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Abstract
Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor 
therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire 
lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease.
Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, 
vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing 
response in patient-derived xenograft (PDX) models of HGSC.
Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from 
chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained 
following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 
(BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with 
aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment 
studies were undertaken.
Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, 
eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 
13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with 
p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-
resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to 
PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models 
were extremely sensitive to all three AMA tested, maintaining response until the end of the 
experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two 
BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to 
AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices 
and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi 
exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, 
known to upregulate drug efflux via MDR1.
Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed 
for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy 
of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of 
carboplatin/paclitaxel chemotherapy.
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Introduction
Ovarian cancer (OC) remains the deadliest form 
of gynaecological malignancy. The standard ini-
tial treatment for OC is surgery (either primary or 
interval debulking surgery following neoadjuvant 
chemotherapy) and platinum-based chemother-
apy in combination with a taxane agent.1–3 
Around 25–30% of OC will relapse early or fail to 
respond to first-line chemotherapy, becoming 
platinum-resistant or refractory (PRR) and these 
are associated with poor response rates to subse-
quent lines of therapies.1 Despite initial good 
response rates to debulking surgery and systemic 
therapies for most patients, more than 70% of 
OC will recur and become increasingly drug 
resistant, accounting for ~70–80% of all gynaeco-
logical malignancy-related deaths.4,5

High-grade serous ovarian cancer (HGSC) repre-
sents over 70% of all OC. The most frequently 
mutated gene in HGSC is TP53 (up to 96% of 
cases6) and is thought to be the earliest genetic 
event in HGSC tumorigenesis.7 Genomic insta-
bility is a common feature of HGSC, with focal 
amplifications of CCNE1, MYC and MECOM, 
each being observed in more than 20% of cases.8 
Mutations in BRCA1 and BRCA2 are observed in 
about 13% and 7% of cases, respectively, with 
about 65% of these being germline mutations.9–11 
However, defects in the homologous recombina-
tion repair (HRR) pathway are reported in up to 
50% of HGSC, including BRCA1/2 mutation, 
BRCA1/RAD51C promoter hypermethylation, 
and mutations in other HRR-related genes.8 HRR 
deficiency (HRD) is associated with sensitivity to 
platinum compounds and PARP inhibitors 
(PARPi).12 PARPi therapy has revolutionized 
treatment for individuals with HRD HGSC, with 
the potential for a cure for some individuals on 
the horizon.13,14

Platinum resistance or platinum-refractory pro-
gression is a strong clinical indicator for further 
treatment failure and poor prognosis.15 Platinum-
resistant HGSC, either de novo or acquired, is 
most commonly associated with the absence of 
HRD. Indeed, an HGSC can lose its HRD state, 

leading to acquired platinum resistance, due to a 
variety of molecular mechanisms, such as the 
development of secondary mutations within a pri-
mary HRD mutation, of, for example, BRCA1/2, 
RAD51C/D or BRIP1 (secondary or reversion 
mutations),16–21 or loss of BRCA1 or RAD51C 
promoter hypermethylation.19,22,23 Clinical plati-
num resistance, occurring following first-line 
chemotherapy, can also occur due to amplifica-
tion/activation of oncogenes, which may be pre-
existing (e.g. CCNE1, MYC8), increased 
expression of ABCB1, which encodes the multid-
rug-resistant protein 1 (MDR1),19 as well as alter-
ations in the tumour microenvironment (TME).24 
Current treatment options for PRR tumours are 
anti-microtubule agents (AMA; paclitaxel and 
docetaxel), anthracyclines (doxorubicin liposo-
mal), antimetabolites (gemcitabine) and alkylat-
ing agents (cyclophosphamide), alone or in 
combination with an anti-vascular endothelial 
growth factor (bevacuzimab). Unfortunately, the 
response rates for these options are low, ranging 
between 15% and 20% as a single agent25 and 
~27% in combination with bevacizumab.26

AMA act by targeting the hollow filamentous 
intracellular structures that play essential roles in 
cell growth and division, cell movement and 
intracellular transportation such as cytoplasmic 
streaming.27 Microtubules are lengthened by a 
polymerization process whereby tubulins are 
added to the (+) ends of the microtubules and 
shortened by de-polymerization of the (+) end 
resulting in the disintegration of the microtubule 
in a controlled manner.28 Paclitaxel binds to the 
inner part of the microtubules and disrupts the 
microtubule function by promoting microtubule 
polymerization and inhibiting depolymeriza-
tion.29 Vinorelbine is a microtubule polymerizer 
and binds to both the outer surface of the micro-
tubules and the (+) end, inhibiting both polym-
erization and depolymerization of microtubules.30 
Vinorelbine is more effective than paclitaxel in 
the MYCN-driven epithelial OC subtype (also 
known as Stem A subtype) than in non-Stem A 
OC cell lines.31 By contrast, eribulin binds exclu-
sively to the (+) end of microtubules, resulting in 
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inhibition of microtubule polymerization and 
promoting depolymerization,32 which eventually 
leads to microtubule shortening. Eribulin has 
been shown to reverse epithelial-to-mesenchymal 
transition processes, improve the TME33 and 
have a synergistic effect with immunotherapies, 
such as pembrolizumab, in breast cancer.34 At 
present, neither vinorelbine nor eribulin is a 
standard treatment for HGSC due to its relatively 
poor responses in phase II clinical trials that were 
non-biomarker-driven studies.35–37

Patient-derived xenografts (PDX), involving 
implantation of human tumour tissue into 
immune-compromised mice, are well-established 
preclinical models that offer significant insights 
into exploring novel therapeutic approaches.38 
Their main putative advantage is the retention of 
molecular and phenotypic fidelity of the original 
tumour, which requires rigorous validation and 
molecular profiling to deem a PDX suitable for 
specific preclinical therapeutic exploration.

We characterized a cohort of PRR HGSC PDX 
models generated from treatment naïve or post-
systemic therapy specimens, representative of 
individuals with PRR HGSC in the clinic. Given 
the importance of paclitaxel in the clinic and evi-
dence for the potential role of AMAs in HGSC,31 
we explored targeting microtubules with vinorel-
bine and eribulin, which are not currently used in 
OC in the clinic and revealed efficacy for these 
agents in PRR HGSC PDX.

Methods

Patient samples, survival analyses and  
study approval
Surgical, biopsy or ascites HGSC samples were 
collected from patients without previous treat-
ment (chemo-naïve) or with multiple lines of 
prior therapy (post-chemo) from the Royal 
Women’s Hospital (Table 1). Clinical follow-up 
of patient outcomes was obtained from the medi-
cal record and AOCS.

Overall survival of each patient in the study was 
calculated from the date of diagnosis to the date of 
death or the last known clinical assessment. 
Survival data for patients with HGSC were 
obtained from The Cancer Genome Atlas 
(TCGA) for comparison (n = 488). Overall sur-
vival was calculated by log-rank test (Mantel–Cox) 
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using Prism v8.0 (GraphPad, San Diego, CA, 
USA).

PDX generation and treatment
All experiments involving animals were per-
formed according to the National Health and 
Medical Research Council Australian Code for 
the Care and Use of Animals for Scientific 
Purposes 8th Edition, 2013 (updated 2021) and 
were approved by the WEHI Animal Ethics 
Committee (2016.023). PDX #169 and #86 
were generated by mixing tumour cells isolated 
from ascites with Matrigel Matrix (Corning) and 
transplanting subcutaneously into NOD-scid 
IL2Rγnull recipient mice as previously described.22 
All other PDX were generated by transplanting 
fragments of tumour tissue subcutaneously into 
NOD-scid IL2Rγnull recipient mice (T0 = founder 
mouse). The founder tumours were harvested 
and transplanted into additional recipient mice to 
generate the T1 cohorts (T1 = passage 1), and 
immunohistochemistry (IHC) was performed 
and reviewed by a gynaecological pathologist. We 
have previously published data on five of these 
HGSC PDX models (#13, #29, #169, #183 and 
#201) and our methods and validation of PDX 
through the process of passaging are described in 
more detail.22,23,42

Recipient mice bearing T2-T7 tumours (180–
300 mm3 in size) were randomly assigned to cis-
platin (Pfizer), paclitaxel (Bristol-Myers 
Squibb), vinorelbine (Pfizer), eribulin (Eisai 
Inc.) or vehicle treatment groups. The vehicle 
for all treatments was Dulbecco’s phosphate-
buffered saline (DPBS). The in vivo treatment 
regimens were as follows: cisplatin, 4 mg/kg, 
administered by intraperitoneal (IP) injection on 
days 1, 8 and 18; paclitaxel, 25 mg/kg, adminis-
tered by IP injection twice a week for 3 weeks; 
vinorelbine, 15 mg/kg, delivered by intravenous 
injection on days 1, 8 and 18; and eribulin, 1 mg/
kg, by IP injection three times a week for 3 weeks. 
Electronic calliper measurements of tumour size 
were taken twice a week until tumours reached 
the ethical endpoint (>700 mm3) or mice 
reached the experimental endpoint, 120 days 
post-treatment. Data collection was conducted 
using the Studylog LIMS software (Studylog 
Systems, San Francisco, CA, USA). Graphing 
and statistical analysis were conducted using the 
SurvivalVolume package.43 Time to progression 

(TTP or PD), time to harvest (TTH) and treat-
ment responses are as defined previously.42

Immunohistochemistry
Formalin-fixed paraffin-embedded tumour sam-
ples were sectioned and were stained with haema-
toxylin and eosin (H&E), as well as being sent for 
automatic immunostaining using the Ventana 
BenchMark Ultra fully automated staining instru-
ment (Roche Diagnostics, USA). The following 
antibodies were used: anti-Ki-67 (MIB-1, Dako), 
anti-PAX8 (polyclonal, Proteintech) and anti-
p53 (DO-7, Dako). H&E and IHC slides were 
scanned digitally at 20× magnification using the 
Panoramic 1000 scanner (3DHISTECH Ltd.). 
High-definition images were uploaded into 
CaseCenter (3DHISTECH Ltd.) and images 
were processed using FIJI image analysis soft-
ware.44 Ki-67 staining was quantified using 
CellProfiler™ (Broad Institute) in 4–6 fields of 
view for three independent tumours of each PDX 
model (i.e. 11–18 total fields of view per PDX 
model).

DNA sequencing
Targeted sequencing using the Foundation 
Medicine T5a panel, which sequences 287 can-
cer-related genes, was carried out on seven PRR 
PDX tumours (#201, #29, #148, #13, #111, 
#931 and #169) and #183. Whole-exome 
sequencing (WES) was carried out on five PDX 
tumours (#87, #95, #32, #217 and #86), and 
whole-genome sequencing (WGS) was carried 
out on one patient tumour (#198). Mutations in 
HRR DNA repair genes were assessed by 
sequencing patient and PDX samples using the 
NGS-based BROCA-HR assay.45 The BROCA_
HRv4 assay was used to analyse PDX #13 and 
#29, with results published previously.42 The 
BROCA-HRv6 assay was used to analyse PDX 
#169 and #201 published previously.22 The 
BROCA-HRv7 assay was used to analyse all 
other PDX, with results for PDX #183 published 
previously.23 PDX samples were also sequenced 
using Foundation Medicine’s NGS-based T5a 
assay,46 with results for PDX #13, #29, #169 
and #201 published previously.22

WES was performed on DNA extracted from five 
snap-frozen PDX tumours (#87, #95, #32, #217 
and #86) or whole blood using the QIAamp DNA 
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Mini Kit (Qiagen). DNA was quantified using the 
Qubit dsDNA HS or BR kits (ThermoFisher 
Scientific). Libraries were generated using the 
SureSelect Low Input Clinical Research Exome 
v2 library prep. Sequencing using 2 × 150 bp 
NovaSeq 6000 was performed.

WGS was carried out on DNA extracted from 
one snap-frozen patient tumour (#1198) and 
whole blood using the QIAamp DNA Mini Kit 
(Qiagen). DNA was quantified using the Qubit 
dsDNA HS or BR kits (ThermoFisher 
Scientific). Libraries were prepared using the 
Illumina TruSeq Nano library method using 
200 ng of DNA. Extracted DNA was sheared 
using the Covaris M220 Focussed-ultrasonicator 
with a target fragment length of 550 bp through 
bead size selection. The Illumina TruSeq nano 
DNA library preparation kit was used for end 
repair and adenylation of 3′ fragment end. The 
libraries were assessed for quality (Qubit, 
TapeStation4200 and KAPA Illumina library 
quantification kit using qPCR QuantStudio6)  
prior to normalization and pooling before load-
ing onto the Illumina NovaSeq 6000 for 
sequencing using paired 150 bp reads.

For WES and WGS, the average sequencing 
depth was 36X for germline and 75X for tumour 
(Supplemental Table S4).

Genome sequencing analysis
A bionix47 pipeline was used to process samples 
from sequencing data to variant calls. Sequences 
were aligned to Genome Reference Consortium 
Human Build 38 (GRCh38) using minimap2 
v2.17,48 and also to the Mus Musculus reference 
GRCm38 for PDX. Mouse-derived sequences 
were removed with XenoMapper v1.0.2.49 WES 
used the Agilent SureSelect Clinical Research 
Exome V2, with reads filtered to 100 bp on each 
side of capture regions. Small mutations were 
called using Octopus v0.7.050 and annotated 
using SnpEff v4.3.51 Copy number variants were 
called using FACETS v0.6.1.52 Structural vari-
ants were called using GRIDSS (v2.13.2)53,54 and 
annotated using StructuralVariantAnnotation 
(Version 1.12.0).55 Single nucleotide variants 
were checked against the ClinVar public archive 
of reports of the relationships among human 

variations and phenotypes (https://www.ncbi.
nlm.nih.gov/clinvar/), and in-silico predictor of 
pathogenicity MutationTaster,56 using dbNSFP 
v4.2a.57

DNA methylation analysis
Promoter methylation of BRCA1 and RAD51C 
was determined as previously described.17,23

Immunoblotting
Tumours were homogenized in ice-cold RIPA 
buffer (50 mM Tris; pH7.5, 150 mM NaCl, 1% 
NP40, 0.5% sodium deoxycholate, 0.1% SDS in 
H2O, supplemented with a complete mini pro-
tease inhibitor cocktail tablet (Roche)  using 
Precellys Ceramic Kit tubes in the Precellys 24 
homogenizing instrument (Thermo Fisher 
Scientific). Proteins from lysates were separated 
on NuPAGE® Novex® Bis-Tris 10% gels 
(Thermo Fish Scientific). Gels were transferred 
onto PVDF membranes using the iBlot™ 
Transfer system (Thermo Fish Scientific). 
Membranes were probed with antibodies specific 
for Cyclin E1 (HE12, Millipore), MYC (9E10, 
Santa Cruz Biotech), MDR1 (E1Y7S, Cell 
Signalling), or β-Actin (AC-15, Sigma).

ABCB1 Q-RT-PCR
RNA was extracted from snap-frozen PDX 
tumours using the RNeasy Mini Kit (Qiagen). 
RNA was reverse transcribed into cDNA using 
random primers (Promega) and M-MLV reverse 
transcriptase (Promega). Quantitative reverse 
transcription PCR (Q-RT-PCR) was used to 
measure ABCB1 transcript abundance. Q-RT-
PCR was performed in triplicate to examine 
ABCB1 expression, with internal housekeeping 
genes GAPDH and HPRT used for normalization 
as previously described.41 Testing for the pres-
ence of the SLC25A40-ABCB1 fusion transcript 
was also performed as previously described.41

Statistical analysis
Survival analysis was performed using the log-
rank test on Kaplan–Meier survival function esti-
mates. Statistical significance representations: 
*p < 0.05, **p < 0.01, ***p < 0.001.
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Results

Generation of a cohort of HGSC PDX models 
from chemo-naïve patients with poor survival 
outcomes and patients who had received 
multiple lines of treatment
We developed 13 PDX models of PRR HGSC: six 
PDX models were generated from HGSC tissue 
from individuals who had not received prior chem-
otherapy (chemo-naïve HGSC samples) and seven 
PDX models were from HGSC collected from 
individuals who had received prior treatment with 
either chemotherapy and/or a PARPi (post-chem-
otherapy HGSC samples). An additional chemo-
naïve model (PDX #183), which was platinum 
sensitive, was included for comparison (Table 1). 
Of these 14 PDX models, 12 were generated from 
tumour tissue with minimal manipulation and two 
PDX (#169 and #86) were generated from ascites. 
Post-chemotherapy samples used for generating 
PDX had been exposed to a median of five (range: 
2–7) lines of treatment (including up to one line of 
targeted therapy; Table 1). Four out of seven 
patients had also received PARPi as part of their 
treatment regimens: two as maintenance therapy, 
and two upon progression. The latter two patients 
received subsequent lines of treatment prior to col-
lection of the tumour sample used for PDX gen-
eration (detailed in Table 1).

The overall median survival time for the entire 
cohort of individuals from whom the PDX were 
generated, measured from initial diagnosis to 
death, was similar to the overall OC cohort in 
TCGA [42.0 months versus 44.0 months, 
p = 0.3743; Figure 1(a)]. Of these 14 individuals, 
seven HGSC were assessed as being HRD, con-
sistent with the expected proportion of ~50% 
HGSC being HRD. Individuals from the chemo-
naïve cohort had an overall median survival time 
which was significantly poorer compared to the 
outcome of all individuals diagnosed with OC in 
TCGA (overall OC cohort), due to the predomi-
nance of cases in this chemo-naïve cohort being 
PRR (six of seven cases), based on our selection 
criteria for this study (18.0 months versus 
44.0 months, p = 0.0004; Supplemental Figure 
S1). In keeping with the emergence of acquired 
treatment resistance, the median overall survival of 
individuals in the post-chemotherapy cohort was 
poor from the time of tumour collection (8 months).

PDX models were all confirmed to be HGSC fol-
lowing review by a gynaecological histopatholo-
gist. All PDX models and all baseline and archival 

samples were confirmed by immunohistochemis-
try (IHC) to express PAX8, consistent with the 
majority of HGSC [Figure 1(b)]. All PDX exhib-
ited abnormal expression of p53 (negative or 
strong staining), in keeping with their original 
HGSC p53 status based on their clinical histopa-
thology reports [Figure 1(b)].

Homologous recombination DNA repair 
pathway analysis of HGSC and PDX
An important determinant of platinum response is 
the HRR gene mutation status and hence targeted 
sequencing of genes involved in DNA repair was 
carried out on all PDX and six patient samples 
(Table 1). All 14 cases harboured pathogenic muta-
tions in TP53 [Figure 1(c), Table 1 and 
Supplemental Table S1], consistent with p53 
expression by IHC (null or strong). All chemo-
naïve PDX were wild type for BRCA1/2, except for 
PDX #13 which contained a frameshift mutation 
in BRCA2 [G1840fs*5; Figure 1(c), Table 1 and 
Supplemental Table S2]. In the cohort of PDX 
derived from individuals who had received prior 
chemotherapy and/or PARPi, five out of seven 
HGSC were confirmed to have pathogenic 
BRCA1/2 mutations (Supplementary Table S2). In 
line with the drug-resistant phenotype of these 
cases, secondary reversion mutations were 
observed, one in BRCA1 and three in BRCA2 
[Figure 1(c), Table 1 and Supplemental Table S2].

Two PDX models, #183 and #169, were previ-
ously reported to harbour RAD51C and BRCA1 
promoter methylation, respectively.22,23 PDX 
#183 (platinum-sensitive case) was derived from 
a chemo-naïve patient, harboured homozygous 
methylation of the RAD51C promoter [Figure 
1(c) and Table 1] and was sensitive to platinum 
chemotherapy and PARPi.23 By contrast, PDX 
#169 was derived from a young woman with plat-
inum-refractory HGSC (Table 1), with con-
firmed heterozygous methylation of the BRCA1 
promoter, in comparison with archival patient 
surgical samples which had previously been 
shown to contain homozygous BRCA1 promoter 
methylation.22

Although not identified in the baseline patient 
tumour, mutations in XRCC2, RAD50 and 
PARP1 were also identified in one PDX each 
(Table 1). These mutations could have been pre-
sent in subclones not sampled in the patient 
tumours. Although not in HRR genes, mutations 
that may modulate sensitivity to PARPi were also 

https://journals.sagepub.com/home/tam
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identified in PIK3CA (two PDX), PTEN (two 
PDX) and RB1 [three PDX; Figure 1(c) and 
Table 1]. Three PDX models, which lacked HRR 
gene mutations as detected by targeted sequenc-
ing and lacked promoter methylation of either 
BRCA1 or RAD51C, were refractory to PARPi 
therapy [Kondrashova et  al.22 and Figure 1(c), 
Table 2 and Supplemental Figure S2].

All PDX models were resistant or refractory  
to platinum-based chemotherapy
Platinum chemotherapy is one of the standard-of-
care treatments for HGSC. Therefore, this PRR 
PDX cohort was expanded and mice were rand-
omized to the maximum tolerated dose of cispl-
atin (4 mg/kg on days 1, 8 and 18) or vehicle 
control (DPBS) arms. Responses were described 

Figure 1.  Characterization of a cohort of HGSC PDX representative of the patient population. (a) Overall survival of 
HGSC patients in TCGA (n = 488) compared to the patients from which the PDX cohort was derived (n = 13). Median 
overall survival, from the date of diagnosis to the date of death or last known follow-up, for the TCGA cohort was 
44 months and for our 13 cases was 42.0 months. Cases in the chemo-naïve cohort were predominantly platinum-
resistant or refractory and two individuals were too unwell to receive chemotherapy, consistent with the reduced 
median OS. (b) Representative images of tumour sections stained with H&E, PAX8 and p53 for each PDX model. 
Scale bars represent 100 μm. (c) Summary of HR genes altered in the PDX models.
HGSC, high-grade serous ovarian cancer; PDX, patient-derived xenograft; TCGA, The Cancer Genome Atlas.
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as platinum sensitive, resistant or refractory as 
previously published, in keeping with clinically 
relevant responses (see Supplemental Table 
S3).42 Chemo-naïve HGSC PDX exhibited bet-
ter responses to cisplatin than did post-chemo-
therapy HGSC PDX [Figures 2(a), (b) and 3(a) 
and Table 2]. A chemo-naïve platinum-sensitive 
PDX (PDX #183) was included to demonstrate 
platinum-response. Two PDX (#148 and #13, 
both chemo-naïve) were resistant to cisplatin. 
The remaining 11 PDX were refractory to cispl-
atin [Figures 2(a) and 3(a)].

Within the cisplatin-refractory category, four 
PDX (#201, #87, #32 and #169), two of which 
were chemo-naïve, exhibited no tumour regres-
sion; however, disease stabilization prior to PD 
resulted in statistically significant improvements 
in median TTH compared to vehicle-treated 
mice. Seven other PDX, two of which were also 
chemo-naïve, exhibited no regression and had no 
statistically significant improvements in median 
TTH compared with vehicle-treated mice 
[Figures 2 and 3(a) and Table 2].

AMAs were efficacious in platinum-refractory 
HGSC PDX
To test responses to AMA, mice harbouring PDX 
were treated with clinically relevant dosing regi-
mens of paclitaxel (at 25 mg/kg twice a week for 
3 weeks), vinorelbine (15 mg/kg days 1, 8 and 18) 
or eribulin (1 mg/kg three times a week for 
3 weeks). In vivo drug responses were scored with 
similar criteria as for cisplatin.

Paclitaxel sensitivity, defined as tumour regression 
with no PD within 100 days following the last dose of 
paclitaxel, was demonstrated for six PDX, all of 
which were platinum refractory (PDX #201, #29, 
#198, #95, #931 and #87). Four PDX were resist-
ant to paclitaxel, demonstrating short-lived tumour 
regression, with progression between 50 and 
100 days. Two PDX, both platinum refractory, were 
also refractory to paclitaxel [PDX #169 and #86, 
neither was chemo-naïve; Figures 2 and 3(a) and 
Table 2]. Overall, six out of 12 PRR PDX demon-
strated improvement in median TTH for paclitaxel 
compared to cisplatin: #201, #29, #198, #95, #111, 
all >120 days versus 29–85 days (p < 0.005) and PDX 
#217: 95 days versus 53 days (p = 0.0005; Table 2).

Vinorelbine sensitivity was also demonstrated for 
six PDX, all of which were platinum refractory 
(PDX #201, #29, #198, #95, #931, all sensitive 

to paclitaxel and PDX #111). Five PDX were 
vinorelbine-resistant. Three PDX, all of which 
were platinum refractory, were refractory to 
vinorelbine [PDX #217, #169 and #86, none 
were chemo-naïve; Figures 2 and 3(a) and Table 
2]. Overall, seven out of 13 PRR PDX demon-
strated improvement in median TTH for vinorel-
bine compared to cisplatin: #201, #29, #198, 
#95, #87, #111 and #931, all >120 days versus 
29–85 days (p = 0.0001–0.04; Table 2).

Eribulin sensitivity was also demonstrated for six 
PDX, all of which were platinum refractory as well 
as being sensitive to either paclitaxel, vinorelbine 
or both (PDX #201, #29, #198, #95, #87 and 
#111). Five PRR PDX were eribulin resistant. 
The two PDX which were refractory to platinum, 
paclitaxel and vinorelbine, were also refractory to 
eribulin [PDX #169 and #86; Figures 2 and 3(a) 
and Table 2]. Overall, 6 out of 13 PRR PDX 
demonstrated improvement in median TTH for 
eribulin compared to cisplatin: #201, #29, #198, 
#95, #111, all > 120 days versus 29–85 days 
(p = 0.0001–0.005) and PDX #931: 109 days ver-
sus 81 days p < 0.015 (Table 2).

In summary, the four most drug-resistant HGSC 
PDX models (#169, #86, #32 and #217) were 
derived from individuals who had received prior 
chemotherapy and, in three cases, PARPi (Tables 
1 and 2). PDX #169 and #86 were refractory to all 
four drugs tested (cisplatin, paclitaxel, vinorelbine 
and eribulin). By contrast, four platinum refrac-
tory PDX (#201, #29, #198 and #95) were sensi-
tive for more than 100 days to all AMA tested 
(paclitaxel, vinorelbine and eribulin), including 
one PDX (#95) that was derived from an individ-
ual who had received prior chemotherapy and 
PARPi (Tables 1 and 2). In five out of 11 platinum 
refractory HGSC PDX (50%), eribulin was more 
efficacious than cisplatin, with a longer time to 
progression (p < 0.03 per PDX) and with TTH for 
tumours following eribulin treatment being greater 
than 120 days (end of the experiment). The plati-
num-sensitive PDX, #183, was also sensitive to 
paclitaxel and eribulin (PD ⩾ 100 days post-treat-
ment start), with TTH > 120 days for all three 
AMA, compared with vehicle (p < 0.001), as was a 
second platinum-sensitive PDX (data not shown).

Sensitivity to AMA based on BRCA1/2 status 
and prior therapies
The most sensitive PDX to AMA was PDX #95 
[time to PD > 120d for paclitaxel (P), vinorelbine 
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Figure 2.  HGSC PDX models mostly displayed improved responses to anti-microtubule agents compared to cisplatin. (a) In vivo 
treatment of mice bearing chemo-naïve HGSC PDX tumours with DPBS (vehicle control), cisplatin (4 mg/kg), paclitaxel (25 mg/kg), 
vinorelbine (15 mg/kg) and eribulin (1 mg/kg). (b) In vivo treatment of mice bearing post-chemotherapy/PARPi HGSC PDX tumours 
with DPBS (vehicle control), cisplatin (4 mg/kg), paclitaxel (25 mg/kg), vinorelbine (15 mg/kg) and eribulin (1 mg/kg). A number of 
mice and p values for each model and treatment are shown in Table 2. Tumour volumes for individual mice are indicated by dotted 
lines with the solid line representing the mean. Shaded area = 95% confidence interval. Time to PD and harvest (TTH) are shown in 
Table 2.
DPBS, Dulbecco’s phosphate-buffered saline; HGSC, high-grade serous ovarian cancer; PD, progressive disease; PDX, patient-derived xenograft; 
PARPi, TTH, time to harvest.
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(V) and eribulin (E)] (Table 2), somewhat sur-
prisingly, as the individual had undergone five 
lines of therapy, including PARPi, prior to biopsy 
resulting in PDX generation (Table 1). The 

individual was known to carry a germline BRCA2 
pathogenic variant, which was also identified in 
the corresponding PDX samples. A secondary 
somatic deletion and insertion in BRCA2 was also 

Figure 3.  HGSC PDX models with markers of increased proliferation exhibit increased sensitivity to anti-microtubule agents. (a) 
Summary of drug response, protein expression and gene alterations in PDX models. (b) Expression of Cyclin E1, MYC and MDR1 in 
tumours from each HGSC PDX model as determined by Western Blot analysis. Samples are ordered left to right based on sensitivity 
to eribulin, with the most sensitive models on the left (a representative blot is shown; a lane was removed as indicated by the vertical 
line). β-actin was used as a loading control. (c) Expression of ABCB1 and the SLC25A40-ABCB1 fusion transcript as determined by 
qPCR analysis. A patient-derived cell line AOCS18.5, previously shown to be positive for the SLC25A40-ABCB1 fusion,41 was used 
as a positive control. (d) Representative images of tumour sections stained with Ki-67 for each PDX model. Scale bars represent 
100 μm. (e) Quantification of Ki-67 staining in PDX tumours (grey dots, with mean and SD; across the PDX cohort, the Ki-67 range 
was 26–92% with an overall mean of 61%; using a cutoff of >60% for high (dashed line), eight PRR PDX models (not including the 
platinum-sensitive model, #183) had high Ki-67), baseline tumours (red dots) and associations with time to PD for treatment with 
three AMAs (paclitaxel, vinorelbine and eribulin) in vivo (orange violin plots).
HGSC, high-grade serous ovarian cancer; PDX, patient-derived xenograft; PRR, platinum-resistant or refractory.
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identified in the tumour specimen used for PDX 
generation, located just upstream of the original 
deletion, which restored the reading frame of 
BRCA2 and is predicted to restore BRCA2 func-
tion [Figures 1(c) and 3(a) and Supplemental 
Table S2].

PDX #931 also displayed AMA sensitivity (time to 
PD > 120d, >120d and 91d for P, V and E, 
respectively) despite being generated from a patient 
who had received seven prior lines of therapy 
(Tables 1 and 2). This PDX also harboured a 
somatic BRCA2 pathogenic mutation, as well as a 
secondary somatic BRCA2 mutation that restored 
the open reading frame, presumably as a resistance 
mechanism to platinum chemotherapy [Figures 
1(c) and 3(a) and Supplemental Table S2].

PDX #32 and #217 were both derived from 
HGSC with BRCA1 pathogenic mutations and 
both displayed initial response followed by resist-
ance to AMA (time to PD 77d, 73d, 66d and 
73d, 14d, 50d, for P, V, E, respectively), deriving 
some benefit, despite five to six prior lines of ther-
apy including PARPi (Tables 1 and 2). PDX 
#217 also harboured a secondary somatic muta-
tion in BRCA1 predicted to either create a prema-
ture stop at codon 234, or alternative splicing of 
BRCA1 [Figures 1(c) and 3(a) and Supplemental 
Table S2].

By contrast, the most refractory PDX to AMA 
was PDX #86 (time to PD 150d, 10d, 7d, for P, 
V, E, respectively); this PDX had a BRCA2 patho-
genic mutation and consistent with the six prior 
lines of therapy (including PARPi), and being 
platinum-refractory, this HGSC had acquired a 
secondary somatic mutation in BRCA2, although 
the functional consequences have not been proven 
[Figures 1(c) and 3(c) and Tables 1 and 2].

Despite these HGSC cases being heavily pre-
treated, with acquired resistance to platinum and 
three out of four BRCA1/2-mutated cases con-
taining putative secondary mutations in BRCA1/2, 
efficacy was observed for AMA. Two out of four 
heavily pre-treated BRCA1/2-mutated PDX had 
sustained responses to eribulin (BRCA2-mutated 
#95, #931: time to PD > 120d and 91d, respec-
tively) and the other two PDX had moderate 
responses (BRCA1-mutated #32, #217: time to 
PD 77d and 73d, respectively; Tables 1 and 2). 
Of note, platinum responses were much shorter, 
with time to PD of 7–14 days for all four of these 
BRCA1/2-mutated PDX.

AMAs were highly effective in HGSC PDX 
models despite the presence of poor prognostic 
biomarkers
To further characterize the HGSC PDX models, 
additional sequencing was carried out on patient 
and/or PDX samples, where available. Overall, 
PDX samples harboured the type of genomic pro-
files expected for HGSC, which were consistent 
with BROCA panel sequencing results: with 
ubiquitous TP53 mutation (14/14 cases), RB1 
deletion (3/14 cases), PTEN alterations (2/14 
cases) and NF1 mutation in one case [Figure 
3(a)]. Established known poor prognostic onco-
genic events were also identified in many samples; 
MYC amplification (4/14 cases), PIK3CA activat-
ing mutations or amplification (5/14 cases), 
CCNE1 amplification (4/14 cases) and CCND2 
amplification in one case [Figures 1(c) and 3(a)]. 
Importantly, four PDX models (#29, #201, #95 
and #32) harboured two oncogenic events related 
to treatment resistance [Figure 3(a)]. In addition, 
PDX #111 was shown to have >30 copies of 
CCNE1.

Although RB1 loss has been reported to be asso-
ciated with prolonged overall survival in HGSC 
in association with BRCA1/2 mutation,58,59 we 
observed a deletion in RB1 in three platinum 
refractory cases of HGSC. Indeed, the most AMA 
sensitive of these three cases (sensitive to all three 
AMA), #198, did not contain a BRCA1/2 muta-
tion. A second RB1-deleted case, which was sen-
sitive to two out of three AMA, was BRCA2 
mutated, but also contained a secondary muta-
tion in BRCA2. The third RB1-deleted case was 
profoundly refractory to all AMA and contained 
loss of promoter methylation of BRCA1. A likely 
pathogenic mutation in RHOA was also identified 
in #198, the most AMA-sensitive RB1-deleted 
case. RHOA encodes the small GTPase, Ras 
homolog gene family member A (RhoA),60 which 
plays a central role in regulating cell shape, polar-
ity and locomotion and hence may be relevant for 
AMA response. This model also contained poten-
tially sensitizing mutations in ARID1A and 
XRCC2.

Strikingly, the four HGSC PDX most sensitive to 
AMA (#201, #29, #198 and #95) harboured 
multiple molecular markers of drug resistance, 
such as aberrant expression of oncogenes 
(CCNE1, MYC and KRAS), as well as PI3K 
pathway activation (PIK3CA mutation/amplifica-
tion) and apoptosis evasion [MCL1 and BCL2L1 
amplification; Figure 3(a)]. By contrast, two of 
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the four HGSC PDX most resistant/refractory to 
AMA (#32 and #86, both post-chemotherapy 
models) also harboured multiple molecular mark-
ers of drug resistance such as loss of a tumour 
suppressor gene (CDKN2A), aberrant oncogene 
expression (MYC amplification), as well as PI3K 
pathway activation [PIK3CA mutation or amplifi-
cation; Figure 3(a)].

To determine whether CCNE1 and MYC ampli-
fication correlated with increased expression of 
Cyclin E1 and MYC, respectively, Western blot-
ting was performed. Three PDX (#29, #111 and 
#169) had very high expression of Cyclin E1 and 
six PDX had moderate expression [Figure 3(b)]. 
These included the four models that harboured 
CCNE1 amplification [#29, #111: high expres-
sion, >8× amplification; #201, #931: moderate 
expression, #201 >8× amplification; Figure 
3(a)]. The more AMA-sensitive PDX models had 
higher expression of Cyclin E1. Expression of 
MYC was detected at moderate levels in six PDX 
(#29, #95, #198, #111, #87 and #169) and cor-
related with the more AMA-sensitive models 
[Figure 3(b)]. Interestingly, PDX #95, which dis-
played the greatest sensitivity to AMA was the 
only model with MYC amplification that also 
expressed detectable MYC protein by Western 
analysis [Figure 3(b)]. The three other PDX with 
MYC amplification (#201, #148 and #32) had 
very low or undetectable levels of MYC by 
Western blotting [Figure 3(b)].

Drug resistance in PDX #86 is likely mediated 
by a transcriptional fusion involving ABCB1
Upregulation of MDR1 expression has previously 
been reported in post-treatment HGSC, as a 
result of a transcriptional fusion involving 
ABCB1.19,41 The SLC25A40-ABCB1 fusion is the 
most common fusion observed.41 Therefore, the 
presence of an SLC25A40-ABCB1 fusion as well 
as total expression of the ABCB1 gene were 
assessed in all 14 PDX samples using quantitative 
polymerase chain reaction (qPCR). A patient-
derived cell line AOCS18.5, previously shown to 
be positive for the SLC25A40-ABCB1 fusion,41 
was used as a positive control. PDX #86 was the 
only PDX found to harbour the SLC25A40-
ABCB1 fusion [Figure 3(c)]. This BRCA2-
mutated PDX also had the highest expression of 
ABCB1, consistent with western blotting data 
showing high MDR1 expression [Figure 3(b) and 
(c)]. It was not possible to test all primary patient 

samples as sufficient pure tumour material was 
not available.

Response to AMAs is correlated with a high 
proliferative index
In addition to observing the high expression of 
proteins usually associated with cellular prolifera-
tion, such as Cyclin E1 and MYC, we also 
observed an intriguing association of staining 
with the proliferation marker, Ki-67, by IHC in 
response to AMA [Figure 3(d)]. Firstly, HGSC 
expressing higher levels of Cyclin E1 and MYC 
assessed by Western blotting (#201, #29, #95, 
#111, #931 and #87) were highly proliferative, as 
indicated by high levels of Ki-67 staining [Figure 
3(d) and (e); high >60% Ki-67 positive]. 
Secondly, the four platinum-refractory PDX, all 
of which were sensitive for more than 100 days to 
all three AMA tested (#201, #29, #95 and #198) 
also had high Ki-67 staining. Only one of these 
AMA-sensitive PDX was BRCA1/2-mutated 
(PDX #95), with the other three being BRCA1/2 
/ /HR gene WT. Thirdly, three out of four of the 
more AMA-responsive BRCA1/2-mutated PDX 
had high levels of Ki-67 staining [#95, #931, 
#217: only #32 did not; Figure 3(d) and (e)].

By contrast, despite harbouring MYC amplifica-
tion (although low MYC expression by Western 
blotting), PDX #148 and #32 each had Ki-67 
expression which was in the lower range of our 
models [Figure 3(d) and (e)]. The BRCA2-
mutated PDX #86, with an ABCB1 fusion, had 
low Ki-67 staining [Figure 3(d) and (e)]. Finally, 
the other two models (#13 and #169) with very 
low expression of Ki-67 were also very drug 
resistant.

Ki-67 staining was also performed on baseline 
patient HGSC tissue for 10 cases and this 
reflected the staining observed for PDX derived 
from those samples, apart from PDX #29 and 
#931 (low in baseline patient sample and high in 
PDX; Supplemental Figure S3). Therefore, the 
more AMA-sensitive HGSC PDX models had 
high proliferative indices, as evidenced by high 
Ki-67 staining.

Discussion
We demonstrated that the AMAs, eribulin and 
vinorelbine, were effective in platinum resistant 
or refractory HGSC PDX, to a similar degree as 
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paclitaxel, which has been transformative in the 
treatment of HGSC. Importantly, this was 
observed in PDX derived from individuals with 
HGSC who had been heavily pre-treated, includ-
ing with prior PARPi. Four out of eleven (36%) 
platinum refractory PDX were sensitive to all 
three AMA tested. Strikingly, three of these 
AMA-sensitive PDX had amplification of 
CCNE1, which is usually considered a marker of 
drug resistance perhaps in keeping with the obser-
vation in the ARIEL2 trial that HGSC with a CR 
or PR to the PARP inhibitor, rucaparib, could 
contain CCNE1 amplifications.61

These findings reveal eribulin and vinorelbine to 
be additional chemotherapeutic agents of poten-
tial clinical utility in HGSC. In HGSC, first-line 
response to platinum chemotherapy alone is 
around 50%,62 however, with the addition of 
paclitaxel, response rates increase to around 
70%.63 It has been hypothesized that carboplatin 
and paclitaxel may provide independent chances 
of response, rather than being synergistic.64 As 
eribulin has an improved toxicity profile when 
compared with vinorelbine or paclitaxel,65 poten-
tially resulting in improved dose delivery and 
eribulin has effects on the tumour microenviron-
ment which may be helpful, especially for HGSC 
with components of carcinosarcoma,66 eribulin 
may provide a better second chance of response 
than does paclitaxel as a first-line platinum 
partner.

Of note, three PDX containing both a BRCA1/2 
primary mutation, as well as a secondary BRCA1/2 
mutation likely to restore the open reading frame, 
responded to eribulin, with one PDX responding 
to all three AMA tested and the other with sus-
tained responses to eribulin. By contrast, the four 
most AMA-resistant PDX were developed from 
HGSC which harboured either putative second-
ary mutations of BRCA1/2 or loss of BRCA1 
methylation. Despite the latter, these observa-
tions suggest there is potential for AMA efficacy 
in the post-PARPi setting, for which there is an 
urgent need for more therapeutic options.

In our PDX models, eribulin was as efficacious as 
paclitaxel, with 5/10 (50%) platinum-refractory 
PDX continuing under observation for >120 days 
(the end of the experiment) without evidence of 
tumour recurrence, despite having received only 
21 days of eribulin treatment. Eribulin is a well-
tolerated drug in the clinic with less neurotoxicity 
reported compared to paclitaxel,65 and these data 

provide preclinical support for renewed explora-
tion of eribulin in clinical trials of HGSC, which 
is particularly relevant given the recent demon-
stration of efficacy for a tolerable antibody–drug 
conjugate (ADC) of eribulin, including in 
HGSC.67

Additional genomic profiling indicated that our 
PRR HGSC PDX cohort harboured multiple 
oncogenic events known to be associated with a 
poor prognosis, including PIK3CA aberrations in 
three PDX, and MYC amplifications in four PDX 
models. Unexpectedly, these poor prognostic 
events were more often seen in the PDX that 
exhibited greater sensitivity to AMA. Intriguingly, 
whether or not MYC or CCNE1 amplifications 
were present, overall higher expression of the 
encoded proteins was observed in AMA-sensitive 
PDX, compared with AMA-resistant/refractory 
PDX.

In the more AMA-sensitive PDX, a higher prolif-
erative index, as assessed by Ki-67 staining, was 
also observed in the more AMA-sensitive HGSC 
PDX models. By contrast, the most drug-resist-
ant PDX, which was refractory to platinum, 
paclitaxel, vinorelbine and eribulin, had very low 
expression of Ki-67. Whilst platinum resistance 
may be driven by oncogenic events,19 such as 
CCNE1 (#29, #111, #169) and MYC (#87, 
#169) amplification or overexpression, this does 
not appear to be the case for AMA response. 
Consistent with this, a previous study found sig-
nificantly higher tumour proliferation rates in 
HGSC patients with long progression-free and 
overall survival.58 These data demonstrate high 
Ki-67 expression, with a cutoff observed in this 
study of >60% positive expression, to be an indi-
cator of AMA sensitivity, and that this biomarker 
should be assessed in future clinical trials.

RB1 loss has been associated with prolonged 
overall survival in HGSC in association with 
BRCA1/2 mutation58; however, the most AMA-
sensitive RB1-deleted case did not have a 
BRCA1/2 mutation in our cohort. To better 
understand treatment outcomes, we looked at 
additional molecular features of these cases. 
RhoA has been reported to interact with microtu-
bules to facilitate cytokinesis,68 playing a central 
role in regulating cell shape, polarity and locomo-
tion through its effect on actin polymerization, 
actomyosin contractility, cell adhesion and micro-
tubule dynamics. Interestingly, a mutation was 
observed in RHOA, in the most AMA-sensitive 
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RB1-deleted PDX. Therefore, we hypothesize 
that mutation of RHOA may have contributed to 
AMA sensitivity in this model. By contrast, the 
other two RB1-deleted PDX contained no such 
potentially drug-sensitizing mutations.

Over-expression of MDR1 is known to cause cel-
lular efflux of many cancer therapeutics drugs, 
including paclitaxel and eribulin.69,70 ABCB1 
fusions and upregulation of MDR1 have previ-
ously been reported in post-treatment HGSC.19,41 
The presence of an SLC25A40-ABCB1 fusion 
provides the most likely resistance mechanism, 
for the BRCA2-mutated (primary and secondary 
mutations) PDX model, which was refractory not 
only to cisplatin but also to all three AMA tested.

In summary, we annotated a cohort of aggressive 
PRR HGSC PDX, demonstrating that AMA, 
including the clinically well-tolerated drug, eribu-
lin, demonstrated impressive in vivo activity. We 
observed activity in BRCA1/2-mutated PDX 
models, despite these deriving from heavily pre-
treated individuals, strikingly, some of whose 
HGSC harboured secondary BRCA1/2 muta-
tions. We identified likely mechanisms of drug 
resistance to AMA, such as upregulation of 
MDR1 and the presence of additional oncogenic 
events, although over-expression of two of these, 
MYC and CYCLIN E, did not appear to corre-
late with AMA resistance. These data indicate 
that eribulin, which is well-tolerated and coming 
off patent, or its ADC, farletuzumab ecteribulin, 
should be prioritized for clinical trials, preferably 
early during the HGSC treatment journey, ini-
tially for no/poor response to platinum, or for 
individuals who have developed secondary muta-
tions in BRCA1/2 in their HGSC following chem-
otherapy/PARPi. Importantly, high Ki-67 
expression correlated with AMA sensitivity in 
PRR HGSC, either at baseline or after many prior 
therapeutic regimens and should be assessed as a 
biomarker in clinical trials.
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