0.35 s (4), 2.70 s (1), 0.25 s (5), and 0.50 s (3). To
compensate for reduced signal:noise ratios at shorter
TRs, progressively more images were collected for
averaging as the TR decreased. The slice chosen for
these studies has been previously demonstrated.63 Note
that the BioSpec system did not acquire data by motion-
correction sequences such as periodically rotated over-
lapping parallel lines with enhanced reconstruction (i.e.,
BLADE) as had been utilised in earlier work.63 Instead,
data were collected using a conventional spin-echo
sequence, which has been previously demonstrated to
work well for R1 mapping in QUEST-MRI studies of the
retina.64 To help mitigate motion artifacts, dams were
anesthetised with an intraperitoneal injection of
urethane (2.3 g/k of animal weight, diluted in PBS,
Sigma–Aldrich, Cat# U2500) instead of isoflurane, an
anaesthetic that produces gasping.65 In addition, we
collected several single spin-echo (time to echo [TE]
11.17 ms, 17 × 17 mm2, matrix size 128 × 128, slice
thickness 400 μm, in-plane resolution 133 μm) images
in two phase-encode directions; these two sets of data
were compared and/or averaged, which suppressed
motion artifacts in the final R1 image. As before, a
foetus was gently immobilised in utero using a 3D-
printed clip designed for this purpose, as previously
described.63 An abnormal, continuous production of
paramagnetic free radicals (indicative of oxidative stress)
in the left and right brain hemispheres (combined
caudate-putamen and thalamus region of interest) was
inferred from the difference in an R1 signal between
ROSI-treated (a drug with antioxidant properties66) and
non-treated dams.63 Therefore, a decrease in an R1
signal upon ROSI treatment was considered indicative
of foetal brain oxidative stress.

We used a linear mixed model to analyse R1, con-
ducting separate analyses for the mice from LPS-
injected vs. IL1α-injected dams. The model included
the fixed effect of treatment (ROSI vs. control), side, and
the treatment by side interaction as well as a random
intercept for each mouse within treatment. Degrees of
freedom were calculated using the Kenward-Roger
method. The treatment by side interaction was not
www.thelancet.com Vol 98 December, 2023
significant so the interaction was removed to obtain the
final model, and this model was used to calculate R1
differences averaged across the site. Results are pre-
sented as means with 95% confidence intervals, and we
used a 5% significance level for all tests. All analyses
were conducted using Proc Mixed of SAS v9.4 (SAS
software, Cary, NC, USA).

Sampling of maternal–foetal tissues
Pregnant mice received an intra-amniotic injection of
IL-1α or PBS on 16.5 dpc and 6 h after were intra-
peritoneally injected with aIL-6R or isotype antibodies,
as described above. Mice were euthanised at 17.5 dpc
(16 h after the initial injection, before PTB), and animal
dissection was performed for tissue collection. The
amniotic fluid was collected from each amniotic sac and
centrifuged at 1300×g for 5 min at 4 ◦C. The resulting
supernatants were stored at −20 ◦C until analysis. After
dissection of the uterine horns, the vaginal border was
carefully removed, and the upper limit of the cervix was
incised to isolate the cervical tissue. Pictures and
macroscopic measurements of cervical length and width
were obtained as surrogates of cervical modifications
associated with labour, as previously described.56,67 The
uterus, decidua, placenta, foetal membranes, foetal
brain, foetal lung, and foetal intestine were also
collected. Pictures and weights of the placentas and
foetuses were obtained during animal dissection. The
collected tissues were preserved in RNAlater Stabiliza-
tion Solution (Cat# AM7021; Invitrogen by Thermo
Fisher Scientific, Carlsbad, CA, USA), according to the
manufacturer’s instructions, and stored at −80 ◦C for
reverse transcription-quantitative polymerase chain re-
action (RT-qPCR).

Sampling of neonatal tissues
Pregnant mice received an intra-amniotic injection of
IL-1α or PBS on 16.5 dpc and 6 h after were intra-
peritoneally injected with aIL-6R or isotype anti-
bodies, as described above. Dams were allowed to
deliver, and neonates were monitored for adverse out-
comes in the first three weeks of life. All neonatal
samples were obtained at PND 21. Thriving neonates
were euthanised, and the brain, lung, colon, caecum,
and small intestine were collected, rinsed in PBS, and
stored for molecular determinations. For RNA studies,
the neonatal brain, lung, colon, caecum, and small in-
testine were placed into RNAlater Stabilization Solu-
tion, according to the manufacturer’s instructions. For
leukocyte isolation and immunophenotyping, samples
from the neonatal colon, caecum, and small intestine
were placed in cold PBS before processing. For
microbiome studies, samples from the neonatal colon,
caecum, and small intestine, as well as environmental
controls, were obtained using sterile swabs (FLOQS-
wabs, Cat# 553C Copan Diagnostics, Murieta, CA,
USA) under aseptic conditions.
5
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Detection of maternal–foetal transfer of aIL-6R
Fluorescence labelled aIL-6R antibody was prepared
using the Alexa Fluor™ 647 antibody labelling kit (Cat#
A20186, Molecular Probes, ThermoFisher Scientific,
Waltham, MA, USA), following the manufacturer’s
instructions. Pregnant mice (n = 5) were intra-
amniotically injected with IL-1α and 6 h after were
intraperitoneally injected with the Alexa Fluor™647-
conjugated aIL-6R antibody (10 mg/kg). The
following day, the uterine horns were collected for
imaging using the in vivo imaging system (IVIS,
Caliper Life Sciences, Hopkinton, MA, USA) in epi-
fluorescence mode. Next, the amniotic fluid and
maternal plasma were collected to determine the con-
centration of Alexa Fluor™647-conjugated aIL-6R
antibody by fluorescence quantification using the
SpectraMax iD5 multi-mode microplate reader (Mo-
lecular Devices, San Jose, CA, USA).
Cytokine determinations in amniotic fluid
Amniotic fluid samples were analysed for IL-6, IL-1β,
and TNF concentrations using the U-PLEX Custom
Biomarker Group 1 (mouse) assay (Cat# K15069L Meso
Scale Discovery, Rockville, MD, USA), according to the
manufacturer’s instructions. Assay plates were read
using the MESO QuickPlex SQ 120 (Meso Scale Dis-
covery), and analyte concentrations were calculated us-
ing the Discovery Workbench software v4.0 (Meso Scale
Discovery). The lower limit of detection (LLOD) for each
analyte was 4.8 pg/mL (IL-6), 3.1 pg/mL (IL-1β), and
1.3 pg/mL (TNF).

Gene expression determination
Total RNA was isolated from the uterus, decidua, cervix,
placenta, foetal membranes, foetal lung, foetal brain,
neonatal lung, neonatal brain, neonatal small intestine,
neonatal colon, and neonatal caecum using QIAshred-
ders (Cat# 79656; Qiagen, Hilden, Germany), RNase-
Free DNase Sets (Cat# 79254; Qiagen), and RNeasy
Mini Kits (Cat# 74106; Qiagen), according to the man-
ufacturer’s instructions. A NanoDrop 8000 spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA) and
a Bioanalyzer 2100 (Agilent Technologies, Waldbronn,
Germany) were used to evaluate RNA concentrations,
purity, and integrity. SuperScript IV VILO Master Mix
(Cat# 11756050; Invitrogen by Thermo Fisher Scientific
Baltics UAB, Vilnius, Lithuania) was used to synthesise
complementary DNA. Gene expression profiling of the
tissues was performed on the BioMark System for high-
throughput RT-qPCR (Fluidigm, San Francisco, CA,
USA) with the TaqMan gene expression assays (Applied
Biosystems, Life Technologies Corporation, Pleasanton,
CA, USA) listed in Table S1. Negative delta cycle
threshold (−ΔCT) values were determined using multi-
ple reference genes (Actb, Gapdh, Gusb, and Hsp90ab1)
averaged within each sample.
Characterisation of the neonatal gut microbiome
DNA extraction
Genomic DNA was extracted from previously collected
swabs of the small intestine, caecum, and colon (n = 44
each) alongside non-template negative controls (n = 13)
to address any potential background DNA contamina-
tion. Only one of those controls yielded a metagenomic
library. By contrast, all small intestine and caecum
samples yielded a metagenomic library while 36 colon
samples yielded a metagenomic library. All swabs were
randomised across extraction runs. Extractions were
conducted using a Qiagen MagAttract PowerMicrobiome
DNA/RNA EP extraction kit (Qiagen, Germantown, MD,
USA) and an epMotion 5075 liquid handler (Eppendorf,
Enfield, CT, USA). The purified DNA was transferred to
96-well microplates and stored at −20 ◦C.

Metagenomic sequencing
DNA samples underwent metagenomic sequencing
using the Illumina NovaSeq 6000 S4 150-base paired-
end read protocol at the University of Michigan’s
Advanced Genomics Core. Prior to taxonomic and
functional classification of the intestinal metagenomic
sequence reads, raw reads were subjected to adapter
removal and were quality-trimmed using bbduk68 with
the following options: qtrim = rl, trimq = 21, min-
length = 100, tpe, and tbo. Taxonomic classification of
bacterial sequence reads was performed using Kraken
2.1.269 and the Kraken PlusPFP database with the
following options: minimum-hit-groups = 2 and confi-
dence = 0.3. Abundance estimation was performed with
Bracken v2.670 based on a read length of 150 bp and a
kmer length of 35. Of the 300 bacterial species identi-
fied, two species were removed from the dataset because
they had greater relative abundances in the non-
template negative control sample than in the biological
samples (Staphylococcus aureus 45.7% > 0.07%; Cupria-
vidus metallidurans 19.7% > 4.78%). All small intestine
samples were normalised to 50,466 reads, and all cae-
cum and colon samples were normalised to 1,278,327
reads using the “rarefy_even_depth” function in phylo-
seq 1.42.0,71 resulting in 42, 44, and 36 bacterial profiles
for each of the three sample types, respectively. No
cross-tissue comparisons were conducted.

Bacterial community analysis
Alpha diversity metrics (Chao1, Shannon, and Inverse
Simpson) of bacterial profiles were calculated with
phyloseq 1.42.0.71 Differences in alpha diversity index
values between treatments were assessed for each tissue
type using Mann–Whitney U-tests. Beta diversity of
bacterial profiles was characterised using the Bray–
Curtis similarity index. Bray–Curtis similarity of sam-
ple profiles was visualised using principal coordinate
analysis (PCoA) plots. Differences in bacterial commu-
nity structure between treatments were assessed for
each tissue type using nonparametric multivariate
www.thelancet.com Vol 98 December, 2023
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analysis of variance (NPMANOVA) within the R vegan
2.6.4 package. Given the difference in a bacterial read
count generated for the small intestine samples
compared to the caecum and colon samples, only the
latter two sample types were considered for assessing
differential abundance of individual bacterial taxa be-
tween treatment groups. For both the caecum and colon
datasets, the relationship between the 25 most abundant
bacterial species between treatment groups was inde-
pendently assessed using Mann–Whitney U-tests with
Holm’s correction for multiple comparisons as imple-
mented in R v4.2.2. Adjusted p-values <0.1 were
considered significant.

Leukocyte isolation from neonatal tissues
Isolation of leukocytes for immunophenotyping from
the neonatal colon, caecum, and small intestine were
performed as previously reported with some modifica-
tions.54 Briefly, the neonatal colon, caecum, and small
intestine were collected from three neonates of the same
litter and pooled per experiment (n = 6–10 each). Tis-
sues were gently minced using fine scissors and enzy-
matically digested with StemPro Accutase Cell
Dissociation Reagent (Cat# A1110501, Thermo Fisher)
for 15 min at 37 ◦C. Leukocyte suspensions were filtered
using a 100 μm cell strainer (Cat# 22-363-549, Fisher
Scientific, Fair Lawn, NY, USA), followed by washing
with PBS prior to immunophenotyping.

Immunophenotyping of leukocytes from neonatal
tissues
Leukocyte suspensions from the neonatal tissues were
stained using LIVE/DEAD Fixable Viability Stain (BD
Biosciences, San Jose, CA, USA) prior to incubation
with extracellular and intracellular mAbs. Leukocyte
suspensions were centrifuged at 1250×g for 7 min at
4 ◦C and then incubated with specific fluorochrome-
conjugated monoclonal antibodies (Table S2) for
30 min at 4 ◦C. After washing, the cells were fixed and
permeabilised with the FOXP3/Transcription Factor
Staining Buffer set (Cat# 00-5523-00; Thermo Fisher)
for 30 min at 4 ◦C. Next, the cells were incubated with
anti-mouse antibodies for intracellular markers
(Table S2) for 30 min at 4 ◦C. The cells were acquired
using the BD LSRFortessa flow cytometer (BD Bio-
sciences) with FACSDiva 9.0 software (BD Biosciences).
The analysis and preparation of images were performed
using FlowJo Software v10 (Tree Star, Ashland, OR,
USA).

Statistics
Observational, gene expression, and flow cytometry data
were analysed with GraphPad Prism v9 (v9.0.2; Graph-
Pad, San Diego, CA, USA). For observational data, the
Fisher’s exact test and the two-tailed Mann–Whitney U-
test were used to compare the rates of PTB and neonatal
mortality, respectively, between two study groups (PBS/
www.thelancet.com Vol 98 December, 2023
Isotype vs. IL-1α/Isotype, or IL-1α/Isotype vs. IL-1α/aIL-
6R). Kaplan–Meier survival curves were used to plot and
compare the gestational length data, with the start of
follow-up at 16.5 dpc, the end of follow-up at 21 dpc, and
the delivery of the first pup as the censoring point. A
Gehan-Breslow-Wilcoxon test was used to evaluate dif-
ferences between the survival curves from two groups
(PBS/Isotype vs. IL-1α/Isotype; or IL-1α/Isotype vs. IL-
1α/aIL-6R). To determine gene expression levels from
RT-qPCR arrays, −ΔCT values were calculated using
averaged reference genes (Actb, Gapdh, Gusb, and
Hsp90ab1) within each sample. Heatmaps were created
to represent the Z-scores of the mean (−ΔCT), ordered
by highest to lowest degree of gene expression using the
IL-1α/Isotype group as a reference. Similarly, for flow
cytometry data, heatmaps were created to represent the
Z-score of the mean (cell population frequencies), or-
dered by highest to lowest subpopulation frequencies
using the IL-1α/Isotype group as a reference. For indi-
vidual plots, two-tailed Mann–Whitney U-tests was uti-
lised to compare between two groups. A p-value <0.05
was considered significant. QUEST MRI data were
analysed using Proc Mixed of SAS 9.4, as described
above. General microbiome data analysis was performed
using R (v.4.2.2; https://www.r-project.org/), as
described above.

Ethics
The reanalysis of human amniotic fluid proteins and
scRNA-seq data was performed using available de-
identified datasets. These samples were taken after
obtention of written informed consent, and ethical
approval was obtained from the Institutional Review
Boards of Wayne State University (Detroit, MI, USA)
and/or the National Institute of Child Health and Hu-
man Development (NICHD)/National Institutes of
Health/U.S. Department of Health and Human Ser-
vices (Bethesda, MD, USA).21,22,45

All animal experimental procedures were performed
in compliance with guidelines set by the Institutional
Animal Care and Use Committee (IACUC) at Wayne
State University under Protocol 21-04-3506. The
methods are reported in accordance with ARRIVE
guidelines for the reporting of animal experiments.

Role of funders
The funders had no role in the study design, data
collection and interpretation, or the decision to submit
the work for publication.
Results
Blockade of IL-6R protects against preterm birth
and neonatal mortality induced by IL-1α
SIAI is defined as the presence of an elevated concen-
tration of IL-6 in the absence of detectable bacteria, as
demonstrated by both conventional and molecular
7
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microbiologic techniques (Fig. 1a).20,25,26 Therefore, in
this study, we initially utilised our previously generated
single-cell RNA sequencing (scRNA-seq) data from hu-
man chorioamniotic membranes45 (the extraembryonic
tissues surrounding the amniotic cavity) to investigate
potential sources of IL-6 in the intra-amniotic space.
Our findings revealed that multiple cell types within the
chorioamniotic membranes express IL6 (Fig. 1b).
Notably, the expression of IL6 by stromal, macrophage,
and decidual cell types was found to be higher in pre-
term labour cases compared to term labour controls
(Fig. 1c), suggesting the involvement of the cho-
rioamniotic membranes in IL-6 expression driven by
intra-amniotic inflammation. Next, we revisited a pre-
viously reported cytokine network analysis of the am-
niotic fluid of patients with preterm labour and SIAI21

and found that the IL-1α module is enriched in the
amniotic cavity of patients with preterm labour and SIAI
(Fig. 1d). Indeed, the amniotic fluid concentrations of
IL-1α are elevated in patients with SIAI compared to
those without SIAI (Fig. 1e). Furthermore, the concen-
trations of this alarmin were correlated with those of
multiple pro-inflammatory mediators,21 including IL-6
(Fig. 1d), the canonical marker of intra-amniotic
inflammation.13 Interestingly, using available scRNA-
seq data from a murine model of preterm labour and
birth, as evidenced by sonographic cervical shortening,52

we found that Il6 is consistently upregulated in multiple
cell types in labour-associated tissues (e.g., uterus and
decidua) from mice undergoing preterm labour
compared to preterm no labour controls (Fig. 1f,
Table S3). Specifically, Il6 expression was increased in
the macrophage, stromal, epithelial, fibroblast, and
Fig. 1: Blockade of IL-6R reduces preterm birth and neonatal morta
increased amniotic fluid concentrations of the alarmin IL-1α and the bio
intra-amniotic inflammation (SIAI). (b) Uniform Manifold Approximation
types in the chorioamniotic membrane of patients who underwent spo
represent cell clusters with the highest IL6 expression. (c) Violin plots repre
cell clusters compared between patients who underwent spontaneous term
interactions in the amniotic fluid of pregnant patients with preterm labo
concentrations of IL-1α (pg/mL) in pregnant patients with preterm labou
shown as box-and-whisker plots where midlines indicate medians, boxe
maximum values. (f) UMAP plots showing the expression of Il6 by cell typ
(left panel) or mice undergoing preterm labour (right panel; n = 4 per grou
SMC, smooth muscle cell. (g) Experimental model for the induction of
control) on 16.5 days post coitum (dpc), with successful injection confirm
ultrasound. (h) Preterm birth and (i) neonatal mortality rates in mice injec
group). (j) Experimental design for treatment of IL-1α- or PBS-injected dam
rat IgG2b isotype (control) 6 h after intra-amniotic injection. (k) Preterm
(filled blue bars), IL-1α/Isotype (filled red bars), PBS/aIL-6R (open blue
Gestational lengths of dams from the four experimental groups displayed
Model of microbial-induced preterm birth and treatment with aIL-6R or is
mice injected with PBS/Isotype (filled blue bars), LPS/Isotype (filled black
(n = 6–9 litters per group). Data are shown as bar plots. p-values were dete
Mann–Whitney U-tests for neonatal mortality, and the Gehan-Breslow-W
**p < 0.01; ***p < 0.001.
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monocyte cell clusters from both the decidua and
myometrium as well as in endothelial and smooth
muscle cell clusters from the myometrium of mice
undergoing preterm labour (Table S3).

By utilizing previous knowledge generated in our
laboratory, we performed animal experimentation to
establish a model of PTB induced by SIAI that resem-
bled the clinical scenario. Approximately 50% of pa-
tients diagnosed with preterm labour, SIAI, and elevated
intra-amniotic concentrations of alarmins undergo PTB
within one week20; therefore, we tested several intra-
amniotic concentrations of IL-1α to determine whether
they cause delivery within 24–48 h post-injection
(Fig. 1g). Intra-amniotic administration of IL-1α
induced PTB and neonatal mortality in a dose-
dependent manner (Fig. 1h and i). The intra-amniotic
injection of 25 ng of IL-1α induced PTB in 60% of
cases; therefore, this dose was chosen for further
studies. Subsequently, we investigated whether the
blockade of IL-6R could protect against PTB and
neonatal mortality induced by intra-amniotic IL-1α
(Fig. 1j). Notably, the blockade of IL-6R abrogated the
adverse perinatal outcomes induced by IL-1α, reducing
the rates of PTB and neonatal mortality by 43% (Fig. 1k)
and 34% (Fig. 1l), respectively. Consequently, treatment
with aIL-6R extended the gestational length of dams
injected with IL-1α to resemble that of control dams
(Fig. 1m). These results demonstrate that the blockade
of IL-6R can prevent PTB and neonatal mortality
induced by elevated intra-amniotic concentrations of the
alarmin IL-1α (i.e., SIAI).

Previous studies have suggested that treatment of
microbial-driven inflammation-related PTB could be
lity induced by IL-1α. (a) Schematic representation showing the
marker of intra-amniotic inflammation, IL-6, in patients with sterile
and Projection (UMAP) plot showing the expression of IL6 by cell
ntaneous term or preterm labour (n = 3 per group). Dotted lines
sent the expression of IL6 by the Stromal, Macrophage, and Decidual
(TIL) or preterm (PTL) labour. (d) IL-1α module of cytokine network
ur and SIAI (modified from Romero et al. 2015). (e) Amniotic fluid
r with or without SIAI (modified from Bhatti et al. 2020). Data are
s indicate interquartile ranges, and whiskers indicate minimum and
es in labour-associated tissues from control (preterm no labour) mice
p). Dotted lines represent cell clusters with the highest Il6 expression.
SIAI by ultrasound-guided intra-amniotic injection of IL-1α (or PBS
ed by observation of the “injection jet sign” by using colour Doppler
ted with PBS (blue, n = 6 litters) or IL-1α (light red, n = 5–8 litters per
s with rat anti-mouse IL-6 receptor monoclonal antibody (aIL-6R) or
birth and (l) neonatal mortality of dams injected with PBS/Isotype
bars), and IL-1α/aIL-6R (open red bars) (n = 14 per group). (m)
as Kaplan–Meier survival curves (n = 14 dams at risk per group). (n)
otype. (o) Preterm birth and (p) neonatal mortality were evaluated in
bars), PBS/aIL-6R (open blue bars), and LPS/aIL-6R (open black bars)
rmined using the Fisher’s exact test for preterm birth rate, two-sided
ilcoxon test for Kaplan–Meier survival curve comparisons. *p < 0.05;
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Fig. 2: Differential effect of sterile and microbial intra-amniotic inflammation on an MRI imaging biomarker of free radical production/
oxidative stress in the foetal brain. (a) Left: Dams were intra-amniotically injected with IL-1α (25 ng/25 μL per sac) or LPS (100 ng/25 μL per
sac). Six h later, a portion of dams from each group received an intraperitoneal injection of rosiglitazone (ROSI; 10 mg/kg), and all dams
underwent in utero MRI scanning using a 7T system. Continuous production of paramagnetic free radicals (indicative of oxidative stress) in the
region of interest (ROI) located in the left and right brain hemispheres was inferred from the difference in the R1 (=1/T1) signal between ROSI-
treated (a drug with antioxidant properties) and untreated dams. Right: Representative image showing the foetal brain. (b) Top row:
Representative anatomical images (generated by normalizing the TR 150 ms image) for each study group. Bottom row: Corresponding R1 maps.
All images were fixed to the same scale with darker colours indicating lower R1 values. (c) Modelled mean of the ROI R1 from both hemispheres
of either IL-1α and IL-1α + ROSI groups (left bar graph, n = 6 per group) or LPS and LPS + ROSI groups (right bar graph, n = 3–4 per group). Data
are presented as means and confidence intervals. p-values were determined using linear mixed modelling. *p < 0.05.
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achieved by blocking or inhibiting general inflammatory
pathways. Yet, we challenged this view since blocking
key components of the innate immune system (e.g., the
inflammasome) consistently worsened adverse perinatal
outcomes upon administration of intra-amniotic bacte-
ria (Gomez-Lopez et al., unpublished data). Thus, we
propose that treatments for PTB should be tailored to
the nature of the inflammatory response, resulting in
therapies for SIAI that may not be useful to prevent
microbial intra-amniotic inflammation and vice versa.
To evaluate this concept, we used our animal model of
LPS-induced intra-amniotic inflammation, an experi-
mental approach to model microbial-induced PTB53–56

(Fig. 1n). Intra-amniotic injection of LPS induced high
rates of PTB and neonatal mortality; however, treatment
with aIL-6R did not prevent such adverse perinatal ef-
fects (Fig. 1o and p). To dive deeper into the divergent
inflammatory responses induced by alarmins and mi-
crobial products, we tested for the continuous and
asynchronous production of paramagnetic free radicals
as a proxy for foetal brain oxidative stress using in utero
QUEST MRI combined with rosiglitazone (ROSI), an
antioxidant used as the quenching agent63 (Fig. 2a). As
previously established,63 the foetuses of dams intra-
amniotically injected with LPS displayed signs of foetal
brain oxidative stress; however, this phenomenon was
not observed in foetuses of dams intra-amniotically
injected with IL-1α (Fig. 2b and c). These findings
indicate that the blockade of IL-6R serves to treat SIAI
and prevent the resulting PTB, but not that induced by
microbial signals (i.e., LPS), highlighting the distinct
nature of these two intra-amniotic inflammatory re-
sponses and emphasizing that different therapeutic
strategies should be utilised for each clinical condition.

Blockade of IL-6R interferes with the common
pathway of labour
Next, we investigated the mechanisms whereby the
blockade of IL-6R prevents PTB. The processes of term
and preterm labour share a common pathway that pre-
cedes the delivery of the offspring.72–75 Such a pathway
includes uterine contractility, cervical remodelling, and
www.thelancet.com Vol 98 December, 2023
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Fig. 3: Blockade of IL-6R interferes with the common pathway of labour induced by intra-amniotic IL-1α. (a) Dams underwent intra-
amniotic injection of PBS (control) or IL-1α on 16.5 days post coitum (dpc). Six h later, dams were intra-peritoneally injected with rat anti-
mouse IL-6 receptor monoclonal antibody (aIL-6R) or rat IgG2b isotype (control). Sixteen h after the intra-amniotic injection, the uterus,
cervix, foetal membranes, and decidua were collected to analyse gene expression by directed high-throughput RT-qPCR. (b) Heatmap repre-
sentation of inflammatory gene expression in the uterine tissue (n = 9 per group). Red indicates increased expression and blue indicates
decreased expression. (c) Gene expression (−ΔCT) of Il1b, Nlrp3, Ccl2, Ccl5, Mmp9, and Nos2 in the uterus. (d) Heatmap representation of
inflammatory gene expression in the cervix (n = 9 per group). (e) Gene expression (−ΔCT) of Tnf, Cxcl1, and Socs3 in the cervix. (f) Repre-
sentative images of cervical dilation and quantifications of cervical length and width. Scale bar represents 10 mm (n = 7–11 per group). (g)
Heatmap representation of inflammatory gene expression in foetal membranes (n = 9 per group). Gene expression (-ΔCT) of (h) Nlrp3, Nos2,
and Mmp9 or (i) Il1b, Ccl3, Ccr5, and Cxcl10 in foetal membranes. Data for gene expression are shown as box-and-whisker plots where midlines
indicate medians, boxes indicate interquartile ranges, and whiskers indicate minimum and maximum values. p-values were determined by two-
sided Mann–Whitney U-test. *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 4: Anti-IL-6R efficiently crosses the placenta and reduces the inflammation-related gene expression induced by intra-amniotic IL-1α.
(a) Dams underwent intra-amniotic injection of IL-1α on 16.5 days post coitum (dpc). Six h later, dams received Alexa Fluor™647-conjugated rat
anti-mouse IL-6 receptor monoclonal antibody (aIL-6R) to evaluate maternal–foetal transfer. Sixteen h after intra-amniotic injection the uterus
was collected for imaging by using the IVIS system. (b) Representative fluorescence image and scale showing the ex vivo detection of labelled
aIL-6R in the intra-amniotic space. (c) Amniotic fluid concentrations (μg/mL) of aIL-6R in the amniotic fluid and maternal plasma. The amniotic
fluid concentration is also reported as a percentage of the maternal plasma concentration (7.3%) (n = 5). Data are shown as bar plots with mean
and S.E.M. (d) Dams underwent intra-amniotic injection of PBS (control) or IL-1α on 16.5 days post coitum (dpc). Six h later, dams were treated
with aIL-6R or rat IgG2b isotype (control). Sixteen h after intra-amniotic injection, placental tissues and amniotic fluid were collected to
determine gene expression and cytokine concentrations, respectively. (e) Representative heatmap showing Z-scores (red and blue indicates
increased and decreased expression, respectively) for gene expression across the placental tissues from the four experimental groups (n = 7–9
per group). (f) Expression (-ΔCT) of Ccl3, Nlrp3, Il12a, and Lrg1 in the placental tissues from the four experimental groups. (g) Concentrations
(pg/mL) of TNF, IL-6, and IL-1β in the amniotic fluid from the four experimental groups (n = 8–12 per group). Data for gene expression are
shown as box-and-whisker plots where midlines indicate medians, boxes indicate interquartile ranges, and whiskers indicate minimum and
maximum values. p-values were determined using the two-sided Mann–Whitney U-test. *p < 0.05; **p < 0.01.
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foetal membrane/decidual activation, all of which
involve a rise in pro-inflammatory mediators.72–75 Thus,
using an RT-PCR array, we measured the expression of
several transcripts associated with inflammation in the
uterus, cervix, foetal membranes, and decidua (Fig. 3a).
Overall, the inflammatory signatures triggered by IL-1α-
induced labour in each compartment were unique. For
example, IL-1α-induced labour caused increased uterine
expression of Il1b, Nlrp3, Ccl2, Ccl5, Mmp9, and Nos2;
however, such overexpression was not observed upon
treatment with aIL-6R (Fig. 3b and c). In the cervix, IL-
1α-induced labour drove the increased expression of
Tnf, Cxcl1, and Socs3, and these transcripts were
reduced to control levels upon treatment with aIL-6R
(Fig. 3d and e). Indeed, the process of cervical
ripening was evident in dams injected with IL-1α but
not in those treated with aIL-6R (Fig. 3f). In the foetal
membranes, IL-1α-induced labour was associated with
increased expression of Nlrp3, Nos2, and Mmp9, and
such overexpression was dampened by aIL-6R treatment
(Fig. 3g and h). However, IL-1α also induced the
expression of Il1b, Ccl3, Ccr5, and Cxcl10, none of which
were reduced upon treatment with aIL-6R (Fig. 3i).
Furthermore, neither IL-1α-induced labour nor
www.thelancet.com Vol 98 December, 2023
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Fig. 5: Anti-IL-6R dampens foetal inflammation induced by intra-amniotic IL-1α, restoring foetal growth. (a) Dams underwent intra-
amniotic injection of PBS (control) or IL-1α on 16.5 days post coitum (dpc). Six h later, dams received intraperitoneal injection of rat anti-
mouse IL-6 receptor monoclonal antibody (aIL-6R) or rat IgG2b isotype (control). Sixteen h after intra-amniotic injection, foetal and
placental growth parameters were measured followed by tissue collection to determine gene expression. Representative heatmaps showing
Z-scores for gene expression in the (b) foetal brain, (c) foetal lung, and (d) foetal intestine from the four experimental groups (n = 6–9 per
group). Red indicates increased expression and blue indicates decreased expression. Expression (−ΔCT) of (e) Il1a, Il1b, Tnf, and Lrg1 in the foetal
brain, (f) P2rx7 in the foetal lung, and (g) S100a9 in the foetal intestine from the four experimental groups. (h) Representative images of
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treatment with aIL-6R modified the expression of
decidual transcripts associated with an inflammatory
response (Fig. S1). Taken together, these results indicate
that IL-1α triggers the common pathway of labour in the
uterus, cervix, and foetal membranes, inducing preterm
birth in mice; yet, treatment with aIL-6R partly dampens
these processes. The latter findings provide a mecha-
nism whereby the blockade of IL-6R prevents premature
labour.

aIL-6R crosses the maternal–foetal interface,
restores foetal growth, and dampens foetal
inflammation
The common pathway of labour is governed by maternal
and foetal signalling, including within the intra-
amniotic space.56,76 Therefore, we next investigated
whether aIL-6R administered systemically to dams can
reach the intra-amniotic space and be detected in am-
niotic fluid (Fig. 4a). Using an Alexa Fluor™647-
conjugated aIL-6R and imaging techniques, we
showed that this antibody could be detected in the intra-
amniotic space (Fig. 4b) and quantified in amniotic fluid
(Fig. 4c), demonstrating maternal–foetal transfer.

Next, we investigated the effects of aIL-6R on the
inflammatory response induced by IL-1α in the placenta
and amniotic fluid (Fig. 4d). Treatment with aIL-6R
prevented the IL-1α-induced expression of Ccl3, Nlrp3,
Il12a, and Lrg1 in the placenta (Fig. 4e and f). Further-
more, treatment with aIL-6R modulated the inflamma-
tory response in the amniotic cavity, as evidenced by
dampening of pro-inflammatory cytokines such as TNF
and IL-6 (Fig. 4g). Treatment with aIL-6R tended to
reduce the amniotic fluid concentration of IL-1β
(Fig. 4g); yet, the bioactive form of this cytokine was not
determined in this study.

We then evaluated whether treatment with aIL-6R
could similarly ameliorate the foetal inflammatory
response induced by IL-1α (Fig. 5a). Treatment with aIL-
6R reduced the expression of specific mediators in the
foetal brain, foetal lung, and foetal intestine, indicating
that this antibody targets specific pathways in each
compartment (Fig. 5b–d). For example, aIL-6R treat-
ment prevented the IL-1α-driven dysregulation of Il1a,
Il1b, Tnf, and Lrg1 in the foetal brain (Fig. 5e), P2rx7 in
the foetal lung (Fig. 5f), and S100a9 in the foetal in-
testine (Fig. 5g).

Intra-amniotic and foetal inflammation have been
strongly associated with foetal growth restriction.77–80

Therefore, we last investigated whether treatment with
aIL-6R could have beneficial effects on foetal and
placental growth (Fig. 5h). Treatment with aIL-6R
foetuses and placentas from the four experimental groups. Scale bar repre
weight ratio from the four experimental groups (n = 9–10 litters per gr
where midlines indicate medians, boxes indicate interquartile ranges, an
determined using the two-sided Mann–Whitney U-test. *p < 0.05; **p <
protected against IL-1α-induced foetal growth restric-
tion, as evidenced by the foetal:placental weight ratio
(Fig. 5i).

Collectively, these data indicate that treatment with
aIL-6R dampens the IL-1α-induced inflammatory
response in the amniotic cavity containing the placenta,
amniotic fluid, and foetus, thereby preventing foetal
growth restriction, and that this protective effect is
attained through the capacity of the treatment to reach
the intra-amniotic space.

Blockade of IL-6R improves adverse neonatal
outcomes induced by intra-amniotic IL-1α
Having established the protective effects of aIL-6R on
the foetus, we next explored whether such benefits
extended into neonatal life (Fig. 6a). Neonatal survival
was negatively impacted by intra-amniotic exposure to
IL-1α across the first three weeks of life; yet, such an
adverse neonatal outcome was ameliorated by the
blockade of IL-6R (Fig. 6b). The protective effect of aIL-
6R on neonatal growth was also demonstrated by
increased neonatal weight and size in the first three
weeks of life (Fig. 6c and d). Intra-amniotic IL-1α had
notable effects on neonatal head size; therefore, we also
evaluated the biparietal diameter as a readout of brain
mass and showed that the blockade of IL-6R prevented
such an adverse neonatal outcome (Fig. 6e). To com-
plement these observations, we performed neuromotor
tests62 in neonates exposed to intra-amniotic IL-1α and
those treated with aIL-6R. Negative geotaxis is one of the
earliest innate reflexes that neonates display after
birth.62,81 Neonates exposed to IL-1α in utero failed the
negative geotaxis test more often and took longer to
complete the test than control neonates, but such
worsened performance was improved upon treatment
with aIL-6R (Fig. 6f). Neonates exposed to IL-1α in utero
also tended to fail the surface righting and cliff aversion
tests; however, these alterations did not reach statistical
significance (Fig. S2a and b). Nonetheless, treatment
with aIL-6R did not affect test performance (Fig. S2a and
b). Next, we evaluated brain inflammation in neonates
exposed to IL-1α in utero and those treated with aIL-6R.
Consistent with compromised neuromotor skills, the
brain of neonates exposed to intra-amniotic IL-1α dis-
played upregulation of inflammatory mediators such as
Aim2, Cd68, Ccr5, and mGluR5; yet, such over-
expression was not observed after treatment with aIL-6R
(Fig. 6g and h), suggesting that brain inflammation is
dampened by the blockade of IL-6R. Last, we deter-
mined neonatal lung inflammation, given that prema-
ture neonates are at increased risk of pulmonary
sents 20 mm. (i) Foetal weight, placental weight, and foetal:placental
oup). Data for gene expression are shown as box-and-whisker plots
d whiskers indicate minimum and maximum values. p-values were
0.01.
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Fig. 6: Blockade of IL-6R improves neonatal outcomes and limits organ inflammation induced by intra-amniotic IL-1α. (a) Dams un-
derwent intra-amniotic injection of PBS (control) or IL-1α on 16.5 days post coitum (dpc). Six h later, dams received intraperitoneal injection of
rat anti-mouse IL-6 receptor monoclonal antibody (aIL-6R) or rat IgG2b isotype (control). Dams were allowed to deliver and neonatal survival
until postnatal day (PND) 21 as well as weekly weights and neuro-motor development testing were recorded. Brain and lung tissues were
collected on PND21. (b) Neonatal survival rates up to PND21 are displayed as Kaplan–Meier survival curves (n = 14 litters per group). p-values
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diseases such as respiratory distress syndrome or
bronchopulmonary dysplasia, among others.82,83 Neo-
nates exposed to IL-1α in utero did not display a strong
dysregulation of the targeted inflammatory markers in
their lungs (Fig. 6i), suggesting that the inflammatory
milieu in SIAI is milder than that associated with bac-
teria, which is associated with severe neonatal respira-
tory diseases.84–86 Taken together, these findings
highlight the deleterious effects of elevated IL-1α in
utero and provide strong evidence that the blockade of
IL-6R enhances neuromotor skills, dampens brain in-
flammatory responses, and improves neonatal growth,
protecting against adverse perinatal outcomes.

Blockade of IL-6R restores IL-1α-induced neonatal
gut immune-microbiome alterations
Premature human neonates display alterations of the
gut microbiome.87,88 Indeed, maternal systemic inflam-
mation, largely driven by IL-6, leads to neonatal gut
dysbiosis.89 Moreover, preterm neonates born to patients
with chorioamnionitis are at higher risk of necrotizing
enterocolitis90,91; yet, whether sterile intra-amniotic
inflammation, the most common inflammatory
response in utero,20 causes neonatal gut inflammation or
alteration of the gut microbiome is unknown. To
address this, we first evaluated inflammatory gene
expression in the murine neonatal gut, which was
divided into the small intestine, caecum, and colon
(Fig. 7a). Intra-amniotic IL-1α altered the gene expres-
sion profile of each intestinal compartment, an effect
that was partially reversed by prenatal treatment with
aIL-6R (Fig. 7b–d). Specifically, treatment with aIL-6R
fostered homeostasis by preventing the IL-1α-driven
dysregulation of Ccr5, Casp1 and Il12b in the small in-
testine (Fig. 7e), Socs3, Ccr5 and Casp1 in the caecum
(Fig. 7f), and Aim2, Myd88, Ccl17, Ccr5, Ifng and Il12a
in the colon (Fig. 7g).

To characterise the neonatal gut microbiome, we
performed metagenomic (i.e., shotgun) sequencing of
the neonatal small intestine, caecum, and colon
(Fig. S3a). Overall, the distribution of major microbial
phyla remained consistent among study groups for each
were determined using the Gehan-Breslow-Wilcoxon test. (c) Weights (g)
(n = 10–14 litters per group). p-values were determined using two-side
where midlines indicate medians, boxes indicate interquartile ranges, and
images of pups at PND21. The scale bar represents 5 cm. (e) Schemat
biparietal diameter (n = 10–14 litters per group). (f) Schematic diagram o
neonates with a failed test and the time required to complete the test ar
shown as box-and-whisker plots where midlines indicate medians, boxe
maximum values. (g) Representative heatmap showing Z-scores for gene
(n = 6 per group). Red indicates increased expression and blue indicates d
mGluR5 in the neonatal brain. Data for gene expression are shown as bo
interquartile ranges, and whiskers indicate minimum and maximum values
the neonatal lung from the four experimental groups (n = 6 per group). p
*p < 0.05; **p < 0.01.
tissue, as did the Bacillota:Bacteroidota ratio that is
reflective of normal intestinal homeostasis (Fig. S3b).
Alpha diversity metrics of the microbiome indicated that
IL-1α was associated with altered community evenness
in the colon, which was not observed in aIL-6R-treated
mice (Fig. S3c). We then analysed beta diversity of the
microbiome in each segment of the neonatal gut
(Fig. 8a–l and Fig. S4). IL-1α exposure was associated
with changes in community structure in the caecum
(Fig. 8a–c) and the colon (Fig. 8g–i), but not in the small
intestine (Fig. S3d). In the caecum and colon, several
bacterial taxa showed altered abundance (Fig. S4a and
b). Importantly, aIL-6R treatment prevented the IL-1α-
driven microbiome alterations in the caecum (Fig. 8d–f
and Fig. S4a) and colon (Fig. 8j–l and Fig. S4b) as evi-
denced by the lack of differences in microbial commu-
nity structure and individual taxa abundance between
treatment and control groups.

Intra-amniotic administration of IL-1α induced im-
mune dysregulation in the neonatal gut (Fig. S5a). Yet,
treatment with aIL-6R mainly restored the neonatal
microbiome in the caecum and colon; therefore, we
focused on evaluating cellular immune responses in
these compartments using immunophenotyping in two
groups: neonates born to dams that were injected with
IL-1α and those treated with aIL-6R (Fig. 9a). We first
evaluated general leukocyte populations including total
leukocytes (CD45+ cells), myeloid cells (CD11b+ cells),
conventional T cells (CD3+ cells), mucosal-associated
invariant T (MAIT) cells (TCRVb6+ cells), NK cells
(ID2+NK1.1+ cells), and innate lymphoid cells (ILCs)
(ID2+ cells) (Fig. S5b). The majority of affected leukocyte
populations between study groups were conventional T
and MAIT cells, ILCs, and NK cells (Fig. 9b). Then, we
focused on specific subsets of these lymphoid cells
identified by the expression of transcription factors or
cytokines. Overall, treatment with aIL-6R restored
cellular immune homeostasis. Specifically, in the
neonatal caecum, treatment with aIL-6R reduced the IL-
1α-driven increase in the proportions of CD4+RORγt+ T
cells, CD8+Foxp3+ T cells, CD8+IL-17A+ T cells,
CD4+Foxp3+ MAIT cells, CD8+IL-17A+ MAIT cells,
of neonates across the first three weeks of life are shown as box plots
d Mann–Whitney U-tests. Data are shown as box-and-whisker plots
whiskers indicate minimum and maximum values. (d) Representative
ic diagram of calliper measurement and quantification of neonatal
f the negative geotaxis test for neuro-motor evaluation. The rate of
e shown as box plots (n = 6–14 litters per group). Data in e and f are
s indicate interquartile ranges, and whiskers indicate minimum and
expression in the neonatal brain from the four experimental groups
ecreased expression. (h) Expression (−ΔCT) of Aim2, Cd68, Ccr5, and
x-and-whisker plots where midlines indicate medians, boxes indicate
. (i) Representative heatmap showing Z-scores for gene expression in
-values were determined using the two-sided Mann–Whitney U-test.
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Fig. 7: Blockade of IL-6R prevents IL-1α-induced neonatal gut inflammation. (a) Dams underwent intra-amniotic injection of PBS (control)
or IL-1α on 16.5 days post coitum (dpc). Six h later, dams received intraperitoneal injection of rat anti-mouse IL-6 receptor monoclonal
antibody (aIL-6R) or rat IgG2b isotype (control). Dams were allowed to deliver, and the neonatal small intestine, caecum, and colon were
collected on postnatal day (PDN) 21 to determine gene expression. Representative heatmaps showing Z-scores for gene expression in the
neonatal (b) small intestine, (c) caecum, and (d) colon from the four experimental groups (n = 6 per group). Red indicates increased expression

Articles

www.thelancet.com Vol 98 December, 2023 17

www.thelancet.com/digital-health


Articles

18
CD8+GATA3+ MAIT cells, TGFβ+ ILCs, NCR+TGFβ+

ILCs, RORγt+ NK cells, and IFNγ+ NK cells (Fig. 9c). In
the colon, treatment with aIL-6R dampened the pro-
portions of CD4+RORγt+ T cells, CD8+IL-17A+ T cells,
CD4+Foxp3+ MAIT cells, NCR+TGFβ+ ILCs, NCR+IL-
10+ ILCs, and IFNγ+ NK cells observed upon IL-1α
exposure (Fig. 9d).

Collectively, these findings indicate that treatment
with aIL-6R not only prevents PTB induced by SIAI but,
more importantly, improves adverse neonatal outcomes
by restoring gut immune-microbiome homeostasis.
Discussion
The study herein provides a mechanistic investigation
supporting the hypothesis that the use of a monoclonal
antibody against IL-6R is a potential therapy for pre-
venting PTB and adverse neonatal outcomes induced by
SIAI, thereby representing a feasible intervention for
this clinical condition that has no currently approved
treatment. The treatment of pathologies involving sterile
inflammation in non-pregnant individuals include non-
steroidal anti-inflammatory drugs92 or other specific
therapies93,94 that are not clinically approved to be used
during pregnancy due to their potentially harmful ef-
fects on the foetus.95,96 Therefore, the urgent need to find
safe treatments for SIAI has led us to pursue a strategy
for repurposing drugs with anti-inflammatory proper-
ties that are already safely utilised during pregnancy.
Previously, we demonstrated that betamethasone, a
corticosteroid that has been shown to accelerate foetal
organ maturation in patients at risk of delivering pre-
term,97,98 prevented alarmin-induced PTB but not the
consequent neonatal mortality.58 Then, we showed that
clarithromycin, a macrolide that in combination with
other antibiotics can be used to treat microbial intra-
amniotic inflammation,99–102 prevented alarmin-induced
PTB and neonatal mortality by interfering with the
common pathway of labour as well as by reducing the
inflammatory responses in foetal organs.59 Yet, the ef-
fects of such drugs on neonatal neurodevelopment and
gut host-immune responses have not been evaluated.
The recent COVID-19 pandemic represented a chal-
lenge for science, given that effective preventive strate-
gies as well as treatments to avoid worsening of the
disease need to be applied in a timely fashion. The field
of obstetrics was even more challenged, since the effects
of COVID-19 itself, as well as the safety of the proposed
treatments, must be evaluated for two individuals (i.e.,
the mother and the foetus). In this regard, case reports
from the beginning of the pandemic described the use
and blue indicates decreased expression. Expression (−ΔCT) of (e) Ccr5,
Casp1 in the neonatal caecum, and (g) Aim2, Myd88, Ccl17, Ccr5, Ifng, and
for gene expression are shown as box-and-whisker plots where midlines
indicate minimum and maximum values. p-values were determined usin
of the IL-6R mAb, tocilizumab, as a treatment for severe
COVID-19 in pregnant individuals.36,37,103 Months later,
cases of pregnant patients treated with tocilizumab had
increased, showing maternal benefits without delete-
rious effects on the foetus.39,40,104–108 Anti-IL-6R has
traditionally been a safe option to treat pregnant in-
dividuals with autoimmune diseases such as rheuma-
toid arthritis.34,109,110 Moreover, previous reports have
demonstrated that either the absence of the Il6 gene
(Il6−/− mouse model),31 pre-treatment with a rat anti-
mouse IL-6R antibody (MR16-1),42 or co-treatment with
an anti-IL-6 antibody43 in dams receiving systemic
administration of LPS reduced the rate of PTB.42 How-
ever, the use of drugs for pre-treatment of prematurity
has limited translational value given that pregnant in-
dividuals are unlikely to accept prophylactic treatment in
the absence of symptoms. Moreover, the administration
of drugs prior to diagnosis (i.e., prophylaxis) is not
suitable for sterile intra-amniotic inflammation since
there is currently no reliable predictive model to identify
patients who will develop this obstetrical disease.
Furthermore, the intra-peritoneal injection of LPS is a
model of endotoxemia, which may resemble the clinical
conditions of clinical chorioamnionitis or pyelonephritis
during pregnancy53,111; yet, such obstetrical diseases can
be successfully treated with antibiotics.112–114 Our results
demonstrating that aIL-6R can prevent PTB and adverse
neonatal outcomes exclusively in the context of SIAI, but
not in microbial intra-amniotic inflammation, are in line
with a previous report showing no differences in the
rate of PTB in Il6−/− dams receiving intra-uterine in-
jection of E. coli compared to controls.115 Together with
these investigations, our findings demonstrate the dif-
ferential effects of local and systemic inflammation as
well as their sterile or microbe-associated nature during
pregnancy, highlight the distinct features of these en-
tities, and reinforce the fact that targeted therapeutic
approaches are required to prevent prematurity in
distinct subsets of pregnant patients.

Herein, we demonstrated that one mechanism
whereby aIL-6R prevents PTB is by dampening the IL-
1α-induced inflammatory response in reproductive and
gestational tissues that participate in the common
pathway of parturition, namely the uterus, foetal mem-
branes/decidua, and cervix.10,72–75 It is well known that
the components of the IL-6 pathway are widely
expressed in the reproductive and gestational tissues,116

and IL-6 signalling is involved in key physiologic
reproductive events such as implantation and la-
bour.31,32,116 In the context of SIAI, alarmins were shown
to induce an inflammatory milieu in the tissues
Casp1, and Il12b in the neonatal small intestine, (f) Socs3, Ccr5, and
Il12a in the neonatal colon from the four experimental groups. Data
indicate medians, boxes indicate interquartile ranges, and whiskers
g the two-sided Mann–Whitney U-test. *p < 0.05; **p < 0.01.
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Fig. 8: Blockade of IL-6R prevents IL-1α-induced microbiome alterations in the neonatal caecum and colon. Samples from the neonatal
colon and caecum, as well as environmental controls, were obtained at postnatal day 21 using sterile swabs. (a–f) Principal coordinate analysis
(PCoA) illustrating variation in the metagenomic profiles of the neonatal caecum of the (a) PBS/Isotype and IL-1α/Isotype groups or (d) PBS/
aIL-6R and IL-1α/aIL-6R groups (n = 10–12 per group). Bar plots showing the taxonomic classifications of the 20 bacterial taxa with highest
relative abundance in the neonatal caecum of the (b) PBS/Isotype and IL-1α/Isotype groups or (e) PBS/aIL-6R and IL-1α/aIL-6R groups
(n = 10–12 per group). Heatmap displaying the relative abundance and taxonomy of the 20 most relatively abundant bacterial taxa between the
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included in the common pathway of labour in
humans117–123 and mice.30,124 Notably, a previous investi-
gation demonstrated that tocilizumab reduced the IL-6-
induced expression of metalloproteinase-9 in amnion
epithelial cells,125 which is in line with our results in
foetal membranes. Moreover, tocilizumab dampens the
myometrial cell proliferation induced by leptin,126 a
protein that has been implicated in the onset of la-
bour.127,128 To our knowledge, no previous research had
evaluated the effects of aIL-6R in cervical ripening.
Regardless of the scarcity of research on the effects of
aIL-6R in gestational tissues, a recent human case report
demonstrated that tocilizumab can cross the placenta, as
evidenced by a high concentration of the drug in the
cord blood.129 Yet, the concentration of aIL-6R in the
amniotic fluid had not been previously evaluated.
Therefore, our results showing that aIL-6R reaches the
amniotic fluid and dampens the intra-amniotic inflam-
matory response induced by alarmins represent a pre-
viously unknown mechanism whereby aIL-6R can
prevent PTB and adverse foetal and neonatal outcomes.

Foetal exposure to intra-amniotic inflammation or
intra-amniotic infection has been linked to restricted foetal
growth, neuroinflammation, and impaired
neurodevelopment77–80,130–133 that, in turn, is associated
with a number of adverse neurologic outcomes and
mental diseases.132,134,135 Reports linking foetal inflam-
mation to adverse neurodevelopmental outcomes were
primarily focused on intra-amniotic infection rather
than SIAI; yet, studies investigating the resulting foetal
inflammatory response have indicated that inflamma-
tory mediators are the driving factor in the resulting
foetal damage, regardless of the microbial or sterile
nature of the initial insult.130,136,137 Indeed, the potential
mechanisms whereby inflammatory cytokines can
induce foetal neurological damage include direct effects
on cerebral vasculature resulting in hypoperfusion and
ischemia, activation of the coagulation cascade causing
thrombosis and necrosis, microglial activation leading
to propagation of the inflammatory response, and
increased blood–brain barrier permeability.130 The above
data therefore suggest that the targeting of key inflam-
matory mediators or their signalling pathways could
represent a viable approach to prevent the neonatal
consequences of in utero inflammation exposure,
metagenomic profiles of the neonatal caecum of the (c) PBS/Isotype a
(n = 10–12 per group). (g–l) PCoA illustrating variation in the metageno
Isotype groups or (j) PBS/aIL-6R and IL-1α/aIL-6R groups (n = 10–12 pe
bacterial taxa with highest relative abundance in the neonatal colon of th
1α/aIL-6R groups (n = 10–12 per group). Heatmap displaying the relative a
taxa between the metagenomic profiles of the neonatal colon of the (i) P
6R groups (n = 10–12 per group). Similarities in the metagenomic profiles
For bar plots, multiple taxa with the same phylum-level classification wi
heatmaps, bacterial taxa with significantly altered abundance between gr
Mann–Whitney U-tests with Holm’s correction for multiple comparisons.
including neurological damage leading to adverse neu-
rodevelopmental outcomes. Consistent with this
concept, herein we report that prenatal neutralisation of
IL-6R prevented neonatal growth impairment, including
a diminished biparietal diameter, and improved
neonatal performance in behavioural tests designed to
evaluate neurodevelopment.62 Such improved observa-
tional outcomes were associated with reduced inflam-
matory gene expression in the neonatal brain, allowing
us to propose a mechanism whereby IL-6R blockade
prevents inflammatory signalling in this organ,
restoring the normal trajectory of neonatal growth and
neurodevelopment.

In line with our findings in the neonatal brain, the
blockade of IL-6R signalling was found to ameliorate the
neonatal gut inflammation driven by in utero exposure to
IL-1α. Such dampening of the immune response
included altered intestinal gene expression and the
reduced presence of specific leukocyte subsets. Our
model of alarmin-induced intra-amniotic inflammation
is consistent with a prior study in which the intra-
amniotic administration of IL-1α to pregnant sheep
resulted in upregulation of inflammatory gene expres-
sion in the foetal ileum together with increased T cells
and myeloperoxidase (MPO)+ cells.138 The detrimental
effects of inflammatory insults on the foetal gut were
further demonstrated by direct exposure of the ovine
foetal intestine to LPS, resulting in similar tissue
inflammation and leukocyte infiltration.139 Furthermore,
selective in utero exposure of the ovine foetal gut to IL-1α
also caused local inflammation and leukocyte infiltra-
tion.140 Finally, preterm piglets exposed to intra-amniotic
LPS displayed signs of gut inflammation at birth and
prolonged systemic inflammation at postnatal day 5,141

further supporting the prolonged adverse effects of in
utero exposure to an inflammatory insult. Indeed, the
exposure of murine foetuses to maternal systemic
inflammation induced by intraperitoneal LPS was also
found to cause intestinal inflammation and impaired
development in neonatal life.142 Moreover, such a
response was at least partially IL-6-dependent, as mice
deficient for this cytokine displayed reduced signs of
neonatal inflammation.142 Together with data presented
herein, these studies support the role of the IL-6 sig-
nalling pathway in foetal and neonatal gut inflammation
nd IL-1α/Isotype groups or (f) PBS/aIL-6R and IL-1α/aIL-6R groups
mic profiles of the neonatal colon of the (g) PBS/Isotype and IL-1α/
r group). Bar plots showing the taxonomic classifications of the 20
e (h) PBS/Isotype and IL-1α groups/Isotype or (k) PBS/aIL-6R and IL-
bundance and taxonomy of the 20 most relatively abundant bacterial
BS/Isotype and IL-1α/Isotype groups or (l) PBS/aIL-6R and IL-1α/aIL-
(PCoA plots) were characterised using the Bray–Curtis similarity index.
thin the same sample are indicated by bars of the same colour. For
oups are labelled in blue. p-values were determined using two-sided
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Fig. 9: Blockade of IL-6R restores immune cellular homeostasis in the neonatal gut following intra-amniotic IL-1α exposure. (a) Dams
underwent intra-amniotic injection of IL-1α on 16.5 days post coitum (dpc). Six h later, dams received intraperitoneal injection of rat anti-mouse
IL-6 receptor monoclonal antibody (aIL-6R) or rat IgG2b isotype (control). Dams were allowed to deliver, and the neonatal small intestine,
caecum, and colon were collected on postnatal day (PDN) 21 to isolate leukocytes for immunophenotyping. (b) Heatmap representation
showing Z-scores for the proportions of specific lymphocyte subpopulations (conventional T and MAIT cells, ILCs, and NK cells) from the two
experimental groups in the neonatal caecum and colon (n = 5–11 per group). (c) Cell proportions of CD4+RORγt+ T cells, CD8+FoxP3+ T cells,
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resulting from exposure to intra-amniotic insults and
provide further mechanistic support for the protective
effects of aIL-6R observed in the current study.

The developmental period from late gestation
through early neonatal life is critical for the formation of
a healthy gut microbiome,143 and multiple inflammatory,
metabolic, neurologic, cardiovascular, and gastrointes-
tinal diseases have been linked to disruption of the
microbiota during this time.144 Deep characterisation of
the foetal gut using single-cell approaches has indicated
that the formation of memory T cells in this compart-
ment occurs in mid to late gestation,145–147 likely driven by
exposure to maternally derived antigens originating
from microbes or other sources. Therefore, exposure to
inflammation during this critical window of develop-
ment is likely to hamper the proper establishment of the
gut immunological niche, with subsequent conse-
quences for the formation of the gut microbiome after
delivery. Indeed, the presence of histologic lesions
associated with intra-amniotic inflammation/infection
(i.e., acute chorioamnionitis and funisitis) has been
linked to alterations in the microbial composition of
neonatal stool samples.148 Moreover, studies have indi-
cated that the risk of gut dysbiosis is increased in neo-
nates born prematurely,143 thus rapid treatment to
minimise foetal exposure in cases of inflammation-
associated preterm labour and birth is essential to pre-
vent long-term alterations of the gut microbiota. Animals
have been used to demonstrate the effects of direct
treatment of neonates with gut dysbiosis using tech-
niques such as faecal microbiota transplantation,149 lactic
acid-producing bacterial supplementation,150 and pre/
post-biotics,143 among others. Yet, a potential advantage
of maternal treatment with aIL-6R or other anti-
inflammatory agents is that the initial inflammatory
insult can be dampened, thereby reducing or completely
avoiding foetal exposure that could result in neonatal gut
dysbiosis and other adverse consequences. Nonetheless,
additional research is required to evaluate the neonatal
gut microbiome changes associated with SIAI and the
role of IL-6R-mediated signalling in this process.

This study is not exempt from some limitations.
Given that the main research question was to evaluate
the use of aIL-6R as a treatment for SIAI induced by the
intra-amniotic injection of IL -1α, our analysis did not
address the roles of IL-6R signalling during normal
pregnancy. However, we consider that administering
aIL-6R as a prophylactic drug to pregnant individuals
CD8+IL-17A+ T cells, CD4+FoxP3+ mucosal-associated invariant T (MAIT)
NCR+TGFβ+ ILCs, RORγt+ NK cells, and IFNγ+ NK cells in the neonatal caec
CD4+FoxP3+ MAIT cells, NCR+TGFβ+ ILCs, NCR+IL-10+ ILCs, and IFNγ+ NK
where midlines indicate medians, boxes indicate interquartile ranges, an
determined using the two-sided Mann–Whitney U-test. *p < 0.05; **p <
who are not at risk for PTB would be inadequate, thus
we propose the use of aIL-6R as a treatment for a subset
of patients with SIAI. Strengths of this study include the
use of a model resembling the clinical scenario of SIAI,
where the antibody treatment of a patient could be
considered after the diagnosis of SIAI in the presence of
an episode of preterm labour. The translational value of
the proposed therapeutic strategy is based on a
comprehensive and integrative approach that consid-
ered the potential benefits of this treatment not only
during pregnancy but also in early neonatal life.

Collectively, the results presented herein demon-
strate that the adverse perinatal outcomes triggered by
the alarmin IL-1α can be prevented by the blockade of
the IL-6R, underscoring the role of the IL-6 signalling
pathway in the premature onset of labour associated
with SIAI. Importantly, we demonstrate that such pre-
natal treatment prevents adverse long-term conse-
quences of foetal exposure to intra-amniotic
inflammation, including dampened inflammation in
neonatal organs, improved neurodevelopment, restored
immune cellular homeostasis of the neonatal gut, and
reversal of gut microbiome dysbiosis, among others.
Our results provide mechanistic evidence supporting
the potential use of prenatal aIL-6R treatment as a
therapeutic approach to not only prevent PTB resulting
from SIAI but also to improve quality of life for the
offspring.
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