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ABSTRACT: For anaerobic mixed cultures performing microbial
chain elongation, it is unclear how pH alterations affect the
abundance of key players, microbial interactions, and community
functioning in terms of medium-chain carboxylate yields. We
explored pH effects on mixed cultures enriched in continuous
anaerobic bioreactors representing closed model ecosystems.
Gradual pH increase from 5.5 to 6.5 induced dramatic shifts in
community composition, whereas product range and yields
returned to previous states after transient fluctuations. To
understand community responses to pH perturbations over long-
term reactor operation, we applied Aitchison PCA clustering, linear
mixed-effects models, and random forest classification on 16S rRNA gene amplicon sequencing and process data. Different pH
preferences of two key chain elongation species�one Clostridium IV species related to Ruminococcaceae bacterium CPB6 and one
Clostridium sensu stricto species related to Clostridium luticellarii�were determined. Network analysis revealed positive correlations
of Clostridium IV with lactic acid bacteria, which switched from Olsenella to Lactobacillus along the pH increase, illustrating the
plasticity of the food web in chain elongation communities. Despite long-term cultivation in closed systems over the pH shift
experiment, the communities retained functional redundancy in fermentation pathways, reflected by the emergence of rare species
and concomitant recovery of chain elongation functions.
KEYWORDS: carboxylate platform, medium-chain carboxylates, lactate-based chain elongation, reactor microbiome, time series analysis,
compositional data, machine learning

■ INTRODUCTION
Microbial ecologists aim to understand the main environmental
factors driving the processes of microbial community assembly
and functioning.1−3 Ecological selection exerted by abiotic and
biotic factors influences the growth rates of community
members and their interactions, thereby determining the
composition and functioning of microbial communities.4−7 In
engineered systems, pH is a key parameter shaping microbial
communities and steering them toward specific functions.8−12

To produce platform chemicals such as n-butyrate (C4), n-
caproate (C6), and n-caprylate (C8) from renewable resources
sustainably, lactate-based microbial chain elongation (CE)
coupled with in situ lactate formation holds promise to valorize
organic waste streams or biomass residues within the carboxylate
platform.13 Efficient and stable CE processes rely on trophic
interactions in microbial communities with complementary and
parallel metabolic functions in a food web.14 In this context, pH
can substantially affect different cooperating or competing
community members and hence the resulting product profile of
CE processes. For example, Candry et al.15 found that pH values
below 6 favored the production of C6 over that of propionate,
whereas a CE community adapted to pH 5.5 shifted to

propionate as the dominant product upon a pH shift to 6.5. In
another open CE system fed with lactate-rich silage, pH
variation induced the development of distinct key subcommun-
ities, reflecting different pH optima for the production of C6 and
C8.16 Due to the complex dynamics of open mixed cultures with
continuous reinoculation and undefined feedstocks, it is
challenging to understand the impact of pH on key players of
CE, microbial interactions, and product profiles in a quantifiable
and predictable way. To overcome such obstacles, we previously
established model CE ecosystems using anaerobic bioreactors
without continued inoculation and with xylan and lactate as
model substrates to simulate the feedstock conditions in
anaerobic fermentation fed with ensiled plant biomass.14 The
reactors produced C4, C6, and C8 from xylan and lactate, and

Special Issue: Data Science for Advancing Environ-
mental Science, Engineering, and Technology

Received: December 20, 2022
Revised: April 13, 2023
Accepted: April 13, 2023
Published: April 25, 2023

Articlepubs.acs.org/est

© 2023 The Authors. Published by
American Chemical Society

18350
https://doi.org/10.1021/acs.est.2c09573

Environ. Sci. Technol. 2023, 57, 18350−18361

This article is licensed under CC-BY 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bin+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heike+Stra%CC%88uber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florian+Centler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hauke+Harms"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ulisses+Nunes+da+Rocha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sabine+Kleinsteuber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sabine+Kleinsteuber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.2c09573&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09573?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09573?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09573?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09573?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c09573?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
https://pubs.acs.org/toc/esthag/57/46?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.2c09573?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


cooperation as well as competition between different functional
groups established under constant process conditions.14 We
further demonstrated that shortening the hydraulic retention
time shapes CE communities toward desired C6 and C8
production.17 Here, we explored the effect of pH shifts on CE
communities by benefiting from these previously established
model ecosystems.
Even without continued inoculation, such closed systems are

relatively complex regarding microbial interactions and
metabolic processes. Enrichment cultures can maintain their
functional stability by self-assembly, which appears challenging
for designing synthetic communities, due to the lack of
knowledge required to rationally engineer stable microbial
interactions.18 Next-generation sequencing (e.g., 16S rRNA
amplicon sequencing) allows for capturing the dynamics of
entire communities with high phylogenetic resolution over long-
term experiments,7 although there are some methodological
limitations, such as PCR biases.19 Additionally, amplicon
sequencing data (e.g., amplicon sequencing variants − ASV)
only provide proportions. Considering the compositionality of
such data sets that contain the relationship information between
the parts, approaches that usually start with a log-ratio
transformation were developed to avoid the common pitfalls
in analyzing compositional data.20−22 For correlation analysis,
association network algorithms are commonly applied, inferring
nonrandom co-occurrence patterns between community
members and assessing microbial responses to environmental
changes. In this study, standard microbiome analysis and
compositional data analysis were implemented to achieve
statistically robust results.
Besides pH, time is an essential component in long-term

experimental studies. We categorized time as another factor to
emphasize the effect of time (of pH shift) on community
dynamics, which reflects the ecological memory in our
ecosystems. Suitably clocked sampling with replicates over
long experimental times gives insight into the stability of
microbial communities and their response to and recovery from
perturbations.9,23,24 Linear mixed-effects models (LME) and
variations thereof are commonly used for modeling time-
resolved 16S rRNA amplicon sequencing data, thereby
identifying temporal microbial interaction patterns.25,26 We
hypothesized that the pH value predominantly determines the
assembly of CE reactor microbiomes, but the impact of time
needs to be disentangled by applying LME. The temporal
patterns of identified taxa are crucial to understand their roles in
CE functions being inferred from the correlation with measured
process parameters. Feature selection using random forest
classification was performed to denote bioindicators of pH
changes. Subsequently, the genetic potential of these bio-
indicators was investigated by functional annotation of
metagenome-assembled genomes (MAGs).17 As for CE, it is
still unclear how the different microorganisms interact and what
conditions they thrive in. In this context, pH can be a critical
parameter that affects these relationships and ultimately the end
products of CE. Our study focused on the effects of pH increase
considering three aspects: (i) the identity and abundance of key
players of lactate-based CE, (ii) the effect on microbial
interactions, and (iii) the functional resilience of the CE reactor
microbiome. Understanding the underlying ecological princi-
ples of CE reactor microbiomes is the foundation for the
development of more efficient and stable mixed-culture
bioprocesses within the framework of green chemistry and a
sustainable circular economy.

■ MATERIALS AND METHODS
Reactor Operation and Sampling. A microbial commun-

ity was enriched in a 1 L bioreactor (BIOSTATA plus, Sartorius,
Göttingen, Germany), inoculated with broth from a former
study,16 and fed with mineral medium containing xylan and
lactate over 150 days.14 The enriched community producing C4,
C6, and C8 was further selected by reducing the hydraulic
retention time in two parallel BIOSTAT bioreactors (A and B)
for almost one year.17 The pH was kept at 5.5 in both periods.
Here, we tested the effect of pH increase with a fixed retention
time of 4 days. Before starting the experiment, the microbial
communities of bioreactors A and B were equally distributed by
pumping the content from A to B and back while maintaining
anoxic conditions.
The reactor configuration was similar as reported before,14

with both bioreactors operated at 38± 1 °C, constantly stirred at
150 rpm, and the pH automatically controlled with 5 M NaOH.
For daily feeding, 2.94 g of lactate and 2.50 g of water-soluble
xylan were supplied in 0.25 L of anoxic mineral medium
(composition as described previously14). The same volume of
completely mixed effluent was harvested daily from the reactors
before feeding. The starting pH was 5.5 for both bioreactors.
After 42 days, we increased the pH of bioreactor A to 6.0 and
further to 6.5 from day 112 to day 238. To consider the effect of
time on community assembly, a different temporal scheme of
pH increase was applied in reactor B (pH 5.5, days 0−144; pH
6.0, days 145−214; pH 6.5, days 215−238).
Reactor headspace and effluent were sampled twice per week.

In total, 68 samples were collected from each reactor during 238
days of operation. The effluent was centrifuged, and the
supernatant was used for measuring concentrations of xylan,
carboxylates, and alcohols.14 Optical density (OD) at 600 nm of
the effluent was measured before centrifugation. Pelleted cells
were stored at −20 °C for DNA-based community analysis.14

Analytical Methods. Daily gas production was monitored
as described previously.27 Gas composition was determined in
triplicate for H2, CO2, N2, CH4, and O2 by gas chromatog-
raphy.28 Concentrations of carboxylates and alcohols were
analyzed in triplicate by gas chromatography, and xylan was
measured by a modified dinitrosalicylic acid reagent method.14

At the beginning and the end of the experiment, cell mass
concentration was calculated from OD values correlated with
cell dry mass,14 with mean correlation coefficients of 1 OD600 =
0.641 g L−1 for bioreactor A and 1 OD600 = 0.632 g L−1 for
bioreactor B.
Total DNA was isolated from frozen cell pellets using a

NucleoSpin Microbial DNA Kit (Macherey-Nagel, Düren,
Germany). Methods for DNA quality control and quantification
were reported previously.29 16S rRNA genes were PCR-
amplified using primers 341f and 785r30 and sequenced on the
Illumina MiSeq platform (MiSeq Reagent Kit v3, 2 × 300 bp;
Illumina, San Diego, CA) according to the MiSeq manual.
Microbiome Data Analysis. The QIIME 2 v2020.2

pipeline31 with DADA2 plugin32 was applied for demultiplexing
sequences, filtering phiX reads, denoising, merging read pairs,
trimming, and removing chimeras. A total of 6,855,572
sequences ranging from 21,437 to 66,272 read pairs per sample
were obtained, with amedian of 50,439 in 136 samples. A feature
table was created indicating the frequency of each ASV clustered
at 100% identity. ASVs with frequencies >2 in at least three
samples were kept for further analyses. Taxonomy was assigned
with a naiv̈e Bayes classifier trained on the database MiDAS
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2.133 and curated with the RDP Classifier 2.234 (confidence
threshold: 80%). The filtered ASV table (see the Supporting
Information) was rarefied to 21,389 reads for downstream
analyses (rarefaction curves reached the plateau, Figure S1).
Following the common practice to normalize samples to the
smallest sample size,35,36 we did not intend to subjectively
discard any samples, which may cause difficulties for down-
stream analyses. As the microbial communities were highly
enriched, we assumed that 21,389 reads are sufficient to cover
most ASVs. A total of 97 unique ASVs remained after
rarefaction.

α-Diversity based on rarefied ASV data was evaluated by
calculating diversity, evenness, and richness.37 The indices of
order one (1D and 1E) quantify the diversity and evenness by
weighting all ASVs equally, whereas the indices of order two (2D
and 2E) give more weight to the dominant ASVs. Considering
the compositional nature of amplicon sequencing data,19 we
analyzed the data with standard approaches and their composi-
tional replacements. For dissimilarities in community compo-
sition (β-diversity), we used Bray−Curtis distance-based
principle coordinate analysis (PCoA)38 and Aitchison principal
component analysis (PCA) via DEICODE, which is robust to
data sparsity.20 Compared to Bray−Curtis, Aitchison PCA using
DEICODE solves the problems of high sparsity of 16S rRNA
amplicon sequencing data via two steps: a compositional
processing using the centered log-ratio transform on nonzero
values of the data and a reduction of dimensionality through

robust PCA on those nonzero values. The QIIME 2 plugin
Qurro39 was used to visualize and explore feature rankings in the
produced DEICODE biplot. PERMANOVA (“adonis” function
in R vegan package, v2.5.6; 999 permutations)21 was used for
statistical analyses of β-diversity, with P values adjusted
according to the false discovery rate controlling procedure
introduced by Benjamini and Hochberg.40 The metagenome
data included in this study and a detailed description of MAG
reconstruction can be found in our previous study.17

Statistical Analysis of Effects of pH Increase on
Reactor Microbiota Time Series. A redundancy analysis-
based variation partitioning analysis (VPA) was used to quantify
the relative contribution of individual process parameters (pH
and time) and their interactive effects on temporal variation in
community composition. VPA was performed using the
“varpart” function in the R package vegan. We performed a
partial Mantel test for each process parameter to examine its
correlation with community composition represented by
Aitchison and Bray−Curtis distances, independent of time
(9999 permutations) using vegan.
The QIIME 2 plugin q2-longitudinal with default settings was

used to construct the LME for regression analyses involving
dependent data.26 Random intercept models (REML method)
were used to track longitudinal changes of metrics including α-
and β-diversity and ASV abundances. In brief, pH and time were
designated as fixed effects and bioreactor as a random effect,
whereas values represent samples of a random collection. The

Figure 1. Performance of bioreactors. Concentrations of fermentation products and lactate, as well as yields of chain elongation products in bioreactors
(a) A and (b) B at three pH levels. Yield is given in C mole of product to substrate ratio. Fermentation products: C2, acetate; C4, n-butyrate; C6, n-
caproate; C8, n-caprylate.
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response variables are the following metrics: 1D, 2D, 1E, 2E,
richness, PC1 of Aitchison or Bray−Curtis, and ASV abundance.
Themicrobial temporal variability linear mixedmodel (MTV-

LMM) was used to identify autoregressive taxa and predict their
relative abundances at later time points.25 The model assumes
that the temporal changes in relative abundance of ASVs are a
time-homogeneous high-order Markov process. To select the
core time-dependent taxa, MTV-LMM was applied to each
individual pH level, which generated a temporal kinship matrix
representing the similarity between every pair of normalized
ASV abundances (a given time for a given individual) across
time. A concept of time-explainability was introduced to
quantify the temporal variance explained by the microbial
community at previous time points.
Random Forest (RF) Classification. Supervised classi-

fication of pH levels on community compositions was
performed using QIIME 2 q2-sample-classifier with default
settings.41 Rarefied ASV data were used as features to train and
test the classifier. First, a nested cross-validation of the RFmodel
was applied to overview the classification of the pH levels for all
samples. For model optimization, a second layer of cross
validation (outer loop) was incorporated to split the data set into
training and test sets five times, and therefore, each sample
ended up in a test set once. During each iteration of the outer
loop, the training set is split again five times in an inner loop to
optimize parameter settings for estimation of that fold. Five
different final models were trained, with each sample receiving a
predicted value. The overall accuracy was calculated by
comparing the predicted values to the true values.
Next, we performed a feature selection by randomly picking

80% of the samples to train an RF classifier, and the remaining
20% of the samples were used to test the classification accuracy
of the classifier. K-fold cross-validation (K = 5) was performed
during automatic feature selection and parameter optimization
steps to tune the model. As determined by using recursive
feature elimination, the most important features that maximized
model accuracy were selected. Model accuracy and predictions
were based on the classifier that utilized the reduced feature set.
Network Analysis. Co-occurrence networks based on

rarefied ASV data and process parameter data were inferred by
using FlashWeave v0.16 implemented in Julia.22 FlashWeave
uses the centered log-ratio approach for the correction of
compositional microbial abundances and infers direct associa-
tions. Three networks were constructed for the three individual
pH levels, which featured a correlation coefficient <−0.5 or >0.5.
Another network was constructed from the entire data of all pH
levels. All networks were visualized in Cytoscape v3.8.0.42

■ RESULTS
Fluctuation and Recovery of Process Performance.

The pH increase from 5.5 to 6.0 caused fluctuations in
fermentation products and lactate concentrations, which were
not observed upon further increase to 6.5 (Figure 1). First, we
applied the pH increase in bioreactor A, which immediately
presented an increased C8 concentration up to 29.1 mmol C/L,
corresponding to a yield (C mole product to substrate ratio) of
5.2, and a relatively stable yield of C6 (16.0 ± 1.5 at pH 6.0).
Lactate and acetate accumulated to concentrations of 147.5 and
109.7 mmol C/L, respectively; while C4 concentration dropped
to 69.1 mmol C/L, with a yield of 12.1 (Figure 1a). The pH
increase left the fast consumption of xylan unaffected (Figure
S2). Afterward, accumulated lactate and acetate were consumed
and C4 concentration returned to the previous level with 273.9

mmol C/L on day 95 at pH 6.0. Notably, further pH increase to
6.5 did not result in such fluctuations (Figure 1a). Later, we
replicated the pH increase from 5.5 to 6.5 in bioreactor B to
confirm the observed effects of pH increase. With longer
operation at pH 5.5 for 144 days, comparable fluctuations in
concentrations of lactate, acetate, C4 and C8 were observed, but
with a delay of 38 days after the pH increase to 6.0.
Concentrations of lactate, acetate, C4, C6, and C8 were
relatively stable when bioreactor B was operated at pH 6.5. The
pH increase also resulted in fluctuations of daily gas production
and gas composition (Figure S3). A general upward trend of cell
mass yield at pH 6.5 suggests a facilitating effect of higher pH on
the growth of enriched populations (Figure S4).
Microbial Community Shifts and Emergence of Rare

Species. After the pH increase, α-diversity metrics showed
decreases in diversity (1D) and evenness (1E) but an increase in
richness (Figure 2; similar results for 2D and 2E shown in Figure

S5). We used LME models to test whether these indices were
impacted by pH and time, which presents the memory effect on
community dynamics. Three separate LME models were fitted
to examine 1D, 1E, and richness across pH gradients because the
trajectories appeared nearly linear. Diversity was significantly
impacted by pH (P < 0.001) and time (P < 0.001), indicating

Figure 2. Longitudinal changes in α-diversity at three pH levels. Based
on the relative abundances of ASVs, we calculated the α-diversity
represented by (a) diversity of order one (1D), (b) evenness of order
one (1E), and (c) richness. Diversity and evenness of order one were
quantified by weighting all ASVs equally. A and B stand for bioreactors
A and B.
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Figure 3. Effects of pH increase and time on bacterial community composition. (a) Variance-based compositional principal component analysis
(PCA) biplot based on Aitchison distance. Dots are named according to sampling days. Ellipses of 95% confidence intervals were added to each
individual pH level of the bioreactors. The size of an ASV arrow indicates the strength of the relationship of that ASV to the community composition.
ASVs are colored by family. (b) ASV ranks estimated from Aitchison distance-based PCA (PC1) with Clostridium IV and Clostridium sensu stricto
highlighted. (c) Longitudinal changes in relative abundances of Clostridium IV sp. ASV008 and Clostridium sensu stricto sp. ASV009 at three pH levels.
(d and e) Longitudinal changes in β-diversity at three pH levels, based on Aitchison (d) and Bray−Curtis (e) dissimilarities. A and B stand for
bioreactors A and B. un., unclassified.
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that diversity was reduced much stronger by pH with a factor of
6.188 than by time with a factor of 0.209 (Table S1). Evenness
and richness were also significantly associated with pH and time,
although pH exerted much stronger impacts on both indices
(Tables S2 and S3). As shown in Figure S6, the relative ASV
abundances categorized from phylum to genus level varied along
the pH gradients, e.g., Actinomyces and Prevotella became
apparent at pH 6.5 along with an increasing abundance of
Clostridium sensu stricto and decreasing abundances of
Clostridium IV and Eubacterium (Figure S6e).

β-Diversity analysis revealed that the bacterial communities
differed significantly between the three pH levels (PERMANO-
VA; P < 0.001) (Figure 3a and Figure S7). ASVs of Clostridium
IV, Oscillibacter, Olsenella, and Syntrophococcus were strongly
associated with the communities at pH 5.5 and 6.0, whereas
Clostridium sensu stricto ASV009 was most strongly associated
with the communities at pH 6.5 (Figure 3a). Based on the
association with dissimilarities in community composition,
Clostridium IV ASV008 (lowest ranked taxon) and Clostridium
sensu stricto ASV009 (highest ranked taxon) correspond to the
most influential taxa driving the Aitchison PCA clustering
(Figure 3b). After fitting LME models to their dynamics in
relative abundance (Figure 3c), results showed that the relative
abundance of ASV008 was significantly impacted by pH (P <
0.001) and time (P = 0.002), whereas only pH (P < 0.001)
significantly impacted the abundance of ASV009 (Tables S4 and
S5). In both cases, pH had a much stronger impact than time. By
applying LME models, we examined how β-diversity changed
over time in each bioreactor (Figure 3d,e). Results indicated that
pH was the most influencing factor, although time had
significant effects as well (Tables S6 and S7). To understand
the impact of only pH on the community assembly, we removed
the effect of time using partial Mantel tests. We correlated the
time-corrected dissimilarities of community composition with
pH, and the results show strong, significant correlations based
on Aitchison distance (rm = 0.61, P < 0.001) and Bray−Curtis
distance (rm = 0.72, P < 0.001) (Table 1). We further considered
the impact of pH and time in a quantifiable way using VPA.
Evaluation of the overall contributions of pH and time indicated
that together they explain 61% of the microbial community
variations based on Bray−Curtis (Figure S8), which also reflects
that additional factors such as stochastic assembly processes or
chemical effects of CE products played a role. In total, 24% and
3% of the variations were independently explained by pH and
time, respectively. These results support those inferred from the
LME models.
pH Bioindicators and Time-Dependent Taxa. Overall,

the nested cross-validation of the RF model represented a
classification accuracy of 97.8% in matching the predicted three
pH levels (5.5, 6.0, and 6.5) with the true pH levels for all 136
samples (Figure S9), using ASV data to follow community
composition dynamics. We performed recursive feature
elimination with cross-validation; the 18 most important
features were selected that gave perfect discrimination between
the three pH levels (Figure 4). These ASVs were defined as pH
bioindicators, belonging to the genera Clostridium IV,
Syntrophococcus, Lactobacillus, Olsenella, Bulleidia, Clostridium
sensu stricto, Eubacterium, Lachnospiraceae incertae sedis,
Sporanaerobacter, and Actinomyces (Figure 4b). Among these
pH bioindicators, four increased in abundance while 14 became
less abundant along the pH increase. Notably, the most
influential ASVs driving the Aitchison PCA clustering were

also pH bioindicators, including the abundant taxa Clostridium
IV ASV008 and Clostridium sensu stricto ASV009 (Figure 4b).
As pH and time were the two most influencing factors of

microbial community assembly, we intended to disentangle the
ASVs that were mostly associated with time rather than with pH.
By using MTV-LMM, we identified time-dependent (autore-
gressive) taxa, whose abundance can be predicted based on the
previous community composition. They reflect the ecological
memory effect on community dynamics, i.e., that past events
influence the present trajectory of community composition. In
this longitudinal study, 32, 25, and 40 ASVs were predicted to be
significantly (P < 0.05) affected by the past composition of the
community at pH 5.5, 6.0 and 6.5, respectively, with the time-
explainability ranging from 17% to 80%, 17% to 83% and 13% to
96%, respectively (Figure S10).
Microbial Interaction Patterns. Partial Mantel test

showed significant correlations of the community composition
with process performance and the changing conditions (Table
1). Consequently, we constructed an overall network and three
separate networks for each pH level to discern the succession of
microbial interactions and reveal potential metabolic functions.
After the pH increase to 6.5, more nodes and edges and higher
average clustering coefficient and heterogeneity were found,
suggesting that the overall interaction intensity was higher at pH
6.5 (Table S8). In agreement with Aitchison PCA analysis, pH
was significantly correlated with pH bioindicators ASV008 and
ASV009 (Figure S11). Changes of interaction patterns over pH
are shown in Figure 5. At the family level, Ruminococcaceae co-
occurred with Lachnospiraceae and Erysipelotrichaceae at all pH
levels, while it co-occurred withCoriobacteriaceae only at pH 5.5.
Ruminococcaceae also co-occurred with Lactobacillaceae at pH
6.0 and 6.5 and with Actinomycetaceae only at pH 6.5.
Clostridiaceae 1 co-occurred with Clostridiales incertae sedis XI
and Erysipelotrichaceae only after the pH increase to 6.0.
Erysipelotrichaceae showed positive correlations with Lactoba-
cillaceae at pH 6.0 and 6.5, where its negative correlation with

Table 1. Partial Mantel Tests Showing Significant
Correlations between the Time-Corrected Dissimilarities of
Microbial Community Composition and Process Parameters

Aitchison distance Bray−Curtis distance

process parameter rm
a Pb rm P

pH 0.61 <0.001 0.72 <0.001
Conc. C2c 0.27 <0.001 0.18 <0.001
Conc. C4 0.07 0.013 −0.01 0.569
Conc. C6 0.29 <0.001 0.48 <0.001
Conc. C8 0.25 <0.001 0.16 <0.001
Conc. lactate 0.02 0.258 0.01 0.401
Conc. biomass 0.16 <0.001 0.11 0.002
yield C2 0.27 <0.001 0.15 <0.001
yield C4 0.09 0.004 0.00 0.448
yield C6 0.38 <0.001 0.40 <0.001
yield C8 0.22 <0.001 0.13 0.003
yield biomass 0.09 0.001 0.06 0.037
O2 0.43 <0.001 0.44 <0.001
CO2 0.14 <0.001 0.18 <0.001
H2 0.19 <0.001 0.16 <0.001
time 0.14 <0.001 0.33 <0.001

arm, the correlation coefficient based on partial Mantel test, in which
time was controlled. The permutation test compares the original rm to
rm computed in 9999 random permutations. bThe reported P value is
one-tailed. cConc., concentration
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Coriobacteriaceae vanished. Notably, the positive correlation of
Erysipelotrichaceae with Lachnospiraceae was not seen at pH 6.0.
The positive correlation between C6 yield and Eubacterium
ASV015 was presented in the overall network and the individual
networks of pH 5.5 and pH 6.0 but not in that of pH 6.5 (Figure
S11 and Figure 5). In general, stronger correlations (|r| > 0.5)

were observed at pH 6.5, including the negative correlation of
Prevotella ASV041 with Bulleidia ASV017.

■ DISCUSSION
Different pH Niches of Chain Elongation Key Players

Clostridium IV and Clostridium sensu stricto. The

Figure 4. pH bioindicators determined by random forest classification accurately predict the different pH levels. (a) Recursive feature elimination plot
illustrating the model accuracy changes as a function of ASV count. The top-ranked 18 ASVs (pH bioindicators) that maximize accuracy are
automatically selected for optimizing the model, based on their mean decrease in Gini scores, according to their ASV abundance distribution, with pH
as the response variable. (b) Heatmap showing dynamics of the mean abundance of pH bioindicators at the different pH levels. ASVs shown in
Aitchison PCA biplot are indicated by a star. (c) Confusion matrix for the optimal classifier of samples at different pH levels. The classifier was trained
on the randomly picked 80% of the samples, which was then tested on the remaining 20%. Overall accuracy was calculated by comparing the predicted
values with the true values.
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identification of bioindicators based on microbial community
data is a key application of machine learning predictive
models.17 By using RF classification, ASV008 and ASV009
were denoted as pH bioindicators that were most relevant to
community dynamics caused by pH increase. Aitchison PCA
clustering further highlighted the role of these most influential
taxa in driving the community dynamics. By fitting LMEmodels
to their relative abundances, we showed that both pH and time
significantly affected their dynamics, and pH had a much
stronger impact than time. Based on the statistically robust
results of Aitchison PCA clustering coupled with LME models
and RF classification, a clear conclusion can be drawn: mildly

acidic pH values (lower than 6.0) are favorable for Clostridium
IV while the more neutral pH 6.5 is suitable for Clostridium sensu
stricto. As described in our previous study, based on similar
phylogeny, we linked these ASV bioindicators to the MAGs
recovered from the enriched community that served as
inoculum for the present study.17 All five MAGs of Clostridium
IV and Clostridium sensu stricto harbor the genetic potential for
CE17 (Table S9). For Clostridium IV ASV008, its corresponding
MAGs have 78% average nucleotide identity (ANI) to the
lactate-based chain elongator Ruminococcaceae bacterium CPB6,
which belongs to the family Acutalibacteraceae UBA4871
according to the Genome Taxonomy Database.43 Strain CPB6

Figure 5.Co-occurrence networks for the three individual pH levels. Edges indicate a coefficient >0.5 for positive correlations and < −0.5 for negative
correlations. Edge thickness reflects the strength of the correlation. The size of each ASV node is proportional to the mean relative abundance over the
corresponding pH level. ASV nodes are colored and grouped by family. ASV nodes with gray dashed borders are those time-dependent taxa of each
individual pH level, whose abundance can be predicted based on the previous microbial community composition. pH bioindicators identified by
random forest classification are shown with green letters. “Others” include the ASVs belonging to families Eubacteriaceae (ASV015), Actinomycetaceae
(ASV019),Clostridiales incertae sedisXI (ASV029),Microbacteriaceae (ASV048),Veillonellaceae (ASV052, ASV054), andNocardiaceae (ASV055). Lac,
lactate concentration; C2, acetate yield; C4, n-butyrate yield; C6, n-caproate yield; C8, n-caprylate yield.
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was described to prefer mildly acidic pH (5.5−6.0) and to suffer
from low growth rates and long lag phases at pH values above
6.0.44 For Clostridium sensu stricto ASV009, its corresponding
MAGs showed 81% ANI to Clostridium luticellarii, which has a
pH optimum of 6.545 and CE capability.46−49 Functional
annotation revealed that all genes necessary for lactate oxidation
and reverse β-oxidation are present, i.e., these MAGs represent
key players of lactate-based CE in our reactor microbiomes.17

The corresponding ASV008 and ASV009 were identified as
time-dependent taxa that are key to understand the community
assembly and can be used to characterize the temporal
trajectories of the communities. The pH preferences of
Clostridium IV ASV008 and Clostridium sensu stricto ASV009
tied together with concepts in niche theory suggest that different
CE bacteria thrive within a defined range of pH values, and
outside this range, they are outcompeted by other, better
adapted CE species.50 In our system, the shift of the dominating
CE key players happened during the period of pH 6.0 and was
completed upon pH 6.5. Due to the distinct growth optima of
different populations, alteration of pH is an important tool to
shape and control CE reactor microbiomes, in particular when
competing reactions, e.g., the consumption of lactate by
propionate fermentation, need to be controlled.15

pH Value as a Key Determinant of Microbial
Community Assembly. Regular and temporally dense
sampling with replicates is crucial to capture compositional
patterns of communities inferred from time-series data.7,23

Microbial interaction is one of the main factors affecting such
time-dependent patterns. Given that pH had a much stronger
association with community assembly than time, we conclude
that pH was the main driver modulating microbial interactions.
Our former studies indicated that lactate-based CE driven by
Olsenella is an essential feature when maintaining the pH at
5.5.14,17 Along with increasing pH, lactic acid bacteria of the
genusOlsenella cooperating with the chain elongatorClostridium
IV were replaced by lactic acid bacteria of the genus
Lactobacillus. Both genera are xylose-fermenting lactate
producers according to the functional annotation of their
MAGs (Table S9). An enriched community dominated by CE
species and Lactobacillus was reported in a recent study.51

Lambrecht et al. suggested inherent benefits of in situ lactate
formation in CE.16 The shift in the mutualistic relationship
between lactate producers and lactate-consuming chain
elongators along the pH gradient revealed the plasticity of the
CE microbiota food web. While it is tempting to draw
conclusions from observed co-occurrence patterns to further
elucidate functional interactions within this food web, care must
be taken as species co-occurrence does not necessarily indicate
direct metabolic interactions. For example, the co-occurrence of
phylogenetically close species may simply indicate their
overlapping metabolic niches,52 such as the appearance of
Lactobacillus ASV003 and ASV011, Syntrophococcus ASV001
and ASV013, and Clostridium IV ASV002 and ASV005 at all pH
levels. With the increased number of microbial interactions and
increasing interaction intensity strongly coupled to the taxa at
higher pH, the factor pH shaping the community assembly was
revealed by considering the growth and interactions of
community members in such long-term closed systems.
Besides, other effects of pH shifts cannot be ignored. At higher

pH, the concentrations of protonated carboxylic acids are lower,
which are known growth inhibitors of bacteria including CE
community members.11,53−56 The longer the chain length, the
more hydrophobic and consequently more toxic the acids are as

they can disrupt cell membrane integrity.56 However, the energy
gain for CE bacteria is higher with more CE cycles, i.e., longer-
chain products. Notably, both bioreactors showed a transient
increase of C8 production after increasing the pH from 5.5 to
6.0. This might be due to the fact that C8 becomes less toxic at
higher pH since a greater share is dissociated, facilitating more
CE cycles that lead to C8 formation. Thereafter, C8 production
dropped to the previous level, which might be explained by the
community shifts caused by the pH increase. There are different
terminal enzymes catalyzing the reverse β-oxidation and
different enzyme complexes involved in energy conservation in
CE bacteria, which might have energetic implications for the
resulting CE products. Moreover, chain elongation with lactate
becomes more exergonic under more acidic pH conditions.15

For C6 production, thermodynamic analysis suggests that
decreasing the pH by one unit releases 3.9 kJ more Gibbs free
energy per mole of lactate.
Community Changes Do Not Necessarily Affect

Community Functioning. We assumed that an increase in
pH would induce shifts in the community assembly and
consequently community functioning. However, unlike in a
complex, open CE system,16 increasing pH had no substantial
effects on CE community functioning, i.e., changes in
community composition did not necessarily lead to improved
carboxylate production during long-term reactor operation. This
agrees with the rare associations between ASVs and process
parameters in the networks. Without introducing new micro-
organisms by inoculation, the emergence of rare species
indicated high functional redundancy despite the reactors
being operated as long-term closed systems. According to the
storage effect, rare species can germinate and become dominant
under proper conditions.57,58 In this study, the increase in
richness can be explained by an abundance shift of some taxa
from undetectable to abundant (e.g., Actinomyces and Prevotella
in Figure S6e), reflecting the strong inhibition effects of lower
pH on these taxa. Although we operated the reactors in a quasi-
continuous mode, which theoretically leads to the washout of
organisms that do not grow fast enough, we observed biofilms
that unintentionally formed at the glass vessels and could
provide a niche for maintaining such rare populations even
under conditions that do not favor their growth. The reactor
performance returned to the previous state after the fluctuation
in carboxylate production along pH gradients, which might be
due to overlapping metabolic niches with coexisting rare species
that could increase functional resilience to environmental
disturbances. As mentioned above, the pH shift caused a
dramatic but transient increase of C8 yield. How to exploit such
disturbance effects for process control needs to be investigated
systematically. Keeping functional redundancy in mixed culture
processes might be important for biotechnological applications,
because parallel pathways of substrate conversion are essential to
guarantee the functional stability during perturbation.9,11,59

With regard to the practical implications for mixed-culture
production processes within the carboxylate platform, our
results delineate fundamental differences between long-term
enriched microbiomes selected for the production of C6/C8
and engineered consortia assembled from single species
covering all metabolic traits needed for that function. The latter
might perform better under stable conditions, whereas naturally
selected consortia keeping rare species are more robust under
fluctuating conditions and resilient toward perturbations due to
their functional redundancy. Efficient microbial resource
management is of paramount importance for implementing
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mixed-culture bioprocesses for the carboxylate platform at
industrial scale, as the valorization of organic residues and
feedstocks of fluctuating quality requires knowledge-based
community engineering.
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