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ABSTRACT: A growing body of literature suggests that
developmental exposure to individual or mixtures of environmental
chemicals (ECs) is associated with autism spectrum disorder
(ASD). However, investigating the effect of interactions among
these ECs can be challenging. We introduced a combination of the
classical exposure-mixture Weighted Quantile Sum (WQS)
regression and a machine-learning method termed Signed iterative
Random Forest (SiRF) to discover synergistic interactions
between ECs that are (1) associated with higher odds of ASD
diagnosis, (2) mimic toxicological interactions, and (3) are present
only in a subset of the sample whose chemical concentrations are
higher than certain thresholds. In a case-control Childhood Autism
Risks from Genetics and Environment (CHARGE) study, we
evaluated multiordered synergistic interactions among 62 ECs measured in the urine samples of 479 children in association with
increased odds for ASD diagnosis (yes vs no). WQS-SiRF identified two synergistic two-ordered interactions between (1) trace-
element cadmium (Cd) and the organophosphate pesticide metabolite diethyl-phosphate (DEP); and (2) 2,4,6-trichlorophenol
(TCP-246) and DEP. Both interactions were suggestively associated with increased odds of ASD diagnosis in the subset of children
with urinary concentrations of Cd, DEP, and TCP-246 above the 75th percentile. This study demonstrates a novel method that
combines the inferential power of WQS and the predictive accuracy of machine-learning algorithms to discover potentially
biologically relevant chemical−chemical interactions associated with ASD.
KEYWORDS: autism spectrum disorder, environmental chemical exposures, iterative random forests, random intersection tree,
exposure mixture model, synergistic interactions

■ INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by deficits in social communication and
interaction and repetitive and stereotyped interests and
behaviors.1 ASD prevalence has increased drastically in recent
years and is a public health concern worldwide. According to
the Centers for Disease Control program Autism and
Developmental Disabilities Monitoring (ADDM) Network,
approximately 1 in 44 children have been diagnosed with
ASD.2,3 In the past decade, a growing number of
epidemiological studies have associated early life environ-
mental exposures with ASD.4 These environmental exposures
include air pollution,5−9 nutrition, and several endocrine-
disrupting chemicals (EDCs). Among other EDCs, studies on
certain metals have been associated with ASD,10,11 with a
compelling link between arsenic exposure and ASD in
children.12 Other EDCs, such as bisphenol A (BPA), and
parabens have also been proposed as potential risk factors for

child behavioral outcomes,14−16 though this evidence is less
consistent across studies.13

Although the etiology of ASD remains unclear, an interplay
of multiple genetic and early environmental contributions that
differ between individuals likely underlies disease risk.4,17,18

Genetic and environmental factors may impact typical brain
development, including neuron formation and migration,
synapse formation, or neural connectivity, ultimately leading
to ASD.4 Environmental chemical exposures may impact
neurodevelopment through multiple mechanisms, including
the direct disruption of cells and structures of the nervous
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system, endocrine hormone- or immune system-mediated
effects, and/or epigenetic changes, among others.4 However,
there is a lack of studies assessing potential chemical-chemical
interactions in ASD. Among the very few studies, Curtin et al.
examined the dynamic interaction of zinc−copper cycles,
which regulate metal metabolism, is disrupted in ASD.19

Findings showed that the interaction between cyclical co-
occurrence between zinc and copper is disrupted in ASD.19,20

The concept of “interaction” has been construed in many
ways through different scientific fields.21 For example, in
epidemiological studies, interactions are usually reported
through association estimates of their effect sizes or inclusion
probabilities.22−33 Though estimating associations is essential,
most methods do not provide any mechanistic or biological
insight, possibly because the reported interactions are of
particular functional forms (for example, multiplication of
exposures) rather than representing their collective activities
beyond certain concentration thresholds.34 Further, after
applying certain dimension reductions, most interactions are
reported between sets of reduced exposures, limiting
interpretability. In addition, such interactions provide a
population-level estimate, with each sample providing some
contribution to the overall estimate.

In contrast, the toxicological representation of the
interactions is easier to comprehend. Through the collective
activities of the chemicals, (1) one can identify the mechanism
of synergistic or antagonistic behavior that might arise beyond
the concentration thresholds (and not just the regression
coefficient of multiplicative associations), and (2) the use of
concentration thresholds reflect the toxicological underpinning
of classical threshold based on chemical dose−response
studies.35−37 Moreover, as the number of chemical exposures
increases, searching for multiordered interactions gets
computationally intensive. Most current methods, therefore,
“hard code” or prespecify interaction terms in models, but such
strategies are limited due to restrictions on sample size and are
usually underpowered.38,39 In comparison, Kernel Machine
Regression or Bayesian factorization-inspired methods discover
interactions with certain functional forms that do not represent
any collective activity or concentration threshold.30,32,40 The
lack of similarity with toxicological threshold-based dose−
response studies makes it difficult to find biologically relevant
interpretations of the recovered interactions. It is also possible
that such interactions can only be present in a subset of the
population since not every sample will have chemical
concentrations beyond certain thresholds. Novel analytical
approaches are required to account for these challenges and to
move the field forward.

As a possible alternative to address this problem of
interpretability of complex interactions among chemicals,
tree-based machine learning (ML) models have been proposed
that can offer a solution to represent collective activities of
exposures as threshold-based interactions. Nevertheless, a
related challenge is that most of the tree-based ML models
are black-box, creating tension between prediction quality and
meaningful biological insight. Moreover, a predictive ML
model might not be the optimal model for inference.41

However, in recent epidemiological studies, interpretable tree-
based ML tools were used to discover simultaneously co-
occurring chemicals, similar to classical Weighted Quantile
Sum (WQS) Regression models.42−46 Separately in computa-
tional biology, using a novel ML algorithm called random
intersection trees,47 Basu et al.48,49 introduced the “signed

iterative random forest” (SiRF) algorithm to discover
interactions through collective activities. SiRF can efficiently
search for the few stable and highly occurring interactions
instead of going through each possible interaction term. Since
exposure to environmental chemicals occurs continuously, we
aimed to use a combination of the WQS regression and the
ML method Signed Iterative Random Forest to search for
interactions that mimic toxicological interactions. Using data
from the Childhood Autism Risks from the Genetics and
Environment (CHARGE) study, we aimed to identify
multiordered synergistic interactions between environmental
chemicals at specific exposure thresholds associated with
higher odds of ASD. We further examined whether the
directionality of the interactions remained unaltered even after
adjusting for potential effects of the overall chemical mixture.

■ METHODS
Study Design and Population. Details about the

CHARGE study have been reported in Bennett et al.13 Briefly,
the Childhood Autism Risks from Genetics and Environment
(CHARGE) is a case-control study that recruited three groups
of children between 2006 and 2017: (1) children with ASD
(2) children with developmental delay (DD) but not ASD, and
(3) children with typical development (TD).49 Children from
the first two groups were mainly identified by the California
Department of Developmental Services. The department
coordinates services for individuals with developmental
disabilities and is inclusive of all residents of California
regardless of their place of birth, religion, or financial
resources.13 The third group (controls) was sampled from
California birth files utilizing frequency matching of ASD cases
comprising the following characteristics: age, sex, and broad
geographic regions up to 10 counties. Children from all three
groups were (a) aged 24−60 months at recruitment, (b) living
with a biological parent who speaks English or Spanish, (c)
born in California, and (d) residing in the study catchment
area. CHARGE study included all children with at least 16 mL
of urine collected at their assessment and available for chemical
analysis. In addition, detailed demographic characteristics of
the parents and children were collected during the study visit.
However, in this present study, we included only children with
either ASD (from group 1) or typical development (from
group 3), totaling a sample size of 479. The CHARGE study
protocol was approved by the institutional review boards of the
State of California and the University of California at Davis.
Before collection of any data, all participants provided written
informed consent.
Chemical Analysis. A spot urine sample was collected

from each participant during their visit. All samples were frozen
immediately at −20 °C and remained frozen until analysis. The
samples were shipped on dry ice to Wadsworth Center’s
Human Health Exposure Analysis Resource (HHEAR)
Laboratory (Albany, NY) for analysis. Enzymatic deconjuga-
tion and liquid−liquid extraction were used in the determi-
nation of environmental phenols (i.e., benzophenone, bi-
sphenols, chlorophenols, parabens, and triclosan), as previously
described.50,51 Additional description of the target phenolic
compounds can be found in Bennett et al.13,50−52 Twenty
urinary phthalate metabolites (PhMs) were analyzed using
enzymatic deconjugation, solid-phase extraction (SPE), and an
isotope dilution method of quantification.53 Further details of
the analysis of PhMs are described elsewhere.13,53,54 Six dialkyl
phosphate metabolites (DAPs) were as described else-
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where.13,55 High performance liquid chromatography−tandem
mass spectrometry (HPLC−MS/MS) was used in the analysis
of environmental phenols, PhMs, and DAPs. Trace elements
were analyzed in urine specimens using inductively coupled
plasma mass spectrometry (ICP-MS) at Wadsworth Cen-
ter.13,56 Quality assurance and harmonization for targeted
biomonitoring of organic chemicals in the Human Health
Exposure Analysis Resource (HHEAR) laboratory network has
been detailed previously.57 The method recoveries for analytes
were within 80−120%, and the matrix effect was corrected
using internal standards for each analyte.57

Urinary concentrations were corrected for specific gravity
(SG) using the formula, Pc = P × [(SGp − 1)/(SG − 1)].58 Pc
is the SG corrected metabolite concentration (ng/mL), and
SG is the specific gravity of the urine sample. The median
specific gravity of the CHARGE cohort participants was 1.0223
ng/mL (SGp). In the event that the specific gravity correction
factors were greater than 2, they were assigned a value of 2. For
values below 0.5, they were assigned 0.5.13

Developmental Assessment. During the study visit, an
assessment of ASD was conducted (to confirm the diagnosis of
ASD indicated during the CHARGE enrollment process) using
two gold standard psychometric instruments: the Autism
Diagnostic Interview-Revised (ADI-R)59−61 and the Autism
Diagnostic Observation Schedules (ADOS).62 The ADI-R is a
semistructured interview administered by the primary caregiver
to diagnose autism and to differentiate autism from other
developmental disorders.61 The ADOS is a semistructured,
standardized assessment where the researcher observes the
social interaction, communication, play, and imaginative use of
materials by children suspected of having ASD.13,62 We utilized
the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) and followed standardized procedures
from the ADOS and ADI-R to assign the final diagnosis of
ASD.63 All children were administered the Mullen Scales of
Early Learning (MSEL) and the Vineland Adaptive Behaviors
Scores (VABS).13 To confirm that a child did not have ASD,
we used the Social Communications Questionnaire to screen
for ASD in children in both the developmental delay and

general population groups.64 If a child was positive, we
administered the ADI-R and ADOS to determine if they had
ASD. All other children enrolled because of a community
diagnosis of ASD or DD, but were not confirmed for either of
these two diagnoses, were grouped as Other Early Concerns
(OEC).13 Children were classified as TD and enrolled as
general population controls who did not meet the criteria for
either ASD or DD. All classifications are mutually exclusive. All
clinicians participating in the study spoke English and/or
Spanish. Additionally, they achieved research reliability on all
of the instruments they administered.13

Statistical Analysis. We used the weighted quantile sum
(WQS)26 regression to model the adverse mixture effect of
chemicals while simultaneously (1) accommodating the
correlation structure of the chemicals and (2) controlling for
covariates. Previous studies between chemical exposures and
neurodevelopment in the CHARGE case-control study13,65

found significant positive associations between the environ-
mental chemical mixture and the outcomes. Given these results
and the a priori hypothesis that environmental exposures
increase the odds for ASD, we assumed a positive association
(in an adverse direction) between the environmental chemical
mixture and ASD diagnosis. To reduce spurious co-
occurrences of chemicals, interactions were searched on top
of the chemical-mixture effect. A conceptual schematic of
different kinds of interactions has been shown in Figure 1.
Briefly, these interactions mimic the classical toxicological
paradigm in which an interaction occurs only if the
concentration of certain chemicals is above a threshold.
Conceptually, a usual multiplicative interaction between two
chemicals (for instance, A and B) can be mapped to four
toxicological interactions: (1) concentration of A is high, and
concentration of B is high, (2) concentration of A high, and
concentration of B is low, (3) concentration of A is low, and
concentration of B is high, and (4) concentration of A is low,
and concentration of B is low (see Figure 1A). Note that each
of the four components is easier to interpret and could directly
imply a plausible toxicological interpretation. Moreover, a
positive association with multiplicative interaction does not

Figure 1. Conceptual illustration of multiplicative and toxicologically mimicked interactions. Figure 1A shows a usual multiplicative interaction
between two chemicals and mapping to plausible threshold-based interactions. Figure 1B shows that a higher value of a multiplicative interaction
does not imply a higher value for each of its constituents. On the other hand, Figure 1C denotes a higher value of a toxicologically mimicking
interaction, implying a higher value for each of its constituents.
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necessarily imply synergy since the higher value of multi-
plicative interaction does not imply that the concentrations of
individual chemicals are also high. However, such a problem of
interpretability does not arise for toxicologically mimicked
interactions (Figures 1B and 1C). Lastly, multiplicative
interactions provide a population-level interaction estimate−
where all individuals contribute, whereas the mimicked
toxicological interactions are present in only a subset of the
population. In the following analysis, we searched for
synergistic interactions in the adverse direction, i.e., chemical
exposures higher than certain concentration thresholds,
mimicking a toxicological interaction.

All models were controlled for the child’s sex, year of birth,
race/ethnicity, age at enrollment, maternal age at the time of
childbirth, maternal metabolic conditions during pregnancy
(any hypertensive disorder, including obesity or any diabetes),
and parental homeowner status (as a proxy of socioeconomic
status). These covariates were chosen a priori based on the
previous analysis by Bennett et al.13 To make the analysis
robust; we implemented the random subset and repeated
holdout66,67 variants of WQS. Assuming the main chemical-
mixture effect and the synergistic interactions are additive, we
extracted the Pearson residuals from this model and treated the
residual as the new outcome (the Pearson residual possesses
asymptotic normality).37,68 Therefore, we searched for
synergistic interactions on the residuals after adjusting the
first-order main mixture effect and the covariates.

We searched for interactions through signed-iterated
Random Forest (SiRF), in which the Pearson residuals from
WQS were the outcome and the chemicals were the exposures.
The SiRF utilizes a combination of state-of-the-art machine-
learning tools, iterative Random Forests (iRFs), and recently
developed Random Intersection Trees (RITs) to search for
interactions within a certain proportion of samples.47,69−71

Instead of searching through all possible combinations, SiRF
searches for combinations of exposures that sequentially occur
within each tree’s branches (or decision paths) in the RFs.
Therefore, instead of looking for all possible combinations, the
branches in the tree provide predetermined and possibly
predictive combinations. SiRF searches for high-order chemical
exposure interactions, as follows: First, the model begins with
fitting the RF model and reweighting the important exposures.
Using the reweighted exposures, multiple RF models are fitted
iteratively to reduce the dimensionality of the exposure space
without removing marginally unimportant exposures. Impor-
tant exposures are denoted as higher and significant, while
unimportant exposures are those with marginally low
contributions to the prediction framework. Second, decision
rules are extracted from the iterated RF and fed to a
generalization of the RIT to efficiently discover high-order
interactions from the decision paths. Last, a bagging step is
introduced in the algorithm to assess the “stability” of the
recovered interactions through a large number of bootstrapped
iterations. Here stability implies the number of times an
interaction is detected throughout the iterations; therefore, the
higher the recovery rate, the better. Since SiRF searches
through particular decision branches, it can incorporate
meaningful directionality (in the current study, synergism)
while recovering the interactions. The combination of WQS-
SiRF can robustly search for interactions without the need to
rely on p-values. It should be noted that the WQS-SiRF
technique does not look through all possible combinations of
exposures and selects only a few predictive combinations.

Therefore, the penalties for multiple comparison errors could
be minimal, irrespective of sample size. The WQS technique
combines all of the exposures to create an overall mixture index
with a final one-degree-of-freedom hypothesis test. While the
sheer number of combinatorial interactions can rapidly
increase with an increase in the number of exposures, the
SiRF algorithm only chooses the predictive ones. Finally, only
in the next stage is the hypothesis testing on interactions
carried out using a few selected combinations. Therefore, the
combination of WQS-SiRF might help in diverting the loss in
statistical power.

In the SiRF part, the model was trained on a subset of data
and then bagging was introduced on the remaining held-out
testing data. Therefore, to obtain robust results against the
sensitivity of data partitioning, we chose three different data
partitions: (1) 70% for training and 30% for testing, (2) 75%
for training and 25% for testing, and (1) 80% for training and
20% for testing. Finally, we chose only those interactions with
(1) more than 50% stability score and (2) common to all three
data partitioning results. Since the discovered interactions were
based on thresholds, they were present in only certain portions
of the samples. However, SiRF does not directly estimate the
thresholds by itself. Therefore, we created interaction
indicators based on their joint concentrations to denote the
presence or absence of interactions. For example, if the specific
gravity-adjusted concentrations of the chemicals were more
than the 75th percentile, then the interaction indicator would
be nonzero; else, it would be zero. We created another set of
indicators based on the 67th percentile threshold for sensitivity
analysis. (1) For WQS analysis, we converted all chemical
exposures to deciles and (2) to ensure that WQS-SiRF is not
sensitive to adding exposures with low detection limits, we
included all chemicals irrespective of their percentage detected
above LOD. Note that the conversion in deciles for chemical
exposures and the growing many decision trees through
bootstraps protect against outlying and influential observa-
tions.

For sensitivity analyses, (1) we repeated the WQS-SiRF
algorithm with data partitioned in 75% for training and 25%
for testing without chemicals whose % of detection above LOD
was less than 60%, (2) we gradually increased the number of
bootstraps, from 250, 500, to 1000, (3) we used the whole data
set to test the model trained on the 75% data, (4) repeated
WQS-SiRF to obtain interactions observed in the primary
analysis after randomly permuting the ASD status, and (5)
conducted a Bayesian Kernel Machine Regression (BKMR)
analysis to compare and contrast the synergistic interactions
discovered from WQS-SiRF.

For descriptive analysis, we calculated the Pearson
correlation matrices of log-transformed and specific gravity-
corrected chemicals exposures for ASD and TD children. All
concentration values detected below the corresponding LODs
were imputed by the value of LOD/2. Missing data in
covariates were minimal (<5%) and were imputed using the R
package “mice”.72 A two-tailed p-value less than alpha at 0.05 is
considered statistically significant. All data were analyzed in R
version 4.1.2. A detailed mathematical exposition of the
algorithm was reported earlier.69 In addition, the tuning
parameters in WQS-SiRF and random seeds for training and
testing data are provided in the Supporting Information. All
the R codes are available online in Git Hub (https://github.
com/vishalmidya/WQS_SiRF).
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■ RESULTS
There were 62 chemical exposures measured in the urine
samples of children, which were included in this analysis. The
list of all 62 target chemicals is presented in Supplemental
Table S1, and their LODs (and % detected above LOD) are
presented in Supplemental Table S2. Supplemental Tables
S3−S5 show the log-transformed and specific-gravity-adjusted
urinary concentrations of all 62 chemicals for all 479 children,

231 ASD children, and 248 TD children, respectively.
Supplemental Tables S6, S7, and S8 show the log-transformed
and specific-gravity-unadjusted urinary concentrations of all 62
chemicals for all 479 children, 231 ASD children, and 248 TD
children, respectively. Supplemental Tables S9 and S10 present
univariate associations between ASD diagnosis and log-
transformed (base = 2), specific gravity-adjusted (and
unadjusted) urinary biomarker concentrations, respectively.

Figure 2. Specific gravity-adjusted and log-transformed (base 2) mean concentration and correlation plot of urinary environmental chemicals
measured in children. Figure 2A denotes the log-transformed (base 2) mean concentration (standard error) of all 62 environmental chemicals
included in this study. Figure 2B depicts the correlations among the 62 environmental chemicals. The chemical groups are color-coded.

Table 1. Characteristics of Mothers and Children Included in the Analysis from the CHARGE Cohorta

N = 479 All (Mean (Sd) or N (%)) TD ASD P-value

child sex 0.99
female 91 (19) 47 44
male 388 (81) 201 187
child race/ethnicity 0.25
white (non-hispanic) 246 (51.36) 135 (54.44) 111 (48.05)
non-white (non-Hispanic) 102 (21.29) 46 (18.55) 56 (24.24)
Hispanic any race 131 (27.35) 67 (27.02) 64 (27.71)
child age at assessment (in years) 3.94 (0.75) 3.82 (0.75) 4.05 (0.73) <0.01
child year of birth (baseline 2000)c 6.86 (3.08) 6.48 (2.91) 7.26 (3.21) <0.01
parental homeowner status 0.09
no 137 (28.60) 62 (25.00) 75 (32.47)
yes 342 (71.40) 186 (75.00) 156 (67.53)
maternal age at child’s birth 30.57 (5.56) 30.42 (5.43) 30.73 (5.71) 0.38
maternal metabolic conditiond 0.01
healthy (BMI < 25) weight and no metabolic conditions 230 (48.02) 124 (50.00) 106 (45.89)
overweight (BMI: 25−29.9) and no metabolic conditions 102 (21.29) 60 (24.19) 42 (18.18)
obese (BMI > 30), no other metabolic conditions 68 (14.20) 36 (14.52) 32 (13.85)
any hypertensive disorder (including obesity) or diabetes 79 (16.49) 28 (11.29) 51 (22.08)
MEPBb (in ng/mL) 5.87 (2.87) 5.47 (2.81) 6.31 (2.87) <0.01
DEPb (in ng/mL) 2.01 (1.78) 1.76 (1.64) 2.27 (1.89) <0.01
PRPBb (in ng/mL) 3.02 (2.96) 2.66 (2.94) 3.39 (2.95) <0.01

aAll chemical concentrations were transformed to log (base 2) and corrected for specific gravity. bTop three chemicals in terms of weights from
WQS regression. cAll children were born after 2000. dThe mutually exclusive covariate maternal metabolic condition was created in previous
studies by merging BMI categories with any hypertensive disorder and obesity and was shown to be associated with neuro-developmental outcomes
in children.73 P-values for the difference between ASD and TD groups were calculated using the Fisher exact test for categorical variables and the
Wilcoxon rank-sum test for continuous variables. ASD, Autism Spectrum Disorder; TD, typical development; BMI, body mass index; MEPB,
methyl paraben; DEP, diethyl-phosphate; PRPB, propyl paraben.
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Figure 3. Results from WQS chemical mixture regression. (A) The overall odds ratio (OR) between the WQS chemical mixture with ASD vs TD
status and (B) the corresponding weights contributed to the overall OR (note that the weights sum up to 1).

Figure 4. Results from nested linear models with WQS and discovered interaction indicators (cutoff set at 75th percentile) and the WQS chemical
mixture. In the top three models, the WQS chemical mixture and the two interaction indicators were used in separate models. Both interaction
indicators were adjusted with the WQS chemical mixture in the following two models. In the last model, interaction indicators and the WQS
chemical mixture were put in the same model. All models were adjusted for the covariates listed above.
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Among 62 chemicals, 42 had a more than 60% detection rate
above the LOD (Supplemental Table S2). The specific gravity-
adjusted concentrations and correlation matrices of the
chemicals are presented in Figure 2.

There were moderate to strong (0.3 to 0.7) within-group
correlations among pesticides and phenols. The distributions
of the child’s sex and race/ethnicity were not significantly
different between ASD and TD children (Table 1).
Furthermore, there was no significant difference in the parental
homeowner status. However, children with ASD were more
likely to be older at their age of assessment, and their mothers
were more likely to have any hypertensive disorder or diabetes
in any BMI category. The chemical concentrations of methyl
paraben, DEP metabolite, and propyl paraben (the top three
chemicals based on weights from WQS) were significantly
higher in children with ASD. It is worth noting that several
organophosphorus pesticides including chlorpyrifos, mala-
thion, and diazinon can be metabolized to DEP.

■ WQS- SIRF RESULT
In the WQS model (with binary outcome ASD vs TD and
without any interaction term), the mixture index was
significantly associated with higher odds of ASD (OR[95%
CI]: 1.58[1.32, 1.88]) after controlling for covariates. There
were 20 chemicals with higher than chance contribution
(weight >1/62) to the overall mixture effect. The top five
chemicals were methyl paraben, diethyl-phosphate, propyl
paraben, trace-metal uranium, and Bisphenol F (BPF). The
estimated weights (and the corresponding 95% CIs) were
presented in Figure 3.

WQS-SiRF searched for interactions of multiple orders (2 or
more) and found two synergistic two-order interactions with
more than 75% stability. The interactions were (1) urinary
trace element cadmium (Cd) and DEP, denoted by Cd/DEP;
and (2) environmental phenol 2,4,6-trichlorophenol (TCP-
246) and DEP, denoted by TCP-246/DEP. However, both
interactions were only observed in a subset of the sample
whose urinary chemical concentrations of Cd, DEP, and TCP-
246 were above certain thresholds. Therefore, based on a 75th
percentile threshold cutoff, we created two separate interaction
indicators to test these discovered interactions for association
analysis. For example, if both the specific gravity-adjusted
concentrations of Cd and DEP were more than the 75th
percentile, then the interaction indicator Cd/DEP would be
nonzero; else, it would be zero. In the sample, the calculated
prevalences of these interactions were 5% and 8.4% for Cd/
DEP and TCP-246/DEP, respectively. The results of SiRF
from all three different data partitions are presented in
Supplemental Table S11.

In two separate adjusted models (after controlling for the
main WQS chemical mixture and covariates), each interaction
indicator was associated with increased odds of ASD, 2.60
[0.90, 7.50] and 1.14 [0.55, 2.38] for Cd/DEP and TCP-
246+/DEP, respectively. ORs and corresponding CIs in the
forest plot are presented in Figure 4. Among the two
interactions, Cd/DEP had the strongest association, and in
all of the models, the WQS chemical mixture remained
statistically significant, with just a slight change in the ORs.

In the sensitivity analyses, (1) the interactions Cd/DEP and
TCP-246/DEP were replicated when the WQS-SiRF algorithm
was refitted without chemicals whose percent of detection
above LOD was less than 60% (Supplemental Table S12). (2)
Furthermore, the gradual increase in the number of bootstraps,

from 250, 500, to 1000, did not alter the results. Both of the
discovered interactions remained unaltered when the whole
data set (n = 479) was used to test the model trained on 75%
data (Supplemental Table S13). Moreover, (3) the direction-
ality of the ORs did not alter even when the interaction
threshold of the 75th percentile was changed to the 67th
percentile (Supplemental Figure S1), and (4) the interactions
Cd/DEP and TCP-246/DEP were not found in the
permutation tests. We also compared the interactions through
a BKMR analysis (Supplemental Figure S2). The interactions,
DEP/Cd and DEP/TCP-246 from BKMR between were
challenging to interpret, possibly due to the nature of how
interactions were analyzed based on projections.

■ DISCUSSION
We leveraged data from the CHARGE study to assess the
synergistic interactions among environmental chemicals,
pesticides, phthalates, phenols, and trace elements and ASD.
Utilizing WQS-SiRF, we found two suggestive synergistic
interactions associated with increased odds of ASD diagnosis
between (1) Cd and DEP and (2) 2,4,6-trichlorophenol and
DEP among children with the urinary concentration of
interacting chemicals over certain thresholds. When the main
WQS mixture and the necessary covariates were controlled,
cadmium/DEP and TCP-246/DEP were associated with
increased odds of ASD, respectively. Between the two
interactions, cadmium/DEP had the strongest association
and was previously shown to form chemical complexes.13 The
identified interactions could be experimentally tested and are
potentially biologically meaningful. This paper is a continu-
ation of the study of the main effects by Bennett et al.,13 which
concluded that many urinary chemicals were associated with
increased odds of ASD at 2−5 years of age. The present study
adds value by examining multiordered synergistic interactions
between exposures to pesticides, phthalates, phenols, and trace
elements and ASD and providing evidence for suggestive two-
order interactions between Cd/DEP and TCP-246/DEP.

A major aim of studying the effect of chemical mixtures is to
determine whether there is any departure from the additive
effect of the individual chemicals. Moreover, interactions
among the mixture components may be dose-dependent
compared with remaining constant over the entire dose
range. Konemann and Pieters74 and Gennings et al.75 showed
that interactions among environmental exposures may be dose-
dependent. Moreover, the U.S. EPA76 and Carpy et al.77

suggested that lower exposure ranges of chemical mixtures
might be associated with additivity, while synergistic (i.e.,
greater than additive) interactions might occur as the dose
increases. This current method, WQS-SiRF, identifies toxico-
logically mimicking interactions detected only beyond certain
thresholds, which denotes an essential difference from the
multiplicative interaction. Therefore, such interactions can
potentially identify suggestive interactions of potential bio-
logical relevance, which can later be validated or discarded in
laboratory-based experimental studies.

The novelty of this work is the demonstration of the utility
of integrating exposure mixture model analytical methods
widely used in environmental health research with a machine
learning tool to identify synergistic interactions among
multiple environmental chemicals in ASD. Biological con-
firmation of the discovered interactions was beyond the goal of
this study, which used observational case-control data.
However, the proposed methodology provides a way to
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discover possible multiordered interactions within environ-
mental exposure mixtures on a health outcome, which could
later be validated in experimental studies. Other exposure
mixture analytical approaches, such as BKMR or g-
computation, can also be coupled with SiRF for the
investigation of potential interaction effects. When the
directionality of the association between exposures and the
outcome is hypothesized beforehand and interest lies in the
joint mixture effect in a certain direction, a WQS-SiRF
framework can be utilized. Alternatively, when the direction-
ality of the association is determined in a data-driven way, and
the interest lies in the overall effect of the exposure mixtures, a
BKMR-SiRF framework can be implemented instead.78 BKMR
or related models estimate interactions based on mathematical
projections or multiplications, and therefore future work
comparing and contrasting interaction results across different
exposure mixture methods coupled with SiRF would be
informative. Lastly, if the interest lies in the overall mixture
effect, irrespective of the hypothesized directionality, a quantile
g-computation-SiRF algorithm can be implemented.79 Another
interesting area for future investigations in this field would be
the determination of threshold cutoffs. Similar to the Extreme
Gradient Boosting algorithm,80 sparsity-aware algorithms for
sparse data and novel quantile sketches for approximate tree
learning algorithms can be implemented in the iterative
Random Forests.

There are few studies on interactions associated with ASD,
including gene-environment,81 social,82 and chemical4 factors.
Moreover, there is a lack of studies demonstrating chemical−
chemical interactions in this context. Previous studies have
shown an association between heavy metals, like cadmium, and
ASD.83,84 Kern et al. discovered that cadmium and other trace
elements were significantly lower in the hair of children with
autism than others.85 This supports the concept that children
with autism may have issues excreting cadmium, resulting in a
higher body burden that could contribute to symptoms of
autism.85,86 Children could be exposed to cadmium through
inhalation and ingestion. It is commonly found in the food
chain, soil, cigarette smoke, and manufactured products.84

Research on pesticide exposure during childhood, specifically
glyphosate,87,88 chlorpyrifos,88 diazinon,88 and the develop-
ment of ASD continues to emerge.89−91 Potential routes of
pesticide exposure in children include food contaminated with
pesticides (ingestion), in utero or through breastmilk, and
household exposures via dermal contact.92,93 However, there is
a lack of studies showing any associations between the
interaction of DEP and TCP-246 with ASD. Regarding
possible biochemical significance, the cation, Cd2+ forms a
complex with phosphate ester, particularly with DEP
(C4H10O4P−), forming cadmium diethyl phosphate,
C4H10CdO4P−.94,95 Although for the TCP-246+/DEP+
interaction, many details are not known, a chemical complex
“2,4,6-trichlorophenyl dialkyl phosphate” was patented (in
1952) for use as parasiticides and control of agricultural and
household pests through aqueous suspensions employed as
sprays.96 However, the activities of both chemical complexes in
biological media are not known in detail.

Our study limitations include the following: (1) The urine
samples were collected postdiagnosis, i.e., months and
sometimes years after the symptoms emerged, with only few
urine samples collected at the time of diagnosis. Therefore, we
cannot rule out reverse causation and that the disease or
associated lifestyle changes due to diagnosis may affect

chemical concentrations measured in this study and not vice
versa. (2) Urinary measurements of the environmental
chemicals assessed in this study represent recent exposures
due to their short half-lives in the human body. In the absence
of repeated urine samples collected at various time
points,13,99−101 we cannot rule out the possibility of exposure
misclassification influencing results. (3) Because of the limited
sample size, we did not study potential sex-specific associations
with ASD diagnosis, although sexually dimorphic effects have
been previously documented.3 (4) Additionally, we used the
same confounders used in the original analysis by Bennett et
al.13 However, these confounders were selected based on
methyl paraben exposure because it has one of the strongest
associations in the unadjusted model. (4) Similar to large case-
control studies, residual confounding is possible. However, our
results remained unaltered after adjusting for multiple
confounders and covariates, negating residual confounding as
the sole explanation. (5) The choice of cutoffs at the 75th or
67th percentile is ad-hoc and sample-specific and therefore
needs to be replicated in a separate independent study
population. Further, using random intersection trees within the
SiRF algorithm makes it difficult to extract the absolute
threshold cutoffs directly. Future methodological studies are
required to address this limitation. (6) In the present analysis,
the same chemicals were used in the WQS and then again in
the SiRF, raising the possibility of overfitting. A training,
testing, and validation data split in an ideal large sample
scenario would potentially guard against overfitting. However,
in this moderate sample-sized study, the use of random subsets
and repeated holdouts in training and testing samples of WQS
and the drawing of a large number of bootstrapped samples
with different training and testing splits in the SiRF could
potentially induce a robust guard against overfitting. (7) It
should be noted that organophosphate insecticides are
metabolized in the body, forming dialkyl phosphate metabo-
lites that are exerted through the urine, such as DEP. DEP is a
common biomarker of exposure to organophosphate insecti-
cides detected in urine,97,98 and can indicate exposure to
organophosphate insecticides, as well as their metabolites.
Therefore, the reported complexes of Cd-DEP and DEP-
TCP246 may indicate potential interactions with the parent
organophosphate insecticides or other metabolites beyond
DEP and require further investigation, which needs to be
corroborated in other human and experimental studies to
elucidate their potential effects on ASD diagnosis.

Our study also had several strengths: (1) CHARGE is a well-
established case-control study with extensive demographic and
covariate data, which allowed us to assess a wide range of real-
world environmental chemical exposures in children, along
with available data on ASD in a moderate sample size. (2) This
is the first study to combine exposure mixture methods and
machine learning tools to discover interactions that mimic
classical threshold-based toxicological dose−response inter-
actions, providing a meaningful way to extract potentially
plausible mechanistic insights that are worthy of further
investigation. (3) Even though the main effects may not be
apparent or reach statistical for some chemicals, nonlinear
interactions between chemicals may still exist and be of
considerable importance. Therefore, a strength of the WQS-
SiRF algorithm is that it can efficiently accommodate many
chemical exposures without needing a prior step of variable
selection based on individual chemical associations. (4) These
toxicologically mimicking interactions are only present in a
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subset of the sample, and therefore can be thought of as
“personalized and precision” interactions. (5) WQS-SiRF can
efficiently search for high-order interactions; therefore, the
intended order should not be specified beforehand. (6)
Regarding practical implementation, the WQS-SiRF algorithm
is relatively fast and user-friendly, with both having robust R
packages available for future studies.

In conclusion, we introduced a novel way of discovering
threshold-based chemical interactions among urinary biomo-
nitoring data from a case-control study. To the best of our
knowledge, this is the first paper that combines the inferential
power of WQS and the predictive accuracy of a machine-
learning algorithm to discover threshold-based, personalized
biologically suggestive interactions among environmental
chemical exposures associated with ASD.

■ ASSOCIATED CONTENT
Data Availability Statement
The data set is freely available at the Human Health Exposure
Analysis Resource (HHEAR) Data Center (https://
h h e a r d a t a c e n t e r . m s s m . e d u / P u b l i c F i l e /
ViewPublicFile?projectId=17). In particular, we have used the
following files for the analysis: (1) Chemical concentrations
data: 1461_TARGETED_DATA.csv (DOI: 10.36043/
1461_222). (2) Epidemiologic data: 1461_EPI_DATA.csv
(DOI: 10.36043/1461_219). (3) Semantic Data Dictionary
(SDD): SDD-2016-1461.xlsx (DOI: 10.36043/1461_630_20
22.2).
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.3c00848.

Figure showing results from nested linear models with
WQS and discovered interaction indicators (cutoff set at
67th percentile) and WQS chemical mixture; figure
showing sensitivity analysis using Bayesian Kernel
Machine Regression (BKMR) model; list of all chemical
names, abbreviations, limit of detection (LOD) for
individual chemicals, and percent detection above the
LOD by chemical classes; distribution of log-trans-
formed (base = 2) specific gravity-adjusted and
unadjusted urinary phenol, phthalate, and trace element
biomarker concentrations (ng/mL) among all 479, 231
ASD, and 248 TD participants; univariate associations
between ASD diagnosis and log-transformed (base = 2),
specific gravity-adjusted and unadjusted urinary phenol,
phthalate, and trace element biomarker concentrations;
results of SiRF from the three different data partitions
and tuning parameters for WQS-SiRF (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Vishal Midya − Department of Environmental Medicine and
Public Health, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States; orcid.org/0000-
0002-6643-5176; Email: vishal.midya@mssm.edu

Authors
Cecilia Sara Alcala − Department of Environmental Medicine
and Public Health, Icahn School of Medicine at Mount Sinai,
New York, New York 10029, United States

Elza Rechtman − Department of Environmental Medicine and
Public Health, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States

Jill K. Gregory − Instructional Technology Group, Icahn
School of Medicine at Mount Sinai, New York, New York
10029, United States

Kurunthachalam Kannan − Department of Pediatrics and
Department of Environmental Medicine, New York University
School of Medicine, New York, New York 10016, United
States; orcid.org/0000-0002-1926-7456

Irva Hertz-Picciotto − Department of Public Health Sciences,
School of Medicine, University of California at Davis, Davis,
California 95616, United States; UC Davis MIND (Medical
Investigations of Neurodevelopmental Disorders) Institute,
University of California at Davis, Sacramento, California
95817, United States

Susan L. Teitelbaum − Department of Environmental
Medicine and Public Health, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States

Chris Gennings − Department of Environmental Medicine
and Public Health, Icahn School of Medicine at Mount Sinai,
New York, New York 10029, United States

Maria J. Rosa − Department of Environmental Medicine and
Public Health, Icahn School of Medicine at Mount Sinai, New
York, New York 10029, United States; orcid.org/0000-
0002-1509-7664

Damaskini Valvi − Department of Environmental Medicine
and Public Health, Icahn School of Medicine at Mount Sinai,
New York, New York 10029, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.3c00848

Author Contributions
⊥V.M. and C.S.A. contributed equally to this paper.
Author Contributions
¶M.R. and D.V. contributed equally to this paper.
Funding
This study has been supported by funds from the National
Institute of Environmental Health Sciences (NIEHS)
R01ES033688 (D.V., V.M., C.G.) and P30ES023515 (V.M.,
C.S.A., E.R., C.G., M.R., D.V.). M.J.R. is further supported by
the NIEHS grant R01ES033245. C.S.A. was supported by the
National Institute of Child Health and Human Development
grant T32HD049311. K.K. and S.L.T., were, in part, supported
by the NIEHS under award number U2CES026542. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIEHS.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We want to thank the Human Health Exposure Analysis
Resource (HHEAR) Data Center at the Icahn School of
Medicine at Mount Sinai for the availability of open-source
data and the CHARGE study participants and researchers for
making this work possible.

■ REFERENCES
(1) Diagnostic and statistical manual of mental disorders, 5th ed.;

American Psychiatric Association, 2013.
(2) Maenner, M. J.; Shaw, K. A.; Baio, J.; Washington, A.; Patrick,

M.; DiRienzo, M.; Christensen, D. L.; Wiggins, L. D.; Pettygrove, S.;

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00848
Environ. Sci. Technol. 2023, 57, 18139−18150

18147

https://hheardatacenter.mssm.edu/PublicFile/ViewPublicFile?projectId=17
https://hheardatacenter.mssm.edu/PublicFile/ViewPublicFile?projectId=17
https://hheardatacenter.mssm.edu/PublicFile/ViewPublicFile?projectId=17
https://pubs.acs.org/doi/10.1021/acs.est.3c00848?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c00848/suppl_file/es3c00848_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vishal+Midya"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6643-5176
https://orcid.org/0000-0002-6643-5176
mailto:vishal.midya@mssm.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cecilia+Sara+Alcala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elza+Rechtman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jill+K.+Gregory"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kurunthachalam+Kannan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1926-7456
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irva+Hertz-Picciotto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Susan+L.+Teitelbaum"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+Gennings"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+J.+Rosa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1509-7664
https://orcid.org/0000-0002-1509-7664
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Damaskini+Valvi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c00848?ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Andrews, J. G.; Lopez, M.; Hudson, A.; Baroud, T.; Schwenk, Y.;
White, T.; Rosenberg, C. R.; Lee, L.-C.; Harrington, R. A; Huston,
M.; Hewitt, A.; Esler, A.; Hall-Lande, J.; Poynter, J. N.; Hallas-
Muchow, L.; Constantino, J. N.; Fitzgerald, R. T.; Zahorodny, W.;
Shenouda, J.; Daniels, J. L.; Warren, Z.; Vehorn, A.; Salinas, A.;
Durkin, M. S.; Dietz, P. M. Prevalence of autism spectrum disorder
among children aged 8 years�autism and developmental disabilities
monitoring network, 11 sites, United States, 2016. MMWR
Surveillance summaries. 2020, 69, 1.

(3) Maenner, M. J.; Shaw, K. A.; Bakian, A. V.; Bilder, D. A.; Durkin,
M. S.; Esler, A.; Furnier, S. M.; Hallas, L.; Hall-Lande, J.; Hudson, A.;
Hughes, M. M.; Patrick, M.; Pierce, K.; Poynter, J. N.; Salinas, A.;
Shenouda, J.; Vehorn, A.; Warren, Z.; Constantino, J. N.; DiRienzo,
M.; Fitzgerald, R. T.; Grzybowski, A.; Spivey, M. H.; Pettygrove, S.;
Zahorodny, W.; Ali, A.; Andrews, J. G.; Baroud, T.; Gutierrez, J.;
Hewitt, A.; Lee, L.-C.; Lopez, M.; Mancilla, K. C.; McArthur, D.;
Schwenk, Y. D.; Washington, A.; Williams, S.; Cogswell, M. E.
Prevalence and characteristics of autism spectrum disorder among
children aged 8 years�autism and developmental disabilities
monitoring network, 11 sites, United States, 2018. MMWR
Surveillance Summaries. 2021, 70, 1.

(4) Kalkbrenner, A. E.; Schmidt, R. J.; Penlesky, A. C. Environ-
mental chemical exposures and autism spectrum disorders: a review of
the epidemiological evidence. Curr. Probl Pediatr Adolesc Health Care.
2014, 44, 277−318.

(5) Lam, J.; Sutton, P.; Kalkbrenner, A.; Windham, G.; Halladay, A.;
Koustas, E.; Lawler, C.; Davidson, L.; Daniels, N.; Newschaffer, C.;
Woodruff, T. A systematic review and meta-analysis of multiple
airborne pollutants and autism spectrum disorder. PloS one. 2016, 11,
No. e0161851.

(6) Gong, T.; Dalman, C.; Wicks, S.; Dal, H.; Magnusson, C.;
Lundholm, C.; Almqvist, C.; Pershagen, G. Perinatal Exposure to
Traffic-Related Air Pollution and Autism Spectrum Disorders.
Environ. Health Perspect. 2017, 125, 119−126.

(7) Raz, R.; Levine, H.; Pinto, O.; Broday, D. M.; Yuval; Weisskopf,
M. G. Traffic-Related Air Pollution and Autism Spectrum Disorder: A
Population-Based Nested Case-Control Study in Israel. Am. J.
Epidemiol. 2018, 187, 717−725.

(8) Ritz, B.; Liew, Z.; Yan, Q.; Cuia, X.; Virk, J.; Ketzel, M.;
Raaschou-Nielsen, O. Air pollution and Autism in Denmark. Environ.
Epidemiol. 2018, 2, No. e028.

(9) Pagalan, L.; Bickford, C.; Weikum, W.; Lanphear, B.; Brauer, M.;
Lanphear, N.; Hanley, G. E.; Oberlander, T. F.; Winters, M.
Association of Prenatal Exposure to Air Pollution With Autism
Spectrum Disorder. JAMA Pediatr. 2019, 173, 86−92.

(10) Rossignol, D. A.; Genuis, S. J.; Frye, R. E. Environmental
toxicants and autism spectrum disorders: a systematic review. Transl
Psychiatry. 2014, 4, No. e360.

(11) Grandjean, P.; Landrigan, P. J. Developmental neurotoxicity of
industrial chemicals. Lancet. 2006, 368, 2167−78.

(12) Wang, M.; Hossain, F.; Sulaiman, R.; Ren, X. Exposure to
Inorganic Arsenic and Lead and Autism Spectrum Disorder in
Children: A Systematic Review and Meta-Analysis. Chem. Res. Toxicol.
2019, 32, 1904−1919.

(13) Bennett, D. H.; Busgang, S. A.; Kannan, K.; Parsons, P. J.;
Takazawa, M.; Palmer, C. D.; Schmidt, R. J.; Doucette, J. T.;
Schweitzer, J. B.; Gennings, C.; Hertz-Picciotto, I. Environmental
exposures to pesticides, phthalates, phenols and trace elements are
associated with neurodevelopment in the CHARGE study. Environ.
Int. 2022, 161, 107075.

(14) Harley, K. G.; Gunier, R. B.; Kogut, K.; Johnson, C.; Bradman,
A.; Calafat, A. M.; Eskenazi, B. Prenatal and early childhood bisphenol
A concentrations and behavior in school-aged children. Environ. Res.
2013, 126, 43−50.

(15) Braun, J. M. Early-life exposure to EDCs: role in childhood
obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161−
173.

(16) Philippat, C.; Nakiwala, D.; Calafat, A. M.; Botton, J.; De
Agostini, M.; Heude, B.; Slama, R. Prenatal Exposure to Non-

persistent Endocrine Disruptors and Behavior in Boys at 3 and 5
Years. Environ. Health Perspect. 2017, 125, 097014.

(17) Engel, S. M.; Daniels, J. L. On the complex relationship
between genes and environment in the etiology of autism.
Epidemiology. 2011, 22, 486−488.

(18) Landrigan, P. J. What causes autism? Exploring the environ-
mental contribution. Current opinion in pediatrics. 2010, 22, 219−225.

(19) Curtin, P.; Austin, C.; Curtin, A.; Gennings, C.; Arora, M.;
Tammimies, K.; Willfors, C.; Berggren, S.; Siper, P.; Rai, D.;
Meyering, K.; Kolevzon, A.; Mollon, J.; David, A. S.; Lewis, G.;
Zammit, S.; Heilbrun, L.; Palmer, R. F.; Wright, R. O.; Bolte, S.;
Reichenberg, A. Dynamical features in fetal and postnatal zinc-copper
metabolic cycles predict the emergence of autism spectrum disorder.
Sci. Adv. 2018, 4, No. eaat1293.

(20) Austin, C.; Curtin, P.; Arora, M.; Reichenberg, A.; Curtin, A.;
Iwai-Shimada, M.; Wright, R. O.; Wright, R. J.; Remnelius, K. L.;
Isaksson, J.; Bolte, S.; Nakayama, S. F. Elemental Dynamics in Hair
Accurately Predict Future Autism Spectrum Disorder Diagnosis: An
International Multi-Center Study. J. Clin Med. 2022, 11, 7154.

(21) Gennings, C. On testing for drug/chemical interactions:
definitions and inference. J. Biopharm Stat. 2000, 10, 457−67.

(22) Lee, M.; Rahbar, M. H.; Samms-Vaughan, M.; Bressler, J.; Bach,
M. A.; Hessabi, M.; Grove, M. L.; Shakespeare-Pellington, S.; Coore
Desai, C.; Reece, J.-A.; Loveland, K. A.; Boerwinkle, E. A generalized
weighted quantile sum approach for analyzing correlated data in the
presence of interactions. Biometrical Journal. 2019, 61, 934−954.

(23) Rahbar, M. H.; Samms-Vaughan, M.; Kim, S.; Saroukhani, S.;
Bressler, J.; Hessabi, M.; Grove, M. L.; Shakspeare-Pellington, S.;
Loveland, K. A. Detoxification Role of Metabolic Glutathione S-
Transferase (GST) Genes in Blood Lead Concentrations of Jamaican
Children with and without Autism Spectrum Disorder. Genes. 2022,
13, 975.

(24) Colicino, E.; Pedretti, N. F.; Busgang, S. A.; Gennings, C. Per-
and poly-fluoroalkyl substances and bone mineral density: Results
from the Bayesian weighted quantile sum regression. Environ.
Epidemiol. 2020, 4, No. e092.

(25) Kowal, D. R.; Bravo, M.; Leong, H.; Bui, A.; Griffin, R. J.;
Ensor, K. B.; Miranda, M. L. Bayesian variable selection for
understanding mixtures in environmental exposures. Statistics in
Medicine. 2021, 40, 4850−4871.

(26) Carrico, C.; Gennings, C.; Wheeler, D. C.; Factor-Litvak, P.
Characterization of Weighted Quantile Sum Regression for Highly
Correlated Data in a Risk Analysis Setting. J. Agric Biol. Environ. Stat.
2015, 20, 100−120.

(27) Keil, A. P.; Buckley, J. P.; O’Brien, K. M.; Ferguson, K. K.;
Zhao, S.; White, A. J. A Quantile-Based g-Computation Approach to
Addressing the Effects of Exposure Mixtures. Environ. Health Perspect.
2020, 128, 47004.

(28) Bobb, J. F.; Valeri, L.; Claus Henn, B.; Christiani, D. C.;
Wright, R. O.; Mazumdar, M.; Godleski, J. J.; Coull, B. A. Bayesian
kernel machine regression for estimating the health effects of multi-
pollutant mixtures. Biostatistics. 2015, 16, 493−508.

(29) Bellavia, A.; Dickerson, A. S.; Rotem, R. S.; Hansen, J.; Gredal,
O.; Weisskopf, M. G. Joint and interactive effects between health
comorbidities and environmental exposures in predicting amyotrophic
lateral sclerosis. International Journal of Hygiene and Environmental
Health. 2021, 231, 113655.

(30) Antonelli, J.; Mazumdar, M.; Bellinger, D.; Christiani, D.;
Wright, R.; Coull, B. Estimating the health effects of environmental
mixtures using Bayesian semiparametric regression and sparsity
inducing priors. Annals of Applied Statistics. 2020, 14, 257−275.

(31) McGee, G.; Wilson, A.; Webster, T. F.; Coull, B. A. Bayesian
multiple index models for environmental mixtures. Biometrics 2023,
79, 462.

(32) Liu, J. Z.; Deng, W.; Lee, J.; Lin, P-iD; Valeri, L.; Christiani, D.
C.; Bellinger, D. C.; Wright, R. O.; Mazumdar, M. M.; Coull, B. A. A
Cross-Validated Ensemble Approach to Robust Hypothesis Testing of
Continuous Nonlinear Interactions: Application to Nutrition-

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00848
Environ. Sci. Technol. 2023, 57, 18139−18150

18148

https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.15585/mmwr.ss7011a1
https://doi.org/10.15585/mmwr.ss7011a1
https://doi.org/10.15585/mmwr.ss7011a1
https://doi.org/10.1016/j.cppeds.2014.06.001
https://doi.org/10.1016/j.cppeds.2014.06.001
https://doi.org/10.1016/j.cppeds.2014.06.001
https://doi.org/10.1371/journal.pone.0161851
https://doi.org/10.1371/journal.pone.0161851
https://doi.org/10.1289/EHP118
https://doi.org/10.1289/EHP118
https://doi.org/10.1093/aje/kwx294
https://doi.org/10.1093/aje/kwx294
https://doi.org/10.1097/EE9.0000000000000028
https://doi.org/10.1001/jamapediatrics.2018.3101
https://doi.org/10.1001/jamapediatrics.2018.3101
https://doi.org/10.1038/tp.2014.4
https://doi.org/10.1038/tp.2014.4
https://doi.org/10.1016/S0140-6736(06)69665-7
https://doi.org/10.1016/S0140-6736(06)69665-7
https://doi.org/10.1021/acs.chemrestox.9b00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.9b00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.9b00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.envint.2021.107075
https://doi.org/10.1016/j.envint.2021.107075
https://doi.org/10.1016/j.envint.2021.107075
https://doi.org/10.1016/j.envres.2013.06.004
https://doi.org/10.1016/j.envres.2013.06.004
https://doi.org/10.1038/nrendo.2016.186
https://doi.org/10.1038/nrendo.2016.186
https://doi.org/10.1289/EHP1314
https://doi.org/10.1289/EHP1314
https://doi.org/10.1289/EHP1314
https://doi.org/10.1097/EDE.0b013e31821daf1c
https://doi.org/10.1097/EDE.0b013e31821daf1c
https://doi.org/10.1097/MOP.0b013e328336eb9a
https://doi.org/10.1097/MOP.0b013e328336eb9a
https://doi.org/10.1126/sciadv.aat1293
https://doi.org/10.1126/sciadv.aat1293
https://doi.org/10.3390/jcm11237154
https://doi.org/10.3390/jcm11237154
https://doi.org/10.3390/jcm11237154
https://doi.org/10.1081/BIP-100101978
https://doi.org/10.1081/BIP-100101978
https://doi.org/10.1002/bimj.201800259
https://doi.org/10.1002/bimj.201800259
https://doi.org/10.1002/bimj.201800259
https://doi.org/10.3390/genes13060975
https://doi.org/10.3390/genes13060975
https://doi.org/10.3390/genes13060975
https://doi.org/10.1097/EE9.0000000000000092
https://doi.org/10.1097/EE9.0000000000000092
https://doi.org/10.1097/EE9.0000000000000092
https://doi.org/10.1002/sim.9099
https://doi.org/10.1002/sim.9099
https://doi.org/10.1007/s13253-014-0180-3
https://doi.org/10.1007/s13253-014-0180-3
https://doi.org/10.1289/EHP5838
https://doi.org/10.1289/EHP5838
https://doi.org/10.1093/biostatistics/kxu058
https://doi.org/10.1093/biostatistics/kxu058
https://doi.org/10.1093/biostatistics/kxu058
https://doi.org/10.1016/j.ijheh.2020.113655
https://doi.org/10.1016/j.ijheh.2020.113655
https://doi.org/10.1016/j.ijheh.2020.113655
https://doi.org/10.1214/19-AOAS1307
https://doi.org/10.1214/19-AOAS1307
https://doi.org/10.1214/19-AOAS1307
https://doi.org/10.1111/biom.13569
https://doi.org/10.1111/biom.13569
https://doi.org/10.1080/01621459.2021.1962889
https://doi.org/10.1080/01621459.2021.1962889
https://doi.org/10.1080/01621459.2021.1962889
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Environment Studies. Journal of the American Statistical Association.
2022, 117, 561−573.

(33) Ferrari, F.; Dunson, D. B. Bayesian Factor Analysis for
Inference on Interactions. Journal of the American Statistical
Association. 2021, 116, 1521−1532.

(34) Kumbier, K.; Basu, S.; Frise, E.; Celniker, S. E.; Brown, J. B.;
Yu, B. Signed iterative random forests to identify enhancer-associated
transcription factor binding. arXiv 2018, No. 1810.07287,
DOI: 10.48550/arXiv.1810.07287.

(35) Hamm, A. K.; Hans Carter, W., Jr; Gennings, C. Analysis of an
interaction threshold in a mixture of drugs and/or chemicals. Statistics
in Medicine. 2005, 24, 2493−2507.

(36) Yeatts, S. D.; Gennings, C.; Wagner, E. D.; Simmons, J. E.;
Plewa, M. J. Detecting Departure From Additivity Along a Fixed-
Ratio Mixture Ray With a Piecewise Model for Dose and Interaction
Thresholds. J. Agric Biol. Environ. Stat. 2010, 15, 510−522.

(37) Gennings, C.; Schwartz, P.; Carter, W. H.; Simmons, J. E.
Detection of Departures from Additivity in Mixtures of Many
Chemicals with a Threshold Model. Journal of Agricultural, Biological,
and Environmental Statistics. 1997, 2, 198−211.

(38) Gibson, E. A. Statistical and Machine Learning Methods for
Pattern Identification in Environmental Mixtures; Columbia University,
2021.

(39) Joubert, B. R.; Kioumourtzoglou, M. A.; Chamberlain, T.;
Chen, H. Y.; Gennings, C.; Turyk, M. E.; Miranda, M. L.; Webster, T.
F.; Ensor, K. B.; Dunson, D. B.; Coull, B. A. Powering Research
through Innovative Methods for Mixtures in Epidemiology (PRIME)
Program: Novel and Expanded Statistical Methods. Int. J. Environ. Res.
Public Health. 2022, 19, 19.

(40) Colicino, E.; Ferrari, F.; Cowell, W.; Niedzwiecki, M. M.;
Foppa Pedretti, N.; Joshi, A.; Wright, R. O.; Wright, R. J. Non-linear
and non-additive associations between the pregnancy metabolome
and birthweight. Environ. Int. 2021, 156, 106750.

(41) Shmueli, G. To Explain or to Predict? Statistical Science. 2010,
25, 289−310.

(42) Lampa, E.; Lind, L.; Lind, P. M.; Bornefalk-Hermansson, A.
The identification of complex interactions in epidemiology and
toxicology: a simulation study of boosted regression trees. Environ-
mental Health. 2014, 13, 57.

(43) Stingone, J. A.; Pandey, O. P.; Claudio, L.; Pandey, G. Using
machine learning to identify air pollution exposure profiles associated
with early cognitive skills among U.S. children. Environ. Pollut. 2017,
230, 730−740.

(44) Gass, K.; Klein, M.; Chang, H. H.; Flanders, W. D.; Strickland,
M. J. Classification and regression trees for epidemiologic research: an
air pollution example. Environmental Health. 2014, 13, 17.

(45) Ouidir, M.; Lepeule, J.; Siroux, V.; Malherbe, L.; Meleux, F.;
Rivier̀e, E.; Launay, L.; Zaros, C.; Cheminat, M.; Charles, M.-A.;
Slama, R. Is atmospheric pollution exposure during pregnancy
associated with individual and contextual characteristics? A nation-
wide study in France. Journal of Epidemiology and Community Health.
2017, 71, 1026.

(46) Li, Y.-C.; Hsu, H-HL; Chun, Y.; Chiu, P.-H.; Arditi, Z.;
Claudio, L.; Pandey, G.; Bunyavanich, S. Machine learning−driven
identification of early-life air toxic combinations associated with
childhood asthma outcomes. Journal of Clinical Investigation. 2021,
131, 131.

(47) Shah, R. D.; Meinshausen, N. Random intersection trees.
Journal of Machine Learning Research. 2014, 15, 629−654.

(48) Basu, S.; Kumbier, K.; Brown, J. B.; Yu, B. Iterative random
forests to discover predictive and stable high-order interactions. Proc.
Natl. Acad. Sci. U. S. A. 2018, 115, 1943−1948.

(49) Hertz-Picciotto, I.; Croen, L. A.; Hansen, R.; Jones, C. R.; van
de Water, J.; Pessah, I. N. The CHARGE study: an epidemiologic
investigation of genetic and environmental factors contributing to
autism. Environ. Health Perspect. 2006, 114, 1119−25.

(50) Asimakopoulos, A. G.; Thomaidis, N. S.; Kannan, K.
Widespread occurrence of bisphenol A diglycidyl ethers, p-
hydroxybenzoic acid esters (parabens), benzophenone type-UV filters,

triclosan, and triclocarban in human urine from Athens, Greece. Sci.
Total Environ. 2014, 470−471, 1243−9.

(51) Li, A. J.; Xue, J.; Lin, S.; Al-Malki, A. L.; Al-Ghamdi, M. A.;
Kumosani, T. A.; Kannan, K. Urinary concentrations of environ-
mental phenols and their association with type 2 diabetes in a
population in Jeddah, Saudi Arabia. Environ. Res. 2018, 166, 544−552.

(52) Rocha, B. A.; Asimakopoulos, A. G.; Honda, M.; da Costa, N.
L.; Barbosa, R. M.; Barbosa, F., Jr; Kannan, K. Advanced data mining
approaches in the assessment of urinary concentrations of bisphenols,
chlorophenols, parabens and benzophenones in Brazilian children and
their association to DNA damage. Environ. Int. 2018, 116, 269−277.

(53) Li, A. J.; Martinez-Moral, M.-P.; Al-Malki, A. L.; Al-Ghamdi, M.
A.; Al-Bazi, M. M.; Kumosani, T. A.; Kannan, K. Mediation analysis
for the relationship between urinary phthalate metabolites and type 2
diabetes via oxidative stress in a population in Jeddah, Saudi Arabia.
Environ. Int. 2019, 126, 153−161.

(54) Rocha, B. A.; Asimakopoulos, A. G.; Barbosa, F., Jr; Kannan, K.
Urinary concentrations of 25 phthalate metabolites in Brazilian
children and their association with oxidative DNA damage. Sci. Total
Environ. 2017, 586, 152−162.

(55) Li, A. J.; Banjabi, A. A.; Takazawa, M.; Kumosani, T. A.; Yousef,
J. M.; Kannan, K. Serum concentrations of pesticides including
organophosphates, pyrethroids and neonicotinoids in a population
with osteoarthritis in Saudi Arabia. Sci. Total Environ. 2020, 737,
139706.

(56) Minnich, M. G.; Miller, D. C.; Parsons, P. J. Determination of
As, Cd, Pb, and Hg in urine using inductively coupled plasma mass
spectrometry with the direct injection high efficiency nebulizer.
Spectrochimica Acta Part B: Atomic Spectroscopy. 2008, 63, 389−395.

(57) Kannan, K.; Stathis, A.; Mazzella, M. J.; Andra, S. S.; Barr, D.
B.; Hecht, S. S.; Merrill, L. S.; Galusha, A. L.; Parsons, P. J. Quality
assurance and harmonization for targeted biomonitoring measure-
ments of environmental organic chemicals across the Children’s
Health Exposure Analysis Resource laboratory network. Int. J. Hyg
Environ. Health. 2021, 234, 113741.

(58) Hauser, R.; Meeker, J. D.; Park, S.; Silva, M. J.; Calafat, A. M.
Temporal variability of urinary phthalate metabolite levels in men of
reproductive age. Environmental health perspectives. 2004, 112, 1734−
1740.

(59) Lord, C.; Rutter, M.; Le Couteur, A. The autism diagnostic
interview-revised (ADI-R). J. Autism Dev. Disord. 1994, 24, 659−685.

(60) Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic
Interview-Revised: a revised version of a diagnostic interview for
caregivers of individuals with possible pervasive developmental
disorders. Journal of autism and developmental disorders. 1994, 24,
659−685.

(61) Lord, C.; Pickles, A.; McLennan, J.; Rutter, M.; Bregman, J.;
Folstein, S.; Fombonne, E.; Leboyer, M.; Minshew, N. Diagnosing
autism: analyses of data from the Autism Diagnostic Interview. Journal
of autism and developmental disorders. 1997, 27, 501−517.

(62) Lord, C.; Risi, S.; Lambrecht, L.; Cook, E. H.; Leventhal, B. L.;
DiLavore, P. C.; Pickles, A.; Rutter, M. The Autism Diagnostic
Observation Schedule�Generic: A standard measure of social and
communication deficits associated with the spectrum of autism.
Journal of autism and developmental disorders. 2000, 30, 205−223.

(63) Risi, S.; Lord, C.; Gotham, K.; Corsello, C.; Chrysler, C.;
Szatmari, P.; Cook, E. H., Jr; Leventhal, B. L.; Pickles, A. Combining
information from multiple sources in the diagnosis of autism spectrum
disorders. Journal of the American Academy of Child & Adolescent
Psychiatry. 2006, 45, 1094−1103.

(64) Rutter, M; Bailey, A; Lord, C. The social communication
questionnaire: Manual; Western Psychological Services, 2003.

(65) Oh, J.; Shin, H. M.; Kannan, K.; Busgang, S. A.; Schmidt, R. J.;
Schweitzer, J. B.; Hertz-Picciotto, I.; Bennett, D. H. Childhood
exposure to per- and polyfluoroalkyl substances and neurodevelop-
ment in the CHARGE case-control study. Environ. Res. 2022, 215,
114322.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00848
Environ. Sci. Technol. 2023, 57, 18139−18150

18149

https://doi.org/10.1080/01621459.2021.1962889
https://doi.org/10.1080/01621459.2020.1745813
https://doi.org/10.1080/01621459.2020.1745813
https://doi.org/10.48550/arXiv.1810.07287
https://doi.org/10.48550/arXiv.1810.07287
https://doi.org/10.48550/arXiv.1810.07287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/sim.2110
https://doi.org/10.1002/sim.2110
https://doi.org/10.1007/s13253-010-0030-x
https://doi.org/10.1007/s13253-010-0030-x
https://doi.org/10.1007/s13253-010-0030-x
https://doi.org/10.2307/1400403
https://doi.org/10.2307/1400403
https://doi.org/10.3390/ijerph19031378
https://doi.org/10.3390/ijerph19031378
https://doi.org/10.3390/ijerph19031378
https://doi.org/10.1016/j.envint.2021.106750
https://doi.org/10.1016/j.envint.2021.106750
https://doi.org/10.1016/j.envint.2021.106750
https://doi.org/10.1214/10-STS330
https://doi.org/10.1186/1476-069X-13-57
https://doi.org/10.1186/1476-069X-13-57
https://doi.org/10.1016/j.envpol.2017.07.023
https://doi.org/10.1016/j.envpol.2017.07.023
https://doi.org/10.1016/j.envpol.2017.07.023
https://doi.org/10.1186/1476-069X-13-17
https://doi.org/10.1186/1476-069X-13-17
https://doi.org/10.1136/jech-2016-208674
https://doi.org/10.1136/jech-2016-208674
https://doi.org/10.1136/jech-2016-208674
https://doi.org/10.1172/JCI152088
https://doi.org/10.1172/JCI152088
https://doi.org/10.1172/JCI152088
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1289/ehp.8483
https://doi.org/10.1289/ehp.8483
https://doi.org/10.1289/ehp.8483
https://doi.org/10.1016/j.scitotenv.2013.10.089
https://doi.org/10.1016/j.scitotenv.2013.10.089
https://doi.org/10.1016/j.scitotenv.2013.10.089
https://doi.org/10.1016/j.envres.2018.06.040
https://doi.org/10.1016/j.envres.2018.06.040
https://doi.org/10.1016/j.envres.2018.06.040
https://doi.org/10.1016/j.envint.2018.04.023
https://doi.org/10.1016/j.envint.2018.04.023
https://doi.org/10.1016/j.envint.2018.04.023
https://doi.org/10.1016/j.envint.2018.04.023
https://doi.org/10.1016/j.envint.2019.01.082
https://doi.org/10.1016/j.envint.2019.01.082
https://doi.org/10.1016/j.envint.2019.01.082
https://doi.org/10.1016/j.scitotenv.2017.01.193
https://doi.org/10.1016/j.scitotenv.2017.01.193
https://doi.org/10.1016/j.scitotenv.2020.139706
https://doi.org/10.1016/j.scitotenv.2020.139706
https://doi.org/10.1016/j.scitotenv.2020.139706
https://doi.org/10.1016/j.sab.2007.11.033
https://doi.org/10.1016/j.sab.2007.11.033
https://doi.org/10.1016/j.sab.2007.11.033
https://doi.org/10.1016/j.ijheh.2021.113741
https://doi.org/10.1016/j.ijheh.2021.113741
https://doi.org/10.1016/j.ijheh.2021.113741
https://doi.org/10.1016/j.ijheh.2021.113741
https://doi.org/10.1289/ehp.7212
https://doi.org/10.1289/ehp.7212
https://doi.org/10.1007/BF02172145
https://doi.org/10.1007/BF02172145
https://doi.org/10.1007/BF02172145
https://doi.org/10.1007/BF02172145
https://doi.org/10.1007/BF02172145
https://doi.org/10.1007/BF02172145
https://doi.org/10.1023/A:1025873925661
https://doi.org/10.1023/A:1025873925661
https://doi.org/10.1023/A:1005592401947
https://doi.org/10.1023/A:1005592401947
https://doi.org/10.1023/A:1005592401947
https://doi.org/10.1097/01.chi.0000227880.42780.0e
https://doi.org/10.1097/01.chi.0000227880.42780.0e
https://doi.org/10.1097/01.chi.0000227880.42780.0e
https://doi.org/10.1016/j.envres.2022.114322
https://doi.org/10.1016/j.envres.2022.114322
https://doi.org/10.1016/j.envres.2022.114322
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(66) Tanner, E. M.; Bornehag, C.-G.; Gennings, C. Repeated
holdout validation for weighted quantile sum regression. MethodsX.
2019, 6, 2855−2860.

(67) Curtin, P.; Kellogg, J.; Cech, N.; Gennings, C. A random subset
implementation of weighted quantile sum (WQSRS) regression for
analysis of high-dimensional mixtures. Communications in Statistics -
Simulation and Computation. 2021, 50, 1119−1134.

(68) Agresti, A. Categorical data analysis; John Wiley & Sons, 2003.
(69) Basu, S.; Kumbier, K.; Brown, J. B.; Yu, B. Iterative random

forests to discover predictive and stable high-order interactions.
Proceedings of the National Academy of Sciences. 2018, 115, 1943−
1948.

(70) Kumbier, K.; Basu, S.; Brown, J. B.; Celniker, S.; Yu, B. Refining
interaction search through signed iterative Random Forests. bioRxiv
2018, No. 467498.

(71) Breiman, L. Random forests. Machine learning. 2001, 45, 5−32.
(72) van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate

Imputation by Chained Equations in R. Journal of Statistical Software.
2011, 45, 1−67.

(73) Krakowiak, P.; Walker, C. K.; Bremer, A. A.; Baker, A. S.;
Ozonoff, S.; Hansen, R. L.; Hertz-Picciotto, I. Maternal Metabolic
Conditions and Risk for Autism and Other Neurodevelopmental
Disorders. Pediatrics. 2012, 129, No. e1121-e1128.

(74) Konemann, W. H.; Pieters, M. N. Confusion of concepts in
mixture toxicology. Food Chem. Toxicol. 1996, 34, 1025−31.

(75) Gennings, C.; Carter, W. H.; Campain, J. A.; Bae, D-s; Yang, R.
S. Statistical analysis of interactive cytotoxicity in human epidermal
keratinocytes following exposure to a mixture of four metals. Journal
of Agricultural, Biological, and Environmental Statistics. 2002, 7, 58−73.

(76) USEPA. Guidance on cumulative risk assessment of pesticide
chemicals that have a common mechanism of toxicity; USEPA Office of
Pesticide Programs, 2002.

(77) Carpy, S. A.; Kobel, W.; Doe, J. Health risk of low-dose
pesticides mixtures: a review of the 1985−1998 literature on
combination toxicology and health risk assessment. J. Toxicol Environ.
Health B Crit Rev. 2000, 3, 1−25.

(78) Bobb, J. F.; Claus Henn, B.; Valeri, L.; Coull, B. A. Statistical
software for analyzing the health effects of multiple concurrent
exposures via Bayesian kernel machine regression. Environ. Health.
2018, 17, 67.

(79) Day, D. B.; Sathyanarayana, S.; LeWinn, K. Z.; Karr, C. J.;
Mason, W. A.; Szpiro, A. A. A Permutation Test-Based Approach to
Strengthening Inference on the Effects of Environmental Mixtures:
Comparison between Single-Index Analytic Methods. Environ. Health
Perspect. 2022, 130, 87010.

(80) Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; August 13,
2016; San Francisco, California, USA, pp 785−794.

(81) Tordjman, S.; Somogyi, E.; Coulon, N.; Kermarrec, S.; Cohen,
D.; Bronsard, G.; Bonnot, O.; Weismann-Arcache, C.; Botbol, M.;
Lauth, B.; Ginchat, V.; Roubertoux, P.; Barburoth, M.; Kovess, V.;
Geoffray, M.-M.; Xavier, J. Gene× Environment interactions in autism
spectrum disorders: role of epigenetic mechanisms. Frontiers in
psychiatry. 2014, 5, 53.

(82) Assaf, M.; Hyatt, C. J.; Wong, C. G.; Johnson, M. R.; Schultz, R.
T.; Hendler, T.; Pearlson, G. D. Mentalizing and motivation neural
function during social interactions in autism spectrum disorders.
Neuroimage Clin. 2013, 3, 321−31.

(83) Shiani, A.; Sharafi, K.; Omer, A. K.; Kiani, A.; Karamimatin, B.;
Massahi, T.; Ebrahimzadeh, G. A systematic literature review on the
association between exposures to toxic elements and an autism
spectrum disorder. Sci. Total Environ. 2023, 857, 159246.

(84) Sulaiman, R.; Wang, M.; Ren, X. Exposure to Aluminum,
Cadmium, and Mercury and Autism Spectrum Disorder in Children:
A Systematic Review and Meta-Analysis. Chem. Res. Toxicol. 2020, 33,
2699−2718.

(85) Kern, J. K.; Grannemann, B. D.; Trivedi, M. H.; Adams, J. B.
Sulfhydryl-reactive metals in autism. J. Toxicol Environ. Health A 2007,
70, 715−21.

(86) Yorbik, O.; Kurt, I.; Hasi̧mi, A.; Oztürk, O. Chromium,
cadmium, and lead levels in urine of children with autism and typically
developing controls. Biol. Trace Elem Res. 2010, 135, 10−5.

(87) Ongono, J. S.; Beranger, R.; Baghdadli, A.; Mortamais, M.
Pesticides used in Europe and autism spectrum disorder risk: can
novel exposure hypotheses be formulated beyond organophosphates,
organochlorines, pyrethroids and carbamates?-A systematic review.
Environ. Res. 2020, 187, 109646.

(88) von Ehrenstein, O. S.; Ling, C.; Cui, X.; Cockburn, M.; Park, A.
S.; Yu, F.; Wu, J.; Ritz, B. Prenatal and infant exposure to ambient
pesticides and autism spectrum disorder in children: population based
case-control study. BMJ. 2019, 364, l962.

(89) Shelton, J. F.; Hertz-Picciotto, I.; Pessah, I. N. Tipping the
balance of autism risk: potential mechanisms linking pesticides and
autism. Environ. Health Perspect. 2012, 120, 944−51.

(90) Miani, A.; Imbriani, G.; De Filippis, G.; De Giorgi, D.;
Peccarisi, L.; Colangelo, M.; Pulimeno, M.; Castellone, M. D.;
Nicolardi, G.; Logroscino, G.; Piscitelli, P. Autism Spectrum Disorder
and Prenatal or Early Life Exposure to Pesticides: A Short Review. Int.
J. Environ. Res. Public Health 2021, 18, 18.

(91) Biosca-Brull, J.; Pérez-Fernández, C.; Mora, S.; Carrillo, B.;
Pinos, H.; Conejo, N. M.; Collado, P.; Arias, J. L.; Martín-Sánchez, F.;
Sánchez-Santed, F.; Colomina, M. T. Relationship between Autism
Spectrum Disorder and Pesticides: A Systematic Review of Human
and Preclinical Models. Int. J. Environ. Res. Public Health 2021, 18, 18.

(92) Liu, J.; Schelar, E. Pesticide exposure and child neuro-
development: summary and implications. Workplace Health Saf. 2012,
60, 235−42.

(93) Chalupka, S.; Chalupka, A. N. The impact of environmental
and occupational exposures on reproductive health. J. Obstet Gynecol
Neonatal Nurs. 2010, 39, 84−102.

(94) Compound Summary for CID 129652268, Cadmium dieth-
ylphosphate; NIH National Library of Medicine, 2022.

(95) Miner, V. W.; Prestegard, J. H.; Faller, J. W. Cadmium diethyl
phosphate: structure determination and comparison to cation
phospholipid complexes. Inorganic Chemistry. 1983, 22, 1862−1865.

(96) Drake, L. R.; Erbel, A. J. 2,4,6-trichlorophenyl dialkylphos-
phates. US Patent 2599375A, 1952.

(97) Sagiv, S. K.; Harris, M. H.; Gunier, R. B.; Kogut, K. R.; Harley,
K. G.; Deardorff, J.; Bradman, A.; Holland, N.; Eskenazi, B. Prenatal
Organophosphate Pesticide Exposure and Traits Related to Autism
Spectrum Disorders in a Population Living in Proximity to
Agriculture. Environ. Health Perspect. 2018, 126, 047012.

(98) Barkoski, J. M.; Busgang, S. A.; Bixby, M.; Bennett, D.;
Schmidt, R. J.; Barr, D. B.; Panuwet, P.; Gennings, C.; Hertz-
Picciotto, I. Prenatal phenol and paraben exposures in relation to
child neurodevelopment including autism spectrum disorders in the
MARBLES study. Environ. Res. 2019, 179, 108719.

(99) Hoppin, J. A.; Brock, J. W.; Davis, B. J.; Baird, D. D.
Reproducibility of urinary phthalate metabolites in first morning urine
samples. Environ. Health Perspect. 2002, 110, 515−8.

(100) Barr, D. B.; Wang, R. Y.; Needham, L. L. Biologic monitoring
of exposure to environmental chemicals throughout the life stages:
requirements and issues for consideration for the National Children’s
Study. Environ. Health Perspect. 2005, 113, 1083−91.

(101) Perrier, F.; Giorgis-Allemand, L.; Slama, R.; Philippat, C.
Within-subject Pooling of Biological Samples to Reduce Exposure
Misclassification in Biomarker-based Studies. Epidemiology. 2016, 27,
378−88.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c00848
Environ. Sci. Technol. 2023, 57, 18139−18150

18150

https://doi.org/10.1016/j.mex.2019.11.008
https://doi.org/10.1016/j.mex.2019.11.008
https://doi.org/10.1080/03610918.2019.1577971
https://doi.org/10.1080/03610918.2019.1577971
https://doi.org/10.1080/03610918.2019.1577971
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1101/467498
https://doi.org/10.1101/467498
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1542/peds.2011-2583
https://doi.org/10.1542/peds.2011-2583
https://doi.org/10.1542/peds.2011-2583
https://doi.org/10.1016/S0278-6915(97)00070-7
https://doi.org/10.1016/S0278-6915(97)00070-7
https://doi.org/10.1198/108571102317475062
https://doi.org/10.1198/108571102317475062
https://doi.org/10.1080/109374000281122
https://doi.org/10.1080/109374000281122
https://doi.org/10.1080/109374000281122
https://doi.org/10.1186/s12940-018-0413-y
https://doi.org/10.1186/s12940-018-0413-y
https://doi.org/10.1186/s12940-018-0413-y
https://doi.org/10.1289/EHP10570
https://doi.org/10.1289/EHP10570
https://doi.org/10.1289/EHP10570
https://doi.org/10.3389/fpsyt.2014.00053
https://doi.org/10.3389/fpsyt.2014.00053
https://doi.org/10.1016/j.nicl.2013.09.005
https://doi.org/10.1016/j.nicl.2013.09.005
https://doi.org/10.1016/j.scitotenv.2022.159246
https://doi.org/10.1016/j.scitotenv.2022.159246
https://doi.org/10.1016/j.scitotenv.2022.159246
https://doi.org/10.1021/acs.chemrestox.0c00167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.0c00167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.0c00167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/15287390601188060
https://doi.org/10.1007/s12011-009-8494-7
https://doi.org/10.1007/s12011-009-8494-7
https://doi.org/10.1007/s12011-009-8494-7
https://doi.org/10.1016/j.envres.2020.109646
https://doi.org/10.1016/j.envres.2020.109646
https://doi.org/10.1016/j.envres.2020.109646
https://doi.org/10.1136/bmj.l962
https://doi.org/10.1136/bmj.l962
https://doi.org/10.1136/bmj.l962
https://doi.org/10.1289/ehp.1104553
https://doi.org/10.1289/ehp.1104553
https://doi.org/10.1289/ehp.1104553
https://doi.org/10.3390/ijerph182010991
https://doi.org/10.3390/ijerph182010991
https://doi.org/10.3390/ijerph18105190
https://doi.org/10.3390/ijerph18105190
https://doi.org/10.3390/ijerph18105190
https://doi.org/10.1177/216507991206000507
https://doi.org/10.1177/216507991206000507
https://doi.org/10.1111/j.1552-6909.2009.01091.x
https://doi.org/10.1111/j.1552-6909.2009.01091.x
https://doi.org/10.1021/ic00155a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic00155a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic00155a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1289/EHP2580
https://doi.org/10.1289/EHP2580
https://doi.org/10.1289/EHP2580
https://doi.org/10.1289/EHP2580
https://doi.org/10.1016/j.envres.2019.108719
https://doi.org/10.1016/j.envres.2019.108719
https://doi.org/10.1016/j.envres.2019.108719
https://doi.org/10.1289/ehp.02110515
https://doi.org/10.1289/ehp.02110515
https://doi.org/10.1289/ehp.7617
https://doi.org/10.1289/ehp.7617
https://doi.org/10.1289/ehp.7617
https://doi.org/10.1289/ehp.7617
https://doi.org/10.1097/EDE.0000000000000460
https://doi.org/10.1097/EDE.0000000000000460
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c00848?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

