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Abstract

Quantitative proteomics in large cohorts is highly valuable for clinical/pharmaceutical 

investigations but often suffers from severely compromised reliability, accuracy, and 

reproducibility. Here, we describe an ultra-high-resolution IonStar method achieving reproducible 

protein measurement in large cohorts while minimizing the ratio compression problem, by 

taking advantage of the exceptional selectivity of ultra-high-resolution (UHR)-MS1 detection 

(240k_FWHM@m/z = 200). Using mixed-proteome benchmark sets reflecting large-cohort 

analysis with technical or biological replicates (N = 56), we comprehensively compared the 

quantitative performances of UHR-IonStar vs a state-of-the-art SWATH-MS method, each with 

their own optimal analytical platforms. We confirmed a cutting-edge micro-liquid chromatography 

(LC)/Triple-TOF with Spectronaut outperforms nano-LC/Orbitrap for SWATH-MS, which was 

then meticulously developed/optimized to maximize sensitivity, reproducibility, and proteome 

coverage. While the two methods with distinct principles (i.e., MS1- vs MS2-based) showed 

similar depth-of-analysis (∼6700–7000 missing-data-free proteins quantified, 1% protein-false 

discovery rate (FDR) for entire set, 2 unique peptides/protein) and good accuracy/precision in 

quantifying high-abundance proteins, UHR-IonStar achieved substantially superior quantitative 

accuracy, precision, and reproducibility for lower-abundance proteins (a category that includes 

most regulatory proteins), as well as much-improved sensitivity/selectivity for discovering 

significantly altered proteins. Furthermore, compared to SWATH-MS, UHR-IonStar showed 

markedly higher accuracy for a single analysis of each sample across a large set, which 

is an inadequately investigated albeit critical parameter for large-cohort analysis. Finally, we 

compared UHR-IonStar vs SWATH-MS in measuring the time courses of altered proteins in 

paclitaxel-treated cells (N = 36), where dysregulated biological pathways have been very well 
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established. UHR-IonStar discovered substantially more well-recognized biological processes/

pathways induced by paclitaxel. Additionally, UHR-IonStar showed markedly superior ability 

than SWATH-MS in accurately depicting the time courses of well known to be paclitaxel-induced 

biomarkers. In summary, UHR-IonStar represents a reliable, robust, and cost-effective solution for 

large-cohort proteomic quantification with excellent accuracy and precision.

Graphical Abstract

1. INTRODUCTION

For quantitative proteomics in pharmaceutical and clinical investigations, it is often 

necessary to analyze large numbers of biological samples (N > 30) to achieve sufficient 

power of statistics and to reduce false-positive discoveries arising from interindividual 

variability.1 In theory, label-free quantification methods have unlimited replicate capacity 

and therefore the potential to quantify many samples in the same batch, reducing the 

intractable problem of batch effect.1−3 Consequently, these methods are often preferred over 

isotope-labeling approaches for large-cohort quantification.1 Nonetheless, despite strenuous 

efforts, label-free quantification of large cohort remains challenging. The most prevalent 

data-dependent acquisition (DDA) methods are susceptible to undersampling problem and 

therefore suboptimal quantification of low-abundance proteins with high missing data;4,5 

moreover, the missing-data problem substantially deteriorates when the sample number 

increases.6 To enable more reproducible protein measurement across large sample sets, 

MS2 data-independent acquisition (MS2-DIA) methods were developed, which could reduce 

missing data down to ∼10% of quantified proteins in sizable cohorts, by triggering MS2 

scans sequentially in preset m/z windows.7 MS2-DIA methods, most prominently the 

SWATH,8 represent a tremendous advance in large-cohort analysis, and a large body of 

literature has shown its excellent capacity in reproducible protein measurement across 

relatively large sample sets.7 Yet MS2-DIA often suffers from problems such as difficulty in 

interpreting MS2 spectra from multiple cofragmented precursors9 and high false positives as 

well as compromised quantitative accuracy for low-abundance proteins.10

Another promising strategy for large-cohort analysis is MS1 ion current-based. Since 

the peptide precursor MS1 ion currents are extracted as the sole quantitative feature 
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while the accompanying DDA-MS2 spectra are utilized merely to assign peptide ID to 

quantitative features, the quantification is completely independent of the stochastic MS2 

acquisition and thereby greatly reducing missing data compared to DDA-MS2 methods.1,11 

While this strategy opens the possibility for reproducible protein measurement in large 

biological cohorts, nonetheless, this potential had not been fully explored, largely owing 

to the lack of an optimal strategy taking full advantage of the high selectivity carried by 

high-resolution MS1.1 To address this need, we developed an IonStar pipeline enabling 

accurate, precise quantification of large cohorts with very low levels of missing data and 

false-positive discovery.2 The method demonstrated the quantification of >7000 unique 

proteins in a batch of 100 tissue samples with high precision, and 99.8% of these proteins 

were quantified free of missing data.2 While the method provided reliable quantification 

of large cohorts as demonstrated in many projects,1 like the majority of quantitative 

proteomic methods, IonStar too suffers from the ratio compression problem, especially 

when quantifying low-abundance proteins. Ratio compression roots from interfering signals 

in complex biological matrices, leading to underestimation of the differences between 

samples12,13 (Figure 1a). Furthermore, because running multiple technical replicates is not 

feasible for large sample sets,1 the ability of reliable protein quantification in each sample 

by a single analysis is essential to attain reliable large-cohort quantification. However, 

this critical parameter has rarely been assessed or optimized for quantitative proteomics. 

Finally, it would be highly valuable to perform an extensive, comparative study of various 

state-of-the-art methods capable of large-cohort proteomic quantification. For example, 

currently the most advanced Triple-TOF instruments combining with Spectronaut data 

processing pipeline represent a high-performance SWATH-MS procedure, which have been 

demonstrated to achieve reproducible, in-depth quantification in relatively large biological 

sample sets.8 It would be valuable and interesting as well to comparatively investigate 

the quantitative performances by SWATH-MS vs IonStar; from a technical perspective, 

these two methods are, respectively, MS2- and MS1-based; though MS2-based methods 

have generally been considered more sensitive/selective than MS1-based methods owing 

to the high specificity by tandem mass spectrometry (MS) analysis,5 the advent of high-

resolution MS1 measurement is likely a gamechanger: high-resolution MS1 detection 

enables the extraction of precursor ion currents within an extremely narrow m/z window, 

resulting in excellent selectivity and sensitivity.1 Moreover, the MS1 signal intensity of 

a peptide is substantially higher (often by >10-fold) than its MS2 product ions, enabling 

sensitive MS1-based quantification if the chemical noise could be effectively reduced by 

high-resolution detection.1 Consequently, an updated comparison of the performances of 

MS2- vs MS1-based quantification in terms of sensitivity, selectivity, and quantitative 

accuracy/precision is timely and imperative. From the perspective of the application, such 

a comparative investigation will provide valuable information to facilitate fit-for-purpose 

protocol development for large-cohort analysis.

To address the above issues, here we developed an ultra-high-resolution (UHR, FWHM = 

240k@m/z = 200) IonStar strategy, which substantially improves quantitative selectivity and 

alleviates the ratio compression problem. By combining UHR-MS1 precursor measurement 

along with an optimized narrow-window extraction of precursor ion currents, this approach 

represents a significant advance over the previous version of IonStar, which drastically 
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reduces interfering signals and permits accurate protein measurement with exceptional 

quantitative performances, especially for low-abundance species.1 Furthermore, a graphical 

user interface (GUI) was implemented. The performances of UHR-IonStar were extensively 

compared with a state-of-the-art SWATH-MS method, in terms of quantitative accuracy, 

precision, false-positive discovery of altered proteins, and the performance for a single 

analysis of each biological sample, using carefully designed benchmark proteomic sample 

sets reflecting proteomic quantification of large biological cohorts. Consistent with 

literature,14 a cutting-edge micro-liquid chromatography (LC)/Triple-TOF system was found 

to markedly outperform the LC/Orbitrap system for SWATH-MS, and the former was 

therefore selected for SWATH-MS. The procedure was rigorously developed and optimized, 

including the use of the most advanced micro-LC/Triple-TOF 6600 system, twodimensional 

(2D) fractionation (strong anion exchange and then high-pH reversed-phase LC (RPLC)) to 

build a comprehensive, project-specific spectral library, an optimized, robust capillary-LC 

separation to ensure reproducible quantification, and data analysis by the most advanced 

Spectronaut Pulsar X software package. Finally, to evaluate the performance of the two 

methods in the analysis of a biological project, we conducted a time-course quantification 

of the protein changes in paclitaxel-treated pancreatic cancer cells (N = 36), where the 

molecular-level biological cascades induced by the drug have been very well characterized 

by numerous previous studies.

2. EXPERIMENTAL SECTION

2.1. Protein Sample Preparation.

All samples including spike-in benchmark sets and biological samples were subjected 

to an exhaustive, reproducible extraction with a surfactant cocktail buffer.15 The extracts 

were then processed with a surfactant-aided-precipitation/on-pellet trypsin-based digestion 

procedure for robust, efficient, and reproducible digestion among large cohorts.15 Details are 

given in the Supporting Information (SI).

2.2. UHR-IonStar Quantitative Pipeline.

2.2.1. LC-MS Data Acquisition.—A trapping-nano-RPLC system consisted of a 

microtrap and a nanocolumn was employed for a 2 h separation of peptides; a selective 

trapping/delivery strategy was used to ensure continuous, robust analysis of hundreds of 

samples.11 An Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific), with 

MS1 survey scan at a resolution of 240 000 (FWHM@m/z = 200), was employed for 

peptide identification and quantification, under conditions optimized in this study. Details 

are given in the Supporting Information.

2.2.2. Data Processing and UHR-IonStar v1.4 (Released with This Work).—
Protein identifications were based on stringent false discovery rate (FDR) control on the 

entire data set level and requirement of ≥2 unique peptides/protein (details in the Supporting 

Information). The UHR-IonStar data processing pipeline was developed based on our 

previously described IonStar data processing method,2,11 to take full advantage of the 

240k-resolution MS1 measurement. The package can be downloaded at https://github.com/

JunQu-Lab/UHR-IonStar/releases. The procedure involves using the SIEVE algorithm 
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(Thermo Fisher Scientific) for chromatographic alignment and frame generation, followed 

by data processing modules using a GUI interface in UHR-IonStar v1.4 released with this 

publication. The chromatographic alignment was performed with a ChromAlign algorithm 

for inter-run retention time correction. The quantitative MS1 features were generated in a 

data-independent manner using the direct ion current extraction strategy, and the defined 

m/z-RT extraction window was optimized for ultra-high-resolution MS1 measurement via a 

narrow m/z window width (±5 ppm m/z) coupled with a customized retention time width 

(e.g., 1.0 min). One sample run in the middle of the batch is typically selected for the 

reference of peak alignment. Main functions of UHR-IonStar v1.4 include: (i) extraction of 

quantitative features using narrow, precisely defined windows; (ii) generation of quantitative 

frame report and quantitative analysis on framethen peptide-level; (iii) dataset-wide 

normalization and quality control using multivariate outlier removal; and (iv) aggregation 

of qualified peptides. For data set containing mixed species, a “deconvoluted proteomic 

quantification” module is implemented for unambiguous quantification of species-specific 

proteins. A variety of postquantification analysis and visualization features are implemented 

as well (details in the Supporting Information).

2.3. SWATH-MS Quantitative Pipeline.

To maximize the performance of SWATH-MS, the platform was meticulously optimized 

and developed. First, a comprehensive spectral library was built via extensive peptide 

fractionation by strong anion exchange (SAX) followed by high-pH RPLC prior to LC-MS 

analysis. Second, a unique and highly efficient microflow-LC/Triple-TOF 6600 system 

(Sciex) with high loading capacity and exceptional reproducibility was developed for 

sensitive, in-depth, and robust protein quantification in large sample cohorts, with rapid 

scan speed enabling sequential narrow, variable m/z window acquisition. Third, the data 

processing pipeline based on Spectronaut Pulsar X (version 12.0.20491.0.14754, Biognosys) 

was optimized. Details of optimized conditions are given in the Supporting Information.

2.4. Comparison of the SWATH-MS and UHR-IonStar.

We employed two types of benchmark samples to extensively evaluate the performance 

of SWATH-MS vs UHR-IonStar: (1) Two hybrid proteome benchmark sample sets, both 

prepared by spiking small, variable amounts of Escherichia coli (E. coli) and yeast proteins 

(mimicking, low-abundance, altered proteins) into a large, constant background of human 

cell proteins representing unchanged proteins. The first set has five groups of technical 

replicates (N = 5/group), while the second set mimics large-cohort analysis of biological 

replicates, which includes 56 samples, each with a distinct, strategically designed protein 

composition to reflect individual variation. The detailed design is given in Table S1. Samples 

were analyzed by LC-MS in a randomized sequence to avoid bias. To determine the 

significantly different proteins, we employed a cutoff threshold of 30% changes (e.g., 3 

times of the median intragroup coefficient of variability (CV)% for technical replicates) 

and p < 0.05 by Student t-test. The false-positive discovery was rigorously monitored. 

(2) a very-well-characterized biological system, paclitaxel-treated human cancer cells, 

where dysregulated biological processes have been very well characterized by numerous 

publications in decades. A time-course study is performed to comprehensively capture 

drug-induced biological cascades and to describe the time courses of key dysregulated 
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proteins. The cutoff for the discovery of significantly altered proteins was determined by an 

Experimental Null method described previously.24 More details are given in the Supporting 

Information.

2.5. Functional Analysis.

Gene ontology terms of biological process and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways were analyzed with functional annotation tool embedded in Database 

for Annotation, Visualization and Integrated Discovery (DAVID), Bioinformatics Resources 

v6.8 (https://david.ncifcrf.gov/).

3. RESULTS AND DISCUSSION

3.1. UHR-IonStar Greatly Improved the Performance of MS1-Based Quantification with 
Drastically Reduced Ratio Compression for Low-Abundance Proteins.

Achieving highly selective peptide detection with minimized interference is a key 

prerequisite for reliable proteomic quantification but represents a common challenge 

especially for lower-abundance species. Selectivity-related issues may severely compromise 

quantification and cause problems such as ratio compression.12 Ratio compression, a 

prevalent issue for both isotope-labeling and label-free quantification, is caused by the 

inclusion of signals from contaminant ions with close m/z,10,16 leading to underestimation 

of quantitative ratios between groups. As illustrated in Figure 1a, this problem “compresses” 

the calculated intergroup abundance ratio of a changed protein toward unity because the 

interfering signals are mostly from unchanged matrix proteins. Apparently, achieving high 

selectivity is the key to minimize interfering signals and thus improving sensitivity and 

accuracy for low-abundance protein measurement, and alleviating the ratio compression 

problem. For MS1-based methods, we previously showed that improved selectivity can 

be realized by higher-resolution peptide precursor measurement, which effectively reduces 

the inclusion of interfering signals in quantification.1,11,17 Here, we hypothesized that ultra-

high-resolution MS1 detection coupled with an optimized quantitative feature extraction 

would substantially improve the selectivity/sensitivity for quantification of low-abundance 

proteins as well as enabling more precise peptide matching among samples, which 

significantly enhances quantitative selectivity, accuracy/precision, and thereby ameliorating 

ratio compression problem (Figure 1a). To examine this, a UHR-IonStar procedure was 

developed (cf. Section 2) by employing a 240k resolution (FWHM@m/z = 200, on an ultra-

high-field (UHF) Orbitrap) MS1 measurement with an optimized data processing method 

that effectively extracts MS1 ion currents with a precisely defined, narrow (±5 ppm) m/z 
window. As shown in Figure 1b, this window width permits selective extraction of MS1 

peaks without losing sensitivity for up to m/z = 1500, at the 240k-resolution setting. One 

important prerequisite for UHR-IonStar is reproducible m/z measurement (e.g., with m/z 
correction, deviation from the mean of entire set <2.5 ppm is desired), which is essential to 

ensure reliable, quantitative procurement of peak areas across a large cohort. It was found 

that m/z deviations of >95% peptides in benchmark samples were within 1.5 ppm during a 

11-week evaluation period, as exemplified in Figure 1c. This extraction approach, coupled 

with the reproducible IonStar trapping-LC/MS method,11 resulted in consistent peptide 

peak areas procured by UHR-IonStar, with >95% peptides showed deviation % <20% as 
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exemplified in Figure 1c over the 11-week period, which laid a solid foundation for reliable 

large-cohort quantification. Quantitative performance of the method was evaluated with a 

mixed-proteome benchmark sample set (i.e., the technical replicate set in Table S1a), where 

the human protein content remains constant (70%), and E. coli and yeast protein levels are 

low and vary among the five groups of samples (A−G). The low-abundance yeast and E. 
coli proteins simulate the quantitative behaviors of regulatory proteins, which are mostly of 

lower abundance in a typical biological system. Each group contains five technical replicates 

(N = 35, Table S1a).

We first compared the quantitative performance of UHR-IonStar (240k resolution and 

UHR-IonStar v1.4 with ±5 ppm m/z extraction window) against the previous version of 

IonStar (120k resolution with ±10 ppm m/z window by previous IonStar package2,11). 

Similar numbers of missing-data-free proteins (≥2 unique peptides/protein, 1% protein 

identification FDR for the entire set, same criteria below), 6657 for UHR-IonStar and 

6606 for IonStar, were, respectively, quantified across 35 runs, suggesting that UHR-IonStar 

did not result in a significant decrease of quantifiable proteins despite slightly lower scan 

numbers per sample (<5%). This is likely owing to the fact that quantification by UHR-

IonStar is based on MS1 signal and independent of MS2 spectra. UHR-IonStar substantially 

decreased chemical interference and enhanced sensitivity and selectivity for low-abundance 

peptides, as exemplified in Figures 1d and S1. Apparently, the UHR-IonStar provided 

a more accurate quantification of both E. coli and yeast proteins in each comparison 

(Figures 2a and S2a). Moreover, the error of median ratio by UHR-IonStar was lower in 

all comparisons; for example, IonStar showed significant ratio compression (error % = 

−27.24%, measured-median-ratio = 5.09 vs the true-value = 7.0) when comparing E. coli 
proteins in group G vs A, while UHR-IonStar yielded a much more accurate ratio of 6.80 

with error %= −2.96% (Figure 2a). The comparison of quantifying yeast proteins showed 

a similar trend (Figure S2b, SI). These results indicated that UHR-IonStar effectively 

alleviates the ratio compression problem. The run-to-run reproducibility of quantified 

proteins was assessed by correlating quantitative values of proteins from two replicate 

analyses as defined previously.2,11 Reproducibility was excellent for both methods (R2 ∼ 
0.99), while UHR-IonStar showed further improved reproducibility for lower-abundance 

proteins (Figure S2c, SI). The median intragroup CV for protein quantification in technical 

replicates by the UHR-IonStar was 7%, lower than that by IonStar (12%, Figure 2b), 

suggesting that the enhanced selectivity by UHR-IonStar improves quantitative precision. 

Furthermore, we evaluated the capacity of discovering the significantly altered proteins by 

the two methods. Clearly, UHR-IonStar discovered more true positives (i.e., E. coli proteins 

and yeast proteins) and fewer false positives (i.e., human proteins) as significantly different 

across the six comparisons (Figure 2c). Finally, we used p-values to calculate true-positive 

rate (TPR) and false-positive rate (FPR) of the quantified proteins on a receiver operating 

characteristic (ROC) curve (Figure 2d). UHR-IonStar achieved higher areas under curve 

(AUC) in each comparison, indicating a better sensitivity/selectivity. Overall, our studies 

showed UHR-IonStar provided much ameliorated ratio compression, as well as markedly 

improved quantitative performance in terms of sensitivity, selectivity, and quantitative 

accuracy/precision.
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3.2. Comparative Evaluations of Quantitative Performances by UHR-IonStar and a State-
of-the-Art SWATH-MS Method.

As discussed above, a comparative investigation of MS1-based vs MS2-DIA methods, both 

capable of reproducible large-cohort analysis, has yet been conducted. Here, we extensively 

and unbiasedly compared the UHR-IonStar with a state-of-the-art SWATH-MS method, on 

which a large body of literature has showed much-improved quantitative quality over MS2-

DDA-based methods.8,18 For SWATH-MS, analytical platforms based on either Orbitrap 

or Triple-TOF are previously reported.7,19 Using a cutting-edge Spectronaut package for 

data analysis, we extensively compared the performances of the two platforms after 

individualized optimization: the same nano-LC/UHF-Orbitrap system used for UHR-IonStar 

vs a cutting-edge micro-LC/Triple-TOF 6600 system. With the benchmark sets in Figure 

3, it was found that the micro-LC/Triple-TOF 6600 platform clearly outperformed the 

nano-LC/UHF-Orbitrap system for SWATH-MS, in that the former quantified >30% more 

missing-data-free proteins, while the commonly quantified proteins by the two platforms 

showed comparable accuracy, precision, and false-positive discoveries. This result agrees 

with most recent studies showing that an advanced Triple-TOF is ideal for SWATH-MS 

owing to its excellent absolute sensitivity and fast scan speed, which permits selective 

acquisition of quantitative features via narrow, variable acquisition windows and more data 

points per LC peak.14 As the comparison of the LC-MS platforms for SWATH-MS is 

out-of-scope of this study, detailed results and discussion are not shown.

3.2.1. Development and Optimization of a State-of-the-Art SWATH-MS 
Strategy to Achieve Maximal Proteomic Coverage and Quantitative Accuracy/
Precision.—Three measures were taken: (1) a highly comprehensive, project-specific 

spectral library was established with an extensive 2D high-performance liquid 

chromatography (HPLC) fractionation (strong anion exchange followed by high-pH-

reversed-phase separation into 72 concatenated fractions) prior to LC-MS identification (cf. 

Supporting Information). Under stringent cutoff criteria, this high-quality spectral library 

contains 10 249 protein groups, a >50% increase over a previously published work on a very 

similar mixed-proteome sample set.20 Such a high-quality library markedly improves depth, 

sensitivity, and reliability of proteomic quantification; (2) with the emphasis on dynamic 

precursor isolation windows, critical SWATH-MS parameters were meticulously optimized. 

The ultrafast scan speed on the state-of-the-art Triple-TOF 6600 instrument enabled 

narrow, variable window widths, which markedly enhance spectral matching performance 

of SWATH-MS. (3) A capillary-LC separation system was vigorously optimized, which 

greatly facilitated sensitive, reproducible, and robust SWATH-MS analysis of large cohorts. 

Compared to a nano-flow LC, this capillary-LC approach achieved similar sensitivity by 

taking advantage of its high loading capacity using a strategy we described recently,21 with 

much-improved robustness and exceptional separation performances, which are important 

for large-cohort analysis. Moreover, significantly improved quantitative performances were 

observed using capillary-LC over the nano-LC on the Triple-TOF platform. More details are 

given in the Supporting Information section.

3.2.2. Comparing Quantitative Performances by UHR-IonStar vs SWATH-MS 
Using Mixed-Proteome Sets Mimicking Large-Cohort Quantification Using 
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Technical or Biological Replicates.—First, the comparison was conducted by 

analyzing technical replicates (N = 5/group) of the mixed-proteome set described in Figure 

3a and Table S1a (group A−E). Totally 6802 proteins and 6657 proteins were quantified 

with stringent false-positive control, ≥2 unique peptides per protein and without missing data 

across all runs by SWATH-MS and UHR-IonStar, respectively. The SWATH-MS method 

optimized here achieved much-improved depth than these previously reported on similar 

benchmark samples.20 To ensure an unbiased comparison, we evaluated the quantitative 

performance of the 5504 proteins commonly quantified by both strategies. While the 

run-to-run reproducibility for higher-abundance proteins (i.e., the highest 75% proteins in 

abundance) is good for both methods, UHR-IonStar showed much-improved reproducibility 

for lower-abundance proteins. For proteins of the lowest 25% in abundance, R2 = 0.92−0.94 

by UHR-IonStar vs R2 = 0.3−0.4 by SWATH-MS, as exemplified in Figure 3b. As lower-

abundance proteins encompass the majority of key regulators/markers,22,23 we then focused 

the comparison on the lowest 25% proteins (i.e., the lower quartile) in abundance. The 

higher reproducibility by UHR-IonStar resulted in improved quantitative precision, with a 

median CV of 10.7% for low-abundance proteins vs 17% by SWATH-MS (p < 0.001, Figure 

3d). For low-abundance E. coli and yeast proteins, UHR-IonStar achieved better quantitative 

accuracy (<5% median error) compared to SWATH-MS (up to 15%) as shown in Figure 

3c. Meanwhile, both methods performed well for higher-abundance proteins (Figure S3a–c). 

Additionally, the ability of UHR-IonStar to discover significantly different proteins was 

superior, as shown in Figure S3d.

While benchmarking using technical replicates is valuable, nonetheless, running technical 

replicates is not feasible in a typical large-cohort analysis, where each biological sample 

is only measured once owing to the limitation of throughput. Therefore, it is critical 

to evaluate the quantitative performance for a single analysis of each biological sample 

across a large cohort. Here, we devised a set mimicking the analysis of a large cohort of 

biological samples, containing 56 distinct mixed-proteome samples (seven groups A′–G′, 

N = 8/group, Figure 3e), each sample with strategically varied levels of E. coli and yeast 

proteins (Table S1b, SI). With the emphasis on lower-abundance proteins, we compared the 

accuracy of quantifying protein ratios in individual samples, as exemplified in Figure 3f. 

In all samples, UHR-IonStar achieved substantially more accurate one-time-measurement 

of low-abundance E. coli proteins than SWATH-MS, while the latter showed an apparent 

ratio compression problem in most samples. As shown in Figure S4a, UHR-IonStar showed 

markedly lower quantitative error % (<13% across individual samples), compared to 

SWATH-MS (up to 48% error) across the set.

In this set, all E. coli proteins are true positives because the levels of E. coli proteins in 

groups B′–G′ are designed to be significantly higher (p-value of one-sided Student t-test 

<0.05) than group A′. We evaluated the performance of discovering lower abundance, 

significantly different proteins by UHR-IonStar vs SWATH-MS via ROC curves, as shown 

in Figure 3g. Cutoffs were set to p-value <0.05 and ≥30% changes, as determined 

by an Experimental Null method we described previously.24 Again, for the analysis of 

this simulated biological set, UHR-IonStar showed superior performance in the sensitive 

and selective discovery of differential proteins (as evident by higher AUC of UHR-
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IonStar, p < 0.001 by one-sided DeLong’s test), especially for comparison with ≤2.5-fold 

differences. Moreover, UHR-IonStar discovered more true positives than SWATH-MS for 

lower-abundance proteins, as shown in Figure S4b.

For the quantification of higher-abundance proteins (i.e., the highest 75% proteins in 

abundance) in technical and simulated biological replicates, both UHR-IonStar and SWATH-

MS achieved accurate quantification (data not shown).

3.2.3. Comparison of UHR-IonStar and SWATH-MS in Quantification of a 
Well-Characterized Biological Sample Set: A Time-Course Study of Drug-
Responsive Proteins Induced by Paclitaxel in Cancer Cells.—Apparently, the best 

approach to compare quantitative proteomic methods is by the analysis of real biological 

sample sets, but is difficult because the relative expression levels of proteins in such sets 

are unknown. Here, we circumvent this issue using a very-well-characterized pharmaceutical 

system for benchmark: cancer cells treated by paclitaxel, an extremely well-researched 

antimitotic agent that inhibits cell replications by disrupting mitotic spindle formation 

and arresting cell cycle/growth with subsequent apoptosis. Since the year of 2000, >30 

000 papers on its biological effects have been published, rendering it one of the most-

studied drugs.25,26 The main paclitaxel-induced biological cascades have been extensively 

characterized.27 Here, we employed paclitaxel-treated pancreatic cancer cells to compare 

UHR-IonStar and SWATH-MS. To comprehensively capture the drug-induced biological 

cascades that tend to occur at various time points, we designed a time-course study consisted 

of nine time groups (treatment for 1–72 h and vehicle control) with four biological replicates 

per point (N = 36 in total, shown in Figure 4a).

UHR-IonStar and SWATH-MS, respectively, quantified 6021 and 5355 missing-data-free 

proteins (≥2 unique peptides/protein), as shown in Tables S2 and S3. UHR-IonStar showed 

much lower intragroup CV% than SWATH (p < 0.001 by one-sided t-test, Figure S5). 

While the altered proteins of high abundance are commonly discovered by both methods 

with excellent ratio correlation (e.g., R2 = 0.8–0.9 shown in Figure S6a), the discovery 

of significantly changed, lower-abundance proteins (i.e., most regulatory proteins) is quite 

different by the two methods, showing poor correlation of intergroup ratios (Figure S6b). 

To objectively compare the capacity to accurately reflect drug-induced protein changes, 

two aspects are assessed: First, we evaluated the two methods’ ability to discover protein 

changes implicated in the widely recognized biological cascades induced by paclitaxel. 

From many research articles on the mechanism of actions of paclitaxel, 12 most-recognized 

biological processes associated with paclitaxel-related toxicity were summarized in three 

categories: microtubule/cell cycle regulation, DNA regulation, cell proliferation/apoptosis,28 

as well as eight well-known signaling pathways that are profoundly dysregulated by the 

drug. Based on the analysis of biological process and KEGG pathways with a functional 

annotation tool embedded in DAVID, both methods correctly identified dysregulated cell 

proliferation and apoptosis processes (more details described in Section 2.5). Nevertheless, 

while UHR-IonStar discovered all three dysregulated processes in paclitaxel-induced DNA 

regulations,29 SWATH-MS discovered only one with a suboptimal p-value as calculated 

by DAVID (Figure 4b). Furthermore, UHR-IonStar was able to discover all six biological 

processes as dysregulated in the “cell cycle regulation” category, which has been broadly 
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recognized following paclitaxel treatment,30 whereas SWATH-MS identified only three 

processes. Most importantly, microtubule depolymerization, the key mechanism of action 

by paclitaxel,31 was discovered by UHR-IonStar with an excellent EASE score (equivalent 

to p-value <0.05), but surprisingly, not by SWATH-MS (Figure 4b). Among the eight KEGG 

pathways, UHR-IonStar discovered seven as dysregulated in paclitaxel-treated cells with 

high confidence, while SWATH-MS discovered only one (Figure 4b).

Second, we compared the capacity of the two methods to accurately/quantitatively describe 

the expression–time profiles of well-known dysregulated proteins. The consistency of the 

time profiles of significantly altered proteins, where each time point group is independently 

quantified, can faithfully reflect the quantitative accuracy/precision of methods.32 It has been 

well known that paclitaxel inhibits microtubule depolymerization and triggers the synthesis 

of both tubulin α and β, an important negative feedback loop of drug-induced microtubule 

damage.33 As the induction is constant during paclitaxel treatment,33 a smooth, continuous 

increase of tubulins over time is warranted. Moreover, because tubulin α and β present at 

1:1 ratio in a heterodimer and that the drug effectively inhibits decoupling of this dimer, the 

relative expression vs time profiles of both tubulin α and β, including their isoforms, should 

mostly overlap. Though both methods indicated roughly ∼60% elevation of tubulins after 72 

h of incubation, nonetheless, the measured temporary profiles were quite different (Figure 

4c). The time courses depicted by SWATH-MS were quite bumpy with many fluctuations, 

and the induction–time profiles of various tubulin isoforms did not overlap well. By 

comparison, the time courses of tubulins measured by UHR-IonStar showed well-defined 

trends of upregulation, which were much smoother than these by SWATH-MS (Figure 4c), 

agreeing well with the expected continuous synthesis and accumulation of tubulins after 

paclitaxel-induced microtubule stabilization.33 Furthermore, all of the α and β isoforms of 

tubulin showed largely superimposing time profiles of consistent induction, which again is 

in line with the drug action.

4. CONCLUSIONS

For pharmaceutical/clinical proteomic investigation, the capacity for reliable large-cohort 

analysis is highly desirable but difficult to achieve owing to daunting technical challenges.1 

Recently, MS1-based quantitative methods showed high promise for reproducible/accurate 

protein measurement of a large number of samples within one analytical batch, and 

thereby eliminating the intractable problems associated with batch effects.1−3 Here, 

we described a new MS1-based strategy, UHR-IonStar, which takes advantage of the 

extraordinary selectivity of ultra-high-resolution MS1 measurement, achieving high run-to-

run reproducibility, low interference, and excellent quantitative precision and accuracy, 

and alleviating the ratio compression problem that is prevalent in quantitative proteomics. 

Comparing to the previous version of IonStar, the UHR-IonStar substantially improved 

quantitative performances with only a very minor (<2%) decrease of quantified proteins. It is 

important to note that a UHF-Orbitrap instrument is necessary to achieve optimal selectivity 

for UHR-IonStar.

We then compared UHR-IonStar with a state-of-the-art SWATH-MS method. While both 

techniques can be adapted to large-cohort analysis in one batch, their principles for 
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quantification are quite distinct: MS1- vs MS2-based. On one hand, MS2-based methods 

carry the high selectivity/sensitivity intrinsic to tandem-MS analysis; on the other hand, 

the MS1 signal intensity of a peptide precursor is >10-fold higher than its product ions,1 

potentially enabling more sensitive quantification if high specificity can be achieved by a 

high-resolution MS. Given the recent advances in ultra-high-resolution MS, a comparative 

study of the MS1- vs MS2 methods would be of immense interest and urgently needed as 

well. Here, the two methods were comprehensively compared; it is important to note that 

this study is not aimed at comparing only the data processing pipelines of UHR-IonStar 

vs SWATH-MS using the same LC-MS platform, but rather comparing the two quantitative 

strategies under their own optimal LC-MS platforms. In this study, it was found for SWATH-

MS, an optimized, advanced micro-LC/Triple-TOF 6600 platform outperforms the nano-LC/

Orbitrap system, which also corroborates with recent reports.14

The comparison was conducted in three steps: first, the basic quantitative parameters of 

the two methods were benchmarked by measuring mixed-proteome samples in technical 

replicates; second, with a strategically designed large sample cohort consisting of 56 distinct 

mixed-proteome samples in seven groups, we assessed the accuracy, precision, and ability to 

discover changed proteins across the groups, as well as the accuracy in a single analysis of 

each individual sample, a particularly important parameter for large-cohort quantification yet 

inadequately investigated.

Both methods performed well for quantification of higher-abundance proteins; nonetheless, 

for lower-abundance proteins that encompass the majority of key regulatory proteins 

and biomarkers,22,23 UHR-IonStar showed substantially better quantitative reproducibility, 

accuracy, and precision, as well as superior performance in protein measurement by a 

single analysis of an individual biological sample. Moreover, UHR-IonStar demonstrated 

markedly better sensitivity/selectivity in discovering altered proteins among groups, which 

is more pronounced for protein changes ≤2.5-fold, a range where the majority of discovered 

protein changes in biological systems appear to fall into, as evident in our extensive 

literature research (examples in Figure S7). Again, the superior quantitative performance of 

UHR-IonStar roots from effective utilization of the high sensitivity/selectivity by ultra-high-

resolution measurement.

Third, the two methods were further compared in a sizable time-course investigation 

of drug-responsive proteins in cancer cells after paclitaxel treatment (N = 36). Though 

the exact folds of changes of altered proteins are unknown, the biological processes, 

signaling pathways, and key proteins dysregulated by paclitaxel have been extremely 

well characterized by decades of extensive research, rendering it an excellent benchmark 

system for evaluating quantitative proteomic methods. Despite UHR-IonStar and SWATH-

MS commonly discovered a number of higher-abundance proteins as significantly altered 

with good correlations, the discovery of lower-abundance, altered proteins by the two 

methods are quite different. Comparing to SWATH-MS, UHR-IonStar was able to discover 

substantially more biological processes and signaling pathways, which are well recognized 

to be induced by paclitaxel. Moreover, UHR-IonStar showed much better precision and 

accuracy in the quantitative depiction of the time courses of tubulin α/β isoforms, which are 

well known to be constantly upregulated by paclitaxel.
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In summary, UHR-IonStar represents a practical and reliable tool for large-cohort proteomic 

quantification with high accuracy, precision, and excellent sensitivity/selectivity for the 

discovery of significantly altered proteins. Comparing to SWATH-MS, UHR-IonStar showed 

better performance in quantification of lower-abundance proteins and the capacity to 

discover relatively moderate changes, without the need of building a library. Potential 

advantages of SWATH-MS include: first, once the library is built for SWATH-MS, data 

analysis is less computation-intensive; by comparison, a computer with 128 GB memory 

is recommended when performing large-cohort analysis with UHR-IonStar; running time 

is ∼2 h/sample for a typical desktop personal computer (PC). Second, the SWATH-MS 

method appeared to be more tolerant to low-quality, poorly characterized samples and 

large variation and/or errors in sample preparation, as suggested by our pilot study (data 

not shown). The results in this study are important to inform and rationalize the planning 

of large-cohort quantification. Finally, procedures described here, such as using simulated 

biological replicate sets and well-characterized biological systems to benchmark quantitative 

methods, are valuable for the technical development/evaluation of quantitative proteomic 

techniques.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Development and characterization of ultra-high-resolution (UHR)-IonStar strategy. (a) 

Rationale of reducing ratio compression by UHR-MS1 measurement. Mixing matrix 

noises (M, N) and true MS responses (X, Y) for quantification of a low-abundance 

peptide causes a negative bias in the observed ratio (sample B/A). UHR-MS1 detection, 

with higher selectivity, would substantially lower matrix noise and alleviate the ratio 

compression problem. (b) Investigation of MS1-peak-width vs m/z, which indicated that 

±5 and ±10 ppm m/z extraction windows are optimal, respectively, for 240 and 120k 

Wang et al. Page 16

Anal Chem. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



settings (FWHM@m/z = 200); (c) in an 11-week evaluation, UHR-IonStar achieved very 

low deviations in m/z measurement (note: not m/z error) and peak areas of peptides, as 

exemplified by representative peptides; this enables reliable large-cohort quantification; 

and (d) representative chromatograms showing 240k MS1-resolution improved sensitivity/

selectivity for the quantification of low-abundance species.
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Figure 2. 
Quantitative performance of IonStar (120k-MS1) vs UHR-IonStar (240k-MS1). Evaluation 

was performed using a mixed-proteome benchmark sample set (Table S1). (a) log2 ratios 

of quantified E. coli proteins of each comparison (horizontal solid line/theoretical ratio), 

(b) coefficient variations of quantified proteins, (c) true and false positives of significantly 

altered proteins, (d) ROCs of quantified proteins by the two methods. One-sided Student 

t-test and one-sided DeLong’s test were employed to determine the statistical significance of 

comparing the two methods on the CV and ROC plots, respectively. ***, p < 0.001.
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Figure 3. 
Comparison of quantitative performances of UHR-IonStar vs SWATH-MS in analyzing 

technical (a–d) and biological (e–g) replicates. (a) Tri-proteome (E. coli, yeast, human) 

technical replicate benchmark set, with low, variable amount of E. coli proteins (more 

details are in Table S1a, groups A–E); (b) Reproducibility examined by correlating protein 

quantitative values from replicate LC-MS runs of the same pooled sample. The R2 was 

shown for proteins in the highest 75% and lowest 25% in abundance. (c) Log2 ratio of 

quantified low-abundance E. coli proteins (lowest 25% in abundance) in technical replicates 

by UHR-IonStar and SWATH-MS. (d) Intragroup coefficient variations of low-abundance 

proteins quantified by UHR-IonStar and SWATH-MS in technical replicates, ***One-sided 

Student t-test p < 0.001. (e) Simulated (i.e., mimicking) biological replicate set consisting 

of seven groups A′–G′, eight samples/group, each with different E. coli protein contents (N 
= 56 distinct samples in total, Table S1b). (f) Median ratios (against the mean of group A′) 

of low-abundance E. coli proteins in each individual sample by a single analysis with UHR-

IonStar or SWATH-MS. Black lines: theoretical ratios in individual samples. Quantitative 

errors are shown in Figure S4. (g) ROCs of low-abundance proteins are quantified by UHR-

IonStar and SWATH-MS for comparison of each simulated biological replicate groups. (***, 

One-sided DeLong’s test p < 0.001 comparing the two methods).
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Figure 4. 
Comparison of UHR-IonStar and SWATH-MS in paclitaxel-treated pancreatic cancer cells. 

(a) Very-well-characterized system for the benchmark of methods: time-course study in 

paclitaxel-treated cancer cells, with nine time points and four biological replicates per point 

(N = 36 in total), more details in the Experimental Procedure section, SI. (b) Discovery 

of 12 biological processes and 8 signaling pathways that are well recognized as altered by 

paclitaxel, respectively, by SWATH-MS and UHR-IonStar. Significance scores are shown 

in color. (c) Quantification of the time courses of tubulin isoforms by SWATH and UHR-
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IonStar. The tubulins are well known to be consistently induced by paclitaxel, and that 

tubulin α and β form 1:1 dimer, where the depolymerization is inhibited by paclitaxel. 

Therefore, a smooth, consistently up induction, with overlapped trends of tubulin α and β 
isoforms, should be observed.
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