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are the standard of care, but chemoresistance develops 
in the majority of patients and contributes to the poor 
outcomes.

Several HDAC inhibitors (HDACi) have been tested 
(e.g. entinostat, romidepsin) for the treatment of solid 
tumors and hematological malignancies [2]. Four HDACi 
are FDA approved for treatment of hematological neo-
plasms (i.e., T-cell lymphomas and multiple myeloma) 
[3, 4]. However, clinical trials for HDACis in PDAC 
have been largely unsuccessful [2]. HDAC inhibition by 
commercially available HDACis leads to negative side 
effects in patients [4] since HDACs have a broad impact 
on expression of genes involved in cancer pathways 
and normal cellular functions including the function 

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most 
common form of pancreatic cancer and one of the most 
lethal cancers with a five-year survival rate of 11.5%. Due 
to the lack of early-stage symptoms, 52% of patients are 
diagnosed with unresectable, locally advanced, metastatic 
cancer [1]. Chemotherapeutics such as gemcitabine, 
abraxane, and combination therapies like FOLFIRINOX 
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Abstract
Novel strategies are needed to combat multidrug resistance in pancreatic ductal adenocarcinoma (PDAC). We 
applied genomic approaches to understand mechanisms of resistance in order to better inform treatment and 
precision medicine. Altered function of chromatin remodeling complexes contribute to chemoresistance. Our 
study generates and analyzes genomic and biochemical data from PDAC cells overexpressing HDAC1, a histone 
deacetylase involved in several chromatin remodeling complexes. We characterized the impact of overexpression 
on drug response, gene expression, HDAC1 binding, and chromatin structure using RNA-sequencing and ChIP-
sequencing for HDAC1 and H3K27 acetylation. Integrative genomic analysis shows that HDAC1 overexpression 
promotes activation of key resistance pathways including epithelial to mesenchymal transition, cell cycle, and 
apoptosis through global chromatin remodeling. Target genes are similarly altered in patient tissues and show 
correlation with patient survival. We also demonstrate that direct targets of HDAC1 that also show altered 
chromatin are enriched near genes associated with altered GTPase activity. HDAC1 target genes identified 
using in vitro methods and observed in patient tissues were used to develop a clinically relevant nine-transcript 
signature associated with patient prognosis. Integration of multiple genomic and biochemical data types enables 
understanding of multidrug resistance and tumorigenesis in PDAC, a disease in desperate need of novel treatment 
strategies.
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of non-histone proteins; thus, inhibition of multiple 
HDACs with molecules typically targeting an entire class 
of HDACs causes massive disruption to cellular func-
tion that has limited their clinical usage in treating solid 
tumors.

PDAC tumor cells achieve drug resistance through 
many cellular mechanisms: dysregulation of drug trans-
porters, increased metabolism of drugs, upregulation 
of DNA repair, alterations in cell cycle and evasion of 
apoptosis Resistance is also associated with the epithe-
lial to mesenchymal transition (EMT), the acquisition of 
a more mesenchymal cell state that is more invasive and 
has increased migratory potential [5, 6]. While the exact 
mechanisms linking EMT to resistance are not well-
described they are regulated by key transcription factors 
including SNAI1/2, ZEB1/2, and TWIST1/2. Addition-
ally, the hypovascular nature of PDAC tumors prevents 
sufficient delivery of oxygen and drugs to the tumor cells, 
further exacerbating chemoresistance. This hypoxic envi-
ronment promotes expression of anti-apoptotic genes 
(i.e. STAT3, CDK6, CDK17, CDKN1A), suppressing 
apoptosis and also contributing to drug resistance [5, 7–
9]. Drug resistance mechanisms often contribute to resis-
tance to multiple drugs which makes the understanding 
of this complex problem challenging. Understanding 
mechanisms of drug resistance is necessary to facili-
tate development of therapeutic strategies to prevent or 
reverse resistance.

Previous work, including our own publications, links 
the expression of chromatin remodeling genes to che-
moresistance and patient survival in PDAC [10–12]. 
Chromatin remodeling is a mechanism of gene regula-
tion through rearrangement of chromatin structure to 
alter DNA accessibility and influence transcription factor 
binding. This process can alter gene expression patterns 
and lead to cellular reprogramming that contributes to 
chemoresistance. Dysregulation of chromatin remod-
eling genes leads to global changes in gene expression 
making it difficult to determine which subset of genes 
are most important for resistance, especially when many 
pathways are known to be involved [13]. Three key com-
plexes involved in chromatin remodeling are the NuRD, 
Sin3A and CoREST complexes and they all include the 
key histone modifying protein, HDAC1 [14].

We previously demonstrated that overexpression of 
HDAC1 contributes to multidrug resistance in pancre-
atic cancer cells [15]. While HDACs are canonically 
members of repressive complexes, binding of HDAC1 
has also been associated with transcriptional activation. 
In some cases, this is explained by HDAC1’s ability to 
recruit RNA Pol II or regulate transcriptional elongation 
[16, 17]. HDAC1 regulates the acetylation of histone and 
non-histone proteins to modulate gene expression and 
its overexpression has been associated with progression, 

metastasis, and patient prognosis in many cancer types 
including gastric, breast, colon, and prostate cancers 
[13]. In colorectal cancer HDAC1 promotes tumori-
genesis by regulating the HIF1α/VEGFA signaling path-
way via post-transcriptional modulation [18]. Just a few 
examples of the broad influences of HDAC1 include its 
recruitment to the promoter of CDH1, an epithelial cell 
marker, where it silences CDH1 expression during metas-
tasis [13]. HDAC1 also regulates expression of genes 
involved in resistance pathways in many cancers includ-
ing apoptosis, DNA damage repair, metastasis, and EMT 
[13, 19]. It was previously shown that HDAC1 is essential 
for cell proliferation and the transcription of core regu-
latory transcription factors (TFs), an essential factor in 
cancer growth. Due to the autoregulating nature of these 
TFs, HDAC inhibition led to their depletion through dis-
ruption of chromatin architecture and antiproliferative 
effects [20]. HDAC1’s regulation of genes involved in key 
cancer pathways including drug resistance, cancer pro-
gression, and tumor suppression make it a strong candi-
date as a drug target.

In this study, we characterized the impacts of HDAC1 
overexpression in a well described PDAC cell line, MIA 
PaCa-2, by measuring global effects on gene expression 
using RNA-sequencing, HDAC1 binding using ChIP-
sequencing, and chromatin structure using H3K27ac 
histone profiling to better understand how HDAC1 over-
expression impacts key aspects of tumorigenesis and 
relevance for patient treatment. We found that HDAC1 
overexpression alters activity of several pathways (e.g. 
EMT, resistance to apoptosis, altered cell cycle check-
point, and increased hypoxia) known to contribute to 
drug resistance. We showed that HDAC1 overexpression 
leads to a more mesenchymal phenotype in vitro and 
observed that increased HDAC1 expression in patient tis-
sues is associated with similarly altered gene expression. 
We confirmed that HDAC1 overexpression correlates 
with resistance to multiple drugs in an additional PDAC 
cell line (PANC-1). Using ChIP-seq, we identified regu-
latory sequences and nearby genes directly impacted by 
HDAC1 overexpression. These genes were enriched for 
GTPases and the EMT pathway. Supporting the impor-
tance of these pathways in patients, we show that the 
expression of these genes in patient tissues was negatively 
correlated with overall patient survival. We used a bio-
chemical approach to show that HDAC1 overexpression 
increased GTPase activity suggesting that altered GTPase 
activity contributes to chemoresistance and that GTPases 
represent possible targets to reverse resistance. The inte-
gration of multiple genomic data types yielded insight 
into the role chromatin remodeling, driven by HDAC1 
overexpression, plays in drug resistance.

Using genomic analyses of an in vitro system perturb-
ing HDAC1 function, we identify genes and pathways 
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which are regulated by HDAC1 and contribute to tumor-
igenesis and chemoresistance. We highlight the clinical 
relevance of this approach by using the data to nominate 
a novel nine gene signature that predicts HDAC1 expres-
sion and is associated with patient survival. We generated 
and analyzed multiple genomic datasets to prioritize the 
direct targets of HDAC1 and nominate alternative gene 
targets for drug development and potential markers of 
treatment response in patients with elevated HDAC1 
expression.

Results
HDAC1 overexpression induces expression of markers of 
EMT in vitro and in human PDAC tissues
We performed RNA-sequencing to measure gene expres-
sion in cell lines with HDAC1 overexpression. We used 
CRISPRa [21] to generate a stable MIA PaCa-2 cell line 
(MP2_HDAC1_OE) expressing HDAC1 at approximately 
3 times the levels of the control line (MP2_NTC) which 
expresses a non-targeting control guide (Supplementary 
Fig.  1a). MIA PaCa-2 is a well-characterized line with 
moderate to high expression of HDAC1 [22]. HDAC1 is 
the most abundantly expressed HDAC gene in this line 
(Supplementary Fig.  1b). Comparing transcriptomic 
profiles of MP2_HDAC1_OE and MP2_NTC cells, we 
found 1,259 genes that are differentially expressed with 
overexpression of HDAC1 (padj < 0.1). These differen-
tially expressed genes (DEG) are enriched for pathways 
involved in drug resistance: apoptosis, EMT, G2-M 
checkpoint, and hypoxia (Fig. 1a, Supplementary Fig. 2). 
Alteration of EMT-associated DEG promotes invasion 
and migration associated with a more drug resistant mes-
enchymal cell state [23]. The cell surface marker CD44 is 
characteristic of the mesenchymal phenotype [24, 25]. 
We detected a 1.8-fold increase in CD44 expression upon 
overexpression of HDAC1. Consistent with the expres-
sion data, immunohistochemistry showed a comparable 
2-fold increase in relative density of CD44 protein in 
PDAC cell lines with HDAC1 overexpression (Fig.  1b, 
c). These changes may be driven by the well-described 
EMT regulator ZEB1 which has increased expression in 
the presence of high HDAC1 expression (L2FC = 0.54, 
padj = 0.10). No significant difference in expression 
was observed for SNAI1/2 or TWIST1 (Supplementary 
Table 1).

These data provide evidence that HDAC1 overexpres-
sion modulates several known resistance pathways in an 
in vitro model. Next, we compared the transcriptomic 
effects of HDAC1 overexpression measured in vitro 
to those observed in patient tumors. We used RNA-
sequencing data collected from pancreatic tumor tissues 
by The Cancer Genome Atlas (TCGA-PDAC dataset). 
We compared gene expression from tissues with the low-
est (n = 45, HDAC1LOW) and highest (n = 45, HDAC1HIGH) 

quartiles of HDAC1 expression to identify DEG. We iden-
tified 10,592 DEG between HDAC1HIGH and HDAC1LOW 
tissues. We intersected this gene list with the 1,259 genes 
identified in our in vitro experiment and identified 322 
genes that are significantly altered (padj < 0.1) in the same 
direction as we observed in cell lines. Heatmaps of the 
DEG in both datasets were clustered by sample which 
separated high and low HDAC1 expression (Fig.  2a, b). 
Gene set enrichment analysis of the 322 DEG revealed 
multiple cancer processes including cadherin bind-
ing, cell-cell adhesion, regulation of cell migration, and 
GTPase activity (Fig. 2c, Supplementary Table 2). These 
genes represent a confident and consistent set regulated 
by HDAC1 in vitro and in vivo.

Given these data and our previous findings that linked 
HDAC1 expression to cellular resistance to cytotoxic che-
motherapeutic drugs [15] we wondered whether HDAC1 
expression is associated with patient response to treat-
ment. In the TCGA dataset, we used patient progno-
sis information, specifically overall survival, as a proxy 
for treatment response. We hypothesized that given 
HDAC1’s role in cellular resistance, genes associated with 
HDAC1 overexpression might have prognostic value. We 
began with the confident set of 322 genes associated with 
increased HDAC1 expression in both patient tissues and 
in the MP2_HDAC1_OE line. We divided these genes 
into two groups: upregulated genes (n = 216) and down-
regulated (n = 106) genes. For each gene set, we calculated 
a mean gene expression value from TCGA PDAC patient 
tissues and compared the top and bottom quartiles in a 
survival analysis. We determined that overall survival 
was shortened for patients with high expression of the 
upregulated genes and low expression of the downregu-
lated genes (Fig. 2d, e). Although overall survival depends 
on multiple factors, including treatment response, this 
finding is consistent with our observation that HDAC1 
overexpression is associated with drug resistance in vitro 
and supports the hypothesis that these genes might also 
impact drug response in patients and lead to decreased 
survival time. Importantly, overexpression of HDAC1 
alone is not predictive of patient survival or progres-
sion free survival (p = 0.44 and p = 0.73, Supplementary 
Fig. 3a, b). In an independent cohort of 26 patients [26], 
we observed a similar difference in survival based on 
HDAC1-regulated genes (Supplementary Fig. 3c, d).

We tested whether our approach of combining the 
data we generated from cell lines with patient tumor 
data improved survival predictions. We compared prog-
nostic predictions from the 322 DEG associated with 
HDAC1 expression in both TCGA PDAC tumors and 
HDAC1_OE cell lines in Fig. 2 with the top 322 DEG in 
TCGA PDAC samples with high and low HDAC1 expres-
sion as well as the top 322 DEG in our PDAC cell lines 
with HDAC1 overexpression and controls. We observed 
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a more significant p-value for overall survival when com-
bining our in vitro data with patient data than when using 
DEG from cell lines or TCGA PDAC tumors individually 
(Supplementary Fig.  4a-d) highlighting the benefits of 
combining these two datasets.

HDAC1 overexpression leads to multi-drug resistance
We further evaluated the effects of HDAC1 overexpres-
sion on chemoresistance by comparing drug response 
in MP2_HDAC1_OE and MP2_HDAC1_NTC cell lines. 
We also assessed the impact of HDAC1 knockdown by 
treating the MIA PaCa-2 cell line with a HDAC1 DsiRNA 
(MP2_HDAC1_KD) (Supplementary Fig.  5). Under 
these three conditions, we measured the effect of treat-
ment with irinotecan, gemcitabine, and oxaliplatin on 

cell viability (Fig.  3a-c, Supplementary Fig.  6a-c). MP2_
HDAC1_OE cells were more resistant to drug treat-
ment than control cells and MP2_HDAC1_KD cells. 
Since HDAC1 overexpression led to increased resistance 
to multiple drugs, we evaluated the effect of HDAC1 
protein inhibition on drug response. We treated MP2_
HDAC1_OE and MP2_NTC lines with romidepsin, a 
HDAC1/2 inhibitor, in combination with increasing con-
centrations of irinotecan, gemcitabine, and oxaliplatin. 
We observed a sensitizing effect of romidepsin on the 
MP2_HDAC1_OE cells treated with each chemothera-
peutic independently (Fig.  3d, Supplementary Fig.  6d-
i). We replicated this experiment in another PDAC cell 
line, PANC-1, and observed the same sensitizing effect in 
PANC1_HDAC1_OE cells (Supplementary Fig.  7e, g, i). 

Fig. 1  HDAC1 overexpression is associated with increased expression of EMT genes. (a) Expression of EMT genes in MP2_HDAC1_OE and MP2_NTC cell 
lines. Each column represents a replicate of the denoted cell line. The color scale denotes the z-score of each gene. (b) Violin plot analysis of immunofluo-
rescent staining of CD44 in MP2_HDAC1_OE (blue) and MP2_NTC cells (pink). Normalized intensity of 100 cells were measured for MP2_HDAC1_OE and 
MP2_NTC cell lines. P-values were calculated using an unpaired parametric t-test. ****p < 0.0001.c) Brightfield images and immunofluorescent staining of 
DAPI (blue), CD44 (green), and merged CD44:DAPI (blue/green) of MP2_HDAC1_OE (bottom) and MP2_NTC (top) cells
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Together these experiments show a sensitizing effect of 
decreasing HDAC1 activity through either chemical inhi-
bition or decreased expression.

HDAC1 overexpression alters chromatin accessibility in 
distal enhancer and promoter regions nearby molecular 
switches
Understanding that HDAC1 inhibition has not been an 
effective strategy in patients, we sought to identify path-
ways downstream of HDAC1 overexpression that could 
represent alternative targets. To identify direct and indi-
rect impacts of HDAC1 overexpression that might con-
tribute to resistance, we measured genome-wide DNA 
binding of the HDAC1 protein and the presence of the 
activating histone mark, H3K27 acetylation (H3K27ac) 
using ChIP-sequencing in the MP2_HDAC1_OE and 

MP2_NTC cell lines. Using the standard ENCODE 
ChIP-seq protocol for peak calling [27], we identi-
fied 17,457 binding sites for HDAC1 (10,033 unique to 
MP2_HDAC1_OE, 3,789 unique to MP2_NTC). We 
found 30,961 regions of H3K27ac; 8,392 were unique to 
MP2_HDAC1_OE and 5,916 were unique to MP2_NTC 
(Fig.  4a). All peaks were annotated to genomic features 
(i.e., promoter, distal intergenic, 5’ UTR) (Supplementary 
Fig. 7). As expected, the majority of HDAC1 binding and 
regions of H3K27ac occur near the transcription start 
sites (TSS) of DEG when HDAC1 is overexpressed. The 
H3K27ac peaks specific to HDAC1 overexpressing cells 
occurred significantly more near the upregulated genes 
despite HDAC1’s canonical role as a repressor (Supple-
mentary Fig. 8).

Fig. 2  Genes altered by increased HDAC1 expression in PDAC cell lines and TCGA PDAC samples are associated with patient survival. (a) Expression of 
DEG in MP2_HDAC1_OE (blue) and MP2_NTC (pink) cell lines. DEG are significantly (padj < 0.1) altered in the same direction in MP2_HDAC1_OE cells and 
TCGA PDAC tissues with the top 25% of HDAC1 expression. Each column represents a replicate of the noted cell line. The color scale denotes the z-score 
of each gene. (b) Expression of DEG in TCGA PDAC samples. Each column represents a tumor sample. The color scale denotes the z-score of each gene. 
DEG are significantly (padj < 0.1) altered in the same direction in TCGA PDAC tissues with the top 25% of HDAC1 expression and MP2_HDAC1_OE cells. 
(c) GO analysis showing enriched molecular functions using the genes (n = 322) in a and b. (d) Overall survival of TCCA PDAC patients (n = 90) with top 
and bottom 25% of average gene expression of upregulated genes (n = 216) in a and b. P-values were derived using log-rank test. (e) Overall survival of 
TCCA PDAC patients (n = 90) with top and bottom 25% of average gene expression of downregulated genes (n = 106) in a and b. P-values were derived 
using log-rank test
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To identify regions with altered HDAC1 binding or 
H3K27 acetylation directly impacting gene expression, 
we overlapped 1 kilobase (kb) regions centered on all 
HDAC1 and H3K27ac peaks (overlapping peaks were 
merged, see Methods) with promoter regions of DEG 
(2  kb upstream of annotated TSS). This revealed 1,857 
regions of HDAC1 binding or H3K27 acetylation in pro-
moters of 1,040 DEG (one promoter can have more than 
one overlapping peak). Gene set enrichment analysis of 
these 1,040 DEG with evidence of direct regulation by 
HDAC1 revealed enrichment for GTPase activity, cad-
herin binding, and DNA binding (FDR < 0.05) (Supple-
mentary Table 3).

To better understand the role HDAC1 plays in the 
regulation of PDAC pathways and especially chemo-
resistance, we measured how the overexpression of 
HDAC1, a histone deacetylase, impacts H3K27ac and 
influences gene expression. We categorized regions 
of HDAC1 binding and H3K27 acetylation based on 
whether they were increasing or decreasing across the 
regions described above (1 kb windows centered on the 
peak). Using the sequencing reads collected in ChIP-
seq peaks for either H3K27ac or HDAC1, we calculated 
a fold-change to determine whether there was evidence 
of increased or decreased binding with HDAC1 overex-
pression. Given HDAC1’s canonical role as a repressor, 

Fig. 4  ChIP-sequencing reveals DEG with increased HDAC1 binding and H3K27 acetylation in promoter upon HDAC1 overexpression are associated with 
worse patient survival. (a) Venn diagram showing overlap of H3K27ac ChIP-seq peaks in MP2_HDAC1_OE and MP2_NTC cell lines. (b) Overall survival of 
TCCA PDAC patients (n = 90) with top (teal) and bottom (grey) 25% of average gene expression of upregulated DEG with increased HDAC1 binding and 
H3K27 acetylation in their promoter upon HDAC1 overexpression. P-value was derived using log-rank test

 

Fig. 3  Quantification of cell viability in PDAC cell lines following treatment of chemotherapeutics. Quantification of viability following treatment with 
(a) gemcitabine, (b) oxaliplatin, and (c) irinotecan in MP2_HDAC1_OE (blue triangles), MP2_NTC (pink squares), and MP2_HDAC1_KD (grey circles) cell 
lines. The bar represents the median. P-values were calculated using an unpaired parametric t-test. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant. (d) 
Quantification of cell viability following treatment with romidepsin, a HDAC1 inhibitor, in MP2_HDAC1_OE and MP2_NTC cell lines. Bar = median. P-values 
were calculated using an unpaired parametric t-test. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant
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we expected that increased HDAC1 binding would be 
associated with decreased H3K27 acetylation, however, 
we only identified 235 DEG with increased HDAC1 
binding and reduced H3K27 acetylation in the promoter 
regions (+/- 2 kb from TSS). In contrast, the promoters 
of 597 DEG had increased HDAC1 binding and increased 
H3K27 acetylation (fold-change > 1) upon HDAC1 over-
expression and 407 were upregulated (Supplementary 
Table 4). While this finding does go against the canonical 
understanding of HDAC1 as a repressor, previous stud-
ies have shown that HDAC1 binding can be found near 
actively transcribed genes [16]. Continuing under the 
assumption that these genes directly bound by HDAC1 
with altered H3K27 acetylation represent an important 
subset of directly regulated genes, we tested whether 
genes whose promoters had altered HDAC1 binding and 
H3K27 acetylation were associated with overall patient 
survival. We performed survival analysis comparing 
outcomes of patients with the top 25% and bottom 25% 
mean tumor gene expression of these 597 genes. Patients 
with the highest mean expression of upregulated genes 
and lowest mean expression of downregulated genes have 
significantly worse overall survival (Fig.  4b, Supplemen-
tary Fig. 9a). We also showed that HDAC1 expression is 
significantly higher in patients with the top 25% of mean 
tumor gene expression of the 597 genes (Supplementary 
Fig. 9b).

HDAC1 overexpression leads to increased GTPase activity
The identification of DEG upon HDAC1 overexpression 
led us to explore one pathway that has not been previ-
ously linked to chemoresistance. Pathway enrichment 
analysis of DEG with increased HDAC1 binding and 
H3K27 acetylation in promoters (n = 597) identified an 
enrichment for many known cancer pathways (Supple-
mentary Table  5). Included on this list was Ras signal-
ing, regulation of apoptotic signaling pathway, chromatin 
binding, and GTPase activity. GTPase activity was also 
significant in enrichment analyses described in Fig.  2 
driven by overexpression of the GTPases and associ-
ated proteins (e.g. RALB, RAB27B, and RAC1) which are 
upregulated with HDAC1 overexpression and are asso-
ciated with significantly worse overall patient survival 
(Fig.  5a, b). RAP2B, a ras-related GTP-binding protein, 
and ARHGAP5, a Rho family-GTPase activating protein, 
are examples of genes upregulated upon HDAC1 overex-
pression. When activated, many of these GTP-binding 
proteins promote cell migration, cell adhesion, prolifera-
tion, and metastasis in cancer [28–30] (Supplementary 
Fig. 10a, b) (Supplementary Fig. 11a, b). We also observed 
increased HDAC1 binding and H3K27 acetylation near 
their TSS (Supplementary Fig. 10c, 11c).

While activation of KRAS is a hallmark of PDAC, 
less is understood about other RAS proteins identified 

by our analysis. Our data suggest that several members 
of this family of proteins may also play a role in che-
moresistance. We used RNA-sequencing data from 14 
unmodified PDAC cells lines with varying response to 
gemcitabine [26] to further support the hypothesis that 
GTPase activity alters cellular response to chemother-
apy. We found that cell lines with increased expression 
of genes influencing GTPase activity (GO:0003924) had 
higher levels of resistance to gemcitabine (Supplemen-
tary Fig.  11d). We identified a total of 71 differentially 
expressed genes that modulate GTPase activity in the 
MP2_HDAC1_OE line (Fig.  5a), 38 of these are over-
expressed in cell lines with increased resistance with 3 
meeting a significant cutoff of padj < 0.05. (Supplemen-
tary Fig. 12, Supplementary Table 6). Increased GTPase 
activity activates the MAPK and PI3K pathways which 
promote tumor proliferation and drug resistance [31]. 
KEGG [32] pathway mapping of these 597 DEG con-
firmed the enrichment of 21 upregulated genes in the 
MAPK and PI3K pathways upon HDAC1 overexpression 
(Supplementary Fig. 13a, b).

Given the increased transcript levels of several 
GTPases, we tested whether there was a measurable dif-
ference in GTPase activity upon HDAC1 overexpression. 
GTPase activity was measured through the detection of 
GTP remaining after a GTP hydrolysis reaction catalyzed 
by cell lysates from the MP2_HDAC1_OE line compared 
to the MP2_NTC line. MP2_HDAC1_OE cell lysates 
have significantly increased GTPase activity compared 
to the MP2_NTC control line. Conversely, treatment of 
MP2_HDAC1_OE and MP2_NTC cells with romidepsin, 
a HDAC1/2 inhibitor, decreased GTPase activity. We also 
observed decreased GTPase activity in MIA PaCa-2 cells 
with a DsiRNA targeting HDAC1 (MP2_HDAC1_KD) 
compared to MIA PaCa-2 cells with a non-targeting 
DsiRNA (KD_Control) (Fig. 5c, Supplementary Table 7). 
These data demonstrate thatHDAC1 overexpression 
increases GTPase activity and that inhibition of HDAC1 
reverses the effect.

Expression of 9 HDAC1-regulated genes predicts 
PDAC patient survival
Identification of prognostic signatures in PDAC could 
be of clinical utility because tumor classification can 
improve guidance for therapeutic decision making and 
developing a personalized treatment plan. The above 
analysis overlapping expression and ChIP-seq data iden-
tified 597 genes regulated by HDAC1 that are associated 
with patient outcomes using genes identified from in 
vitro and in vivo signatures of HDAC1 overexpression, 
although expression of HDAC1 alone is not prognostic. 
We calculated a simplified signature of patient prognosis 
using a multivariate logistic regression with L1 penal-
ized log partial likelihood (LASSO) for feature selection 
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[33]. From the 597 genes, LASSO identified a 9-tran-
script model sufficient to differentiate TCGA PDAC 
tumors with high and low HDAC1 expression (Fig.  6a, 
b, Supplementary Table  8). In addition, we calculated a 
hazard ratio in order to determine if the gene signature 
has prognostic value. Patients with lower expression of 
the genes from our 9-transcript signature have increased 
risk of mortality (HR = 0.2516). To determine the clinical 
relevance of the genes selected using the LASSO model, 
survival analysis was performed comparing the patients 
in the top and bottom quartile of predictor values from 
the regression and the patients group with the highest 
predictor values had significantly worse overall survival 
(Fig.  6c). In order to evaluate the performance of the 
LASSO model we generated the area under the ROC 
curve (AUC) and found that the validation cohort had 

an AUC of 0.97 indicating that it performed as an excel-
lent predictor model for HDAC1 expression in patients 
(Fig. 6a, b). Even though HDAC1 expression alone is not 
prognostic of survival, we were able to use the predic-
tor values generated by this model to show that patients 
predicted to have higher HDAC1 expression had signifi-
cantly worse overall survival.

Discussion
Pancreatic cancer ranks among the deadliest cancers 
due to its chemoresistant nature and insufficient treat-
ment options. Understanding what drives chemoresis-
tance is essential to identifying new therapeutic targets 
and improving patient outcomes. Chromatin remodel-
ing has been established as a critical feature of tumori-
genesis and cancer progression, making the pathway an 

Fig. 5  HDAC1 overexpression is associated with increased GTPase activity. (a) Normalized expression of genes from GO Terms that are associated with 
GTPases in MP2_HDAC1_OE (blue) and MP2_NTC (pink) cell lines. Each column represents a replicate of the denoted cell line. Color scale denotes z-score 
for each gene. (b) Overall survival of TCCA PDAC patients (n = 90) with top (teal) and bottom (grey) 25% of average gene expression of DEG enriched for 
GTPase activity (genes in Supplementary Fig. 10d) when HDAC1 is OE. P-value was derived using log-rank test. c) Comparison of GTPase activity in the 
following MIA PaCa-2 cell lines: plain MP2, NTC, NTC treated + Rom, HDAC1_OE, HDAC1_OE + Rom, KD control, and HDAC1_KD. P-values were calculated 
using an unpaired parametric t-test. **p < 0.01, ****p < 0.0001
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attractive drug target. Using genomic and biochemical 
approaches we revealed potential mechanisms by which 
HDAC1 overexpression contributes to chemoresistance 
and showed that HDAC1 inhibition sensitizes PDAC 
cells to chemotherapeutic treatment, further strengthen-
ing the argument that this pathway is a good candidate 
for targeted treatment, however HDAC inhibitors have 
faced challenges in clinical trials. Commercial HDAC 
inhibitors target a class of HDACs rather than specific 
proteins. This cross-reactivity leads to genome-wide off 
target effects and patient toxicity. That has motivated 
the current study which aims to better understand how 
HDAC1 activation contributes to resistance and reveal 
novel downstream targets that may lead to alternative 
treatment strategies. The integration of multiple genomic 
datasets has enabled the successful nomination of at least 
one novel therapeutic approach.

In contrast to other tumor types, multiple large-scale 
drug trials that used targeted therapy were not as suc-
cessful in pancreatic cancer [34, 35], thus using a targeted 
gene panel that can be used to better define poten-
tial treatment options for PDAC patients could lead 
to improved survival and quality of life [36, 37]. In this 
study, we collected data from an in vitro system testing 
the impact of HDAC1 overexpression on PDAC cells and 
combined these results with information from publicly 
available gene expression data gathered from both tis-
sues of PDAC patients and PDAC cell lines to show that 
HDAC1 overexpression regulates a set of transcriptomic 
responses that contribute to chemoresistance and a sig-
nature of genes regulated by HDAC1 can also be shown 

to predict HDAC1 expression and is associated with 
patient outcome. HDAC1 overexpression alone is not sig-
nificantly prognostic of worse overall survival in PDAC 
patients, however, the genes altered by HDAC1 overex-
pression are prognostic. This suggests that only a sub-
set of HDAC1-regulated pathways affect outcomes. Our 
results explore the pathways under the control of HDAC1 
that contribute to patient survival and show that they can 
be used to predict outcomes that may be linked to treat-
ment response.

We integrated several datasets to better understand 
how HDAC1 overexpression impacts PDAC cells. 
Beginning with transcriptomic data, we clearly show 
that HDAC1 overexpression impacts several processes, 
including EMT, known for their role in tumorigenesis, 
progression, and drug resistance. Cells that undergo 
EMT also have a more stem cell-like phenotype and are 
associated with suppression of proteins involved in drug 
transport, such as CNT3, allowing the cells to evade the 
anti-proliferative effects of chemotherapeutics including 
gemcitabine [5, 38]. Increased expression of CD44, a cell 
surface protein important for cell adhesion and migra-
tion, is associated with a more mesenchymal-like pheno-
type which is characteristic of EMT [24]. Here we have 
shown that the mesenchymal marker, CD44 transcript 
and protein are more abundant in cells with HDAC1 
overexpression, agreeing with our past work showing 
that HDAC1 overexpression leads to increased migration 
[15].

Induction of EMT is also associated with drug resis-
tance and we showed that cells overexpressing HDAC1 

Fig. 6  ChIP-sequencing reveals DEG associated with predictive gene signature for patient survival with high HDAC1 expression. (a, b) Receiver operat-
ing characteristic (ROC) curve for the nine-transcript LASSO model. Model performance on the (a) training cohort and (b) validation cohort. (c) Overall 
survival of TCCA PDAC patients (n = 90) with top (blue) and bottom (red) 25% of predictor values generated from the nine transcript LASSO model. P-value 
was derived using log-rank test
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are resistant to multiple drugs. Characterizing the direct 
regulatory impacts of HDAC1 binding and H3K27ac 
occupancy allowed us to prioritize the genes most likely 
involved in patient outcomes. Our ChIP-seq experiments 
revealed altered H3K27 acetylation and HDAC1 binding 
nearby genes whose expression changed with HDAC1 
overexpression. Interestingly, we found that the major-
ity of the DEG with HDAC1 binding had an increase in 
HDAC1 and H3K27ac signals near their promoter. Our 
findings are in agreement with a previously published 
study concluding that HDAC1 binding is enriched at 
actively transcribed genes [16]. It is still not well under-
stood how HDAC1 binding activates gene expression 
but others have shown that HDAC1 binding can regulate 
RNA Pol II recruitment at promoters and that HDAC1 
may regulate transcription elongation through interac-
tion with BRD4 [17]. Additionally, HDAC1 is known to 
deacetylate proteins other than histones which might 
facilitate activation of nearby transcription factors (e.g. 
MYC) [17]. HDACs are enriched distally at super enhanc-
ers, in addition to promoters, but their function remains 
poorly understood outside of their role in repression [20]. 
While our data showed the majority of HDAC1 binding 
in promoter regions, a better understanding of HDACs 
role in enhancer regions is also important for a full 
understanding of the impact of HDAC1 dysregulation.

Throughout this study, our gene set enrichment analy-
ses of genes associated with HDAC1 overexpression con-
sistently revealed GTPase activity as an enriched process. 
The well-described driver of PDAC, KRAS is activated in 
almost all tumors (including the MP2 and PANC-1 cell 
lines), however these data suggest other Ras proteins 
and their regulators and partners also play a role. A vari-
ety of proteins contribute to GTPase activity and many 
are druggable [39], which makes them of potential clini-
cal interest. We have shown that expression of GTPases 
and GTPase activating proteins are associated with sig-
nificantly worse overall survival. We used biochemical 
assays to confirm that cells overexpressing HDAC1 have 
higher GTPase activity than control cells. This effect was 
reversible in cells treated with a HDACi, which reduced 
GTPase activity. GTPase signaling is important for pan-
creatic cancer initiation, metastasis, and invasion [40]. 
Increased GTPase signaling leads to the activation of key 
signaling cascades, such as MAPK and PI3K, that regu-
late cell proliferation, migration, and drug resistance in 
cancer [31]. We have shown that the expression of genes 
in the MAPK and PI3K pathways are increased upon 
HDAC1 overexpression, highlighting known pathways 
altered by HDAC1 that contribute to PDAC progression 
[41]. GTPases, such as RAC1, can activate EMT in mul-
tiple cancers, thus leading to a more invasive and drug 
resistant phenotype [42, 43] and we show that RAC1 
expression is increased upon HDAC1 overexpression in 

PDAC cells. Expression of ARHGAP5, a GTPase activat-
ing protein which also promotes EMT [30], and of several 
other proteins promoting GTPase activity are increased 
upon HDAC1 overexpression and their transcripts are 
more abundant in gemcitabine resistant PDAC cell lines. 
The wide variety of GTPases and GTPase-interacting 
proteins identified in our study includes members of sev-
eral GTPase families (e.g. Ras, Rho, Rab) suggesting addi-
tional work is needed to fully understand this complex 
response.

Finally, we narrow the list of genes impacted by HDAC1 
overexpression to a novel 9-transcript signature associ-
ated with HDAC1 expression that successfully predicts 
patient survival. This highlights the potential clinical 
utility of data generated in vitro in predicting and under-
standing molecular mechanisms of disease in patients. 
Our panel of potential biomarkers represents a step for-
ward in the development of an assay that is predictive 
of patient survival and which could influence treatment 
decisions.

Despite decades of research, the treatment of PDAC 
patients relies largely on cytotoxic chemotherapies which 
have limited effectiveness in treating late-stage disease. 
Identifying patients who will benefit from existing treat-
ments or those who need an alternative treatment is a 
key clinical need. Our genomic analyses identified a role 
for HDAC1 in regulation of transcriptional programs 
that are relevant for patient outcomes and have nomi-
nated novel therapeutic strategies for individuals who are 
predicted to experience poor outcomes and chemothera-
peutic resistance. This knowledge will be key as the field 
of oncology continues to implement precision medicine.

Materials and methods
Cell culture
MIA PaCa-2 cells (CVCL_0428, ATCC #CRM-
CRL-1420) and PANC-1 cells (CVCL_0480, ATCC 
#CRM-CRL-1469) were cultured in D10 media: DMEM 
(Lonza #12-614Q) supplemented with 10% FBS (GELife-
Sciences #SH30071.03), and 0.5% penicillin-streptomycin 
(ThermoFisher #15,140,122). All cell lines were main-
tained at 37  °C and 5% CO2. Cells were cryopreserved 
with the addition of 10% DMSO (EMD #MX1458-6).

Plasmids
LentiCRISPRv2 (Addgene #52,961) or lentiSAMv2 (Add-
gene #92,062) and lenti-MS2-p65-HSF1-Hygro (Addgene 
#89,308) were used to generate stable cell lines for gene 
knockout and activation, respectively. pMD2.G (Add-
gene #12,259) and psPAX2 (Addgene #12,260) were used 
to facilitate viral packaging of sgRNAs and single vector 
plasmids.
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sgRNA cloning
gRNA oligos were designed and cloned into their respec-
tive plasmids as described previously [21].

DsiRNA
IDT TriFECTa RNAi kit was used per manufactur-
er’s protocol. 100,000 cells were seeded in 1 well of a 
12 well tissue culture treated plate 24 hours prior to 
transfection. Cells were transfected using RNAiMax 
(ThermoFisher #13778-030) following manufacturer’s 
recommended protocol. As indicated in the TriFecta 
kit (IDT hs.Ri.HDAC1.13.2-SEQ1: 5’-rCrUrGrGrArA-
rCrUrGrCrUrArArArGrUrArUrCrArCrCrAGA-3’, 
hs.Ri.HDAC1.13.2-SEQ2: 5’-rUrCrUrGrGrUrGrArU-
rArCrUrUrUrArGrCrArGrUrUrCrCrArGrGrA-3’), 
TYE 563 transfection efficiency control, positive HPRT-
S1 control, and negative ( IDT DS NC1) scrambled 
sequence control were utilized. Further assays were per-
formed 48 h after transfection. Expression was validated 
with each transfection with the IDT PrimeTime qPCR 
Assay system (HDAC1 Exon 1–2 Hs.PT.58.20534173, 
HDAC1 Exon 3–4 Hs.PT.58.38680914, ACTB 
Exon 1–2 Hs.PT.39a.22,214,847, GAPDH Exon 
2–3 Hs.PT.39a.22,214,836, HPRT1 Exon 8–9 
Hs.PT.58v.45,621,572) on an Agilent QuantStudio 6 Flex 
Real-Time PCR system.

GTPase-Glo assay using cell lysates
In vitro GTPase activity was measured using the GTPase-
Glo assay (Promega #V7681). We followed the protocol as 
described [44] with modifications for use of cell lysates. 
Cell lysates were made from the following MIA PaCa-2 
cell lines: MP2, MP2_HDAC1_OE, MP2_NTC, MP2 with 
DsiRNA targeting HDAC1 (HDAC1_KD), MP2 with a 
non-targeting DsiRNA (KD_Control), MP2_HDAC1_OE 
treated with 0.01 µM romidepsin, an HDAC1 inhibitor, 
and MP2_NTC treated with 0.01 µM romidepsin. Cells 
(2 × 106 per tube) were lysed in a lysis buffer containing 50 
mM HEPES at pH 7.6, 150 mM NaCl, 10% Glycerol, 0.1% 
NP-40, and 2 mM MgCl2. To generate the lysate, 10µL of 
lysis buffer per 100,000 cells was added to each cell pel-
let and resuspended. Lysates were mixed for 30  min at 
4 °C, vortexed in three 10 s intervals, then centrifuged at 
4 °C for 30 min at 16.1x RCF. A 2X GTP solution was pre-
pared and the reaction was initiated following the manu-
facturer’s protocol.

Modifications for cell lysates required background 
wells for each cell line. GTPase-Glo Buffer was added 
to cell lysates at a final concentration of 1 µL per 10,000 
cells. After the GTPase reaction, 20µL was added to each 
respective background well. Luminescence was mea-
sured using a BioTek Synergy H5 plate reader. To calcu-
late GTPase activity for each cell type, we calculated the 
difference between the luminescence of the experimental 

wells and background wells. GraphPad Prism 9 (version 
9.3.1) was used for plotting bar charts and t-tests per-
formed in GraphPad were unpaired, parametric, two-
tailed with 95% confidence interval.

ChIP-sequencing
MP2_HDAC1_OE and MP2_NTC cells (2 × 107) were 
cross-linked, harvested, and DNA was precipitated 
using a commercial H3K27ac antibody (Abcam, ab4729). 
Libraries were constructed, pooled, and sequenced 
using an Illumina NovaSeq instrument with 75  bp sin-
gle-end reads. These data were generated and analyzed 
using published ENCODE protocols [27] (https://www.
encodeproject.org/documents/).

Differential binding analysis was conducted using the 
“multiBigwigSummary’’ tool from the “deepTools’’ pack-
age [45]. Using this tool, a ChIP-seq score was generated 
for each sample and region using genomic coordinates 
defined as +/- 500  bp from the center of peaks defined 
using the published ENCODE protocol [27] and 1  kb 
upstream of all annotated genes. Regions were merged 
together if they overlapped. We omitted any regions with 
a ChIP-seq score less than 1 for both MP2_HDAC1_OE 
and MP2_HDAC1_NTC. Using the ChIP-seq score, we 
calculated a fold-change between MP2_HDAC1_OE and 
MP2_NTC for HDAC1 and H3K27ac in each defined 
region. Bound regions were categorized based on a fold-
change greater than or less than one for HDAC1 binding 
and H3K27 acetylation.

3’ RNA-sequencing
Cell pellets were frozen at -80°C until RNA extraction. 
For RNA extraction 350 µl of RL Buffer plus 1% β-ME 
from the Norgen Total RNA extraction kit was added to 
each cell pellet and extraction proceeded per manufactur-
er’s instructions including use of the DNase kit (Norgen # 
37500, 25720). RNA quality was verified with the Agilent 
BioAnalyzer RNA Nano 600 kit (cat# 5067 − 1512) with 
the RIN range between 9.2–10. RNA-sequencing librar-
ies were made using Lexogen QuantSeq 3’ mRNA-Seq 
Library Prep Kit FWD for Illumina kit (cat# 015.24) with 
250 ng of RNA input. They were pooled and sequenced 
on an Illumina NextSeq 500 instrument with 75 bp sin-
gle-end reads. Read counts averaged 4 million reads and 
an average Q30 of 91.28%. Lexogen’s BlueBee integrated 
QuantSeq data analysis pipeline was used for trimming, 
mapping, and alignment and the R package “DESeq2” 
[46] was used for differential expression analysis.

Drug resistance screening
Cells were seeded in 96-well plates at 2000 cells/well. 
Seeded cells were dosed with a range of concentra-
tions of each drug: gemcitabine (0-12.5nM), oxalipla-
tin (0-3.5µM), or irinotecan (0–5µM). Cells were given 

https://www.encodeproject.org/documents/
https://www.encodeproject.org/documents/
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a second dose of drug at the same concentration as the 
first 48 h later. The number of viable cells surviving drug 
treatment were assayed with CellTiter-Glo (Promega 
#G7571) 24 h after the last drug treatment per manufac-
turer’s protocol using a BioTek Synergy H5 plate reader.

HDAC1 inhibition with romidepsin (Sigma #SML1175-
1MG) was performed similarly to above except that cells 
were dosed every 24  h with either 0.01 µM romidepsin 
or with a range of irinotecan, oxaliplatin, or gemcitabine. 
Equal volume DMSO was used as a control in place of 
romidepsin. The number of viable cells surviving drug 
treatments were assayed with CellTiter-Glo (Promega 
#G7571) 24 h after the last drug treatment per manufac-
turer’s protocol using a BioTek Synergy H5 plate reader. 
In both cases, data were plotted using GraphPad Prism 9, 
version 9.3.1. T-tests performed were unpaired, paramet-
ric, two-tailed with 95% confidence interval.

Cell staining
75,000 MIA PaCa-2 cells with non-targeting, HDAC1 
OE sgRNAs, or HDAC1 KD with DsiRNA were seeded 
in 12 well plates. Cells were stained using Alexa Fluor 
488 Conjugate kit for live cell imaging (LifeTechnolo-
gies #A25618) for CD44 via the manufacturer’s protocol. 
DAPI (Invitrogen #D21490) was counterstained per man-
ufacturer’s protocols for adherent cells. Presence of CD44 
in the cells was quantified using ImageJ 1.53 K with mea-
surements (area, mean, and integrated density) for stain 
and background taken with the freehand selection tool. 
Relative CD44 intensity or bound CD44 per area was 
calculated for each cell (100 cells total per type) by: inte-
grated density of cell-integrated density of background 
for that cell/area of that cell. GraphPad Prism 9 (version 
9.3.1) was used for plotting violin plots and t-tests per-
formed in GraphPad were unpaired, parametric, two-
tailed with 95% confidence interval.

Enrichment analysis
Enrichr, a comprehensive gene set analysis web server, 
and the R package ClusterProfiler (version 3.12.0) [47] 
were used for enrichment analysis of the differentially 
expressed genes [48]. We focused on the pathways 
(MSigDB) and gene ontology molecular function and 
biological process terms (GO MF, GO BP) reaching the 
significance threshold of FDR < 0.05. In Supplemental 
Fig.  2, we used EnrichR to identify enrichments among 
the Hallmark Gene Sets defined by MSigDB). The GO 
terms used to select genes in Fig. 5a were GDP Binding 
(GO:0019003), GTPase activity (GO:0003924), NTPase 
activity (GO:0017111), regulation of small GTPase sig-
nal transduction (GO:0051056), positive regulation of ras 
signal transduction (GO:0046579), and small GTPase sig-
nal transduction (GO:0007264).

Survival analysis
To conduct survival analysis, clinical and RNA-seq 
expression data was retrieved from The Cancer Genome 
Atlas (TCGA) for 178 PDAC (TCGA-PAAD) patients 
(https://portal.gdc.cancer.gov/). Data was normalized 
using the R package DESeq2 [46] (variance stabilized 
transformation) and differentially expressed genes with 
an adjusted p-value (FDR) < 0.1 were used to generate 
Kaplan-Meier survival curves. We classified tissues based 
on their mean expression of a given gene set (bottom, 
middle, and top quartiles of gene expression). We com-
pared the patients with the lowest and highest quartile of 
mean gene expression and performed survival analysis 
and generated survival curves and hazard ratios using the 
ggplot2, survminer, and survival R packages [49–51].

LASSO model selection
A predictive gene signature from transcripts that are 
differentially expressed (DESeq2 FDR < 0.1) and have 
increased HDAC1 binding and H3K27 acetylation near 
their TSS (+/- 2000 bp) was developed using the LASSO 
regression model. LASSO was performed using the R 
package glmnet (version 4.1-3) [52]. The TCGA PDAC 
cohort was split into three groups by HDAC1 expression 
(top 25%, middle 50%, and bottom 25%). The cohort was 
further subset by randomly distributing an equal number 
of samples from the top 25% and bottom 25% of HDAC1 
expression into two groups (n = 45). The training cohort 
and the validation cohort used the same dichotomization 
threshold (top 25% and bottom 25% of HDAC1 expres-
sion). Model performance was evaluated based on the 
model’s ability to classify patients into the high or low 
HDAC1 expression group. We generated an area under 
the curve (AUC) value using the R package ROCR (ver-
sion 1.0–11) [53]. Kaplan-Meier curves were generated 
using the R package survival (version 3.2–13) [50].

Annotation of genomic features
ChIP-sequencing IDR peaks were annotated to genomic 
features (i.e., promoter, distal intergenic, 5’ UTR) using 
the annotatePeak tool and then visualized using the plo-
tAnnoBar tool from the R package ChIPseeker (version 
1.27.2) [54]. TSS regions were defined as -2 kb to + 1 kb.

RNAseq data analysis
An adjusted p-value < 0.05was used to identify differen-
tially expressed genes from RNA-sequencing data. Genes 
were categorized as increasing or decreasing based on 
positive or negative log2FoldChange. Using the R pack-
age DESeq2 (version 1.24.0) [46], differentially expressed 
genes were excluded from the analysis if baseMean < 10.

https://portal.gdc.cancer.gov/
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