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The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation 
and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited 
basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the 
low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence 
to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maxi
mize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based 
SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive 
emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumen
tal in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in 
turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development 
strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the po
tential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to 
monitor global sequence databases for their emergence. Given the critical role of viral genomics in the internation
al effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic 
surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.
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SARS-CoV-2 evolution
Viruses, like all organisms, face driving evolutionary forces that 
include mutation, natural selection and random genetic drift, re
sulting in a continuous process of evolution (Figure 1).1,2 Due to 
the unique properties of viruses, and especially those that repli
cate via an RNA-dependent RNA polymerase, these evolutionary 
forces operate in essentially different ways. A key feature for their 
distinct evolution is that they have some of the highest mutation
al frequencies found in nature.3–5 Such high mutation rates are 
achieved through their small genome sizes, rapid rates of viral 
replication and progeny production, error-prone viral poly
merases, host enzyme-induced mutations [i.e. by APOBEC (apoli
poprotein B mRNA editing catalytic polypeptide-like) or ADAR 
(adenosine deaminase acting on RNA) enzymes], and recombin
ation during concurrent infections.3,6,7 As such, RNA viruses exist 
as ‘clouds’ of related genotypes, termed quasispecies, where a 
large proportion of progeny is expected to have one or more 

mutations relative to the consensus or average genome.8,9 This 
unique variability constitutes the basis of the evolutionary suc
cess for RNA viruses by allowing them to rapidly adapt via selec
tion to changing environments or conditions.1,8,10 Moreover, this 
exceptional viral heterogeneity allows these viruses to tolerate 
the extreme population bottlenecks inherent to their life cycles 
—e.g. transmission, translocation to different anatomical com
partments, immune evasion and therapeutic escape.2,11,12 The 
high genetic variability compensates for any intrinsic loss of fit
ness derived from successive population size losses where sto
chastic forces (genetic drift) and strong purifying selection 
could otherwise lead to viral extinction.9,13–15 Therefore, by 
means of a staggering capacity to adapt while maintaining popu
lation structure, viruses are very successful at evading immune 
responses and/or pharmacological challenges.

The importance of RNA viruses’ genetic variability in infections 
underscores the importance of studying viral evolution and the 
dynamics of viral diversity. This was clearly demonstrated during 
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the SARS-CoV-2 pandemic, in which molecular surveillance and 
the study of viral population dynamics have been crucial for 
tracking epidemiological patterns and defining significant viral 
characteristics that are crucial for understanding essential viral 
properties.16,17 Whereas sequencing and analysing selected 
genes or genome regions can be sufficient to capture the variabil
ity of viruses with higher mutation rates such as HIV-1 (inter-host 
substitution rate of ∼5 × 10−3 substitutions/site/year)18 or influ
enza viruses (∼4 × 10−3 substitutions/site/year),19 the relatively 
large genome size and low mutation rate of SARS-CoV-2 (esti
mated substitution rate of ∼8 × 10−4 substitutions/site/year)20–22

means that epidemiologically and evolutionarily distinct viruses 
may differ by only a few nucleotide changes across the entire 
nearly 30 kb genome (Figure 2a).23 Additionally, selective 
processes operate very differently amongst distinct viral genomic 
regions leading to an uneven distribution of mutations through
out the SARS-CoV-2 genome (Figure 2b). This can render some 
low-diversity genes uninformative for defining evolutionary rela
tionships. Thus, sequencing of the entire viral genome is neces
sary to effectively assess within- and between-host genetic 
variability in SARS-CoV-2. This has led to an unprecedented 
worldwide effort for SARS-CoV-2 WGS, resulting in the largest da
taset of complete viral genome sequences for a species in the 

history of science, with more than 15.2 million SARS-CoV-2 gen
omes deposited in the GISAID (Global Initiative on Sharing All 
Influenza Data) public sequence database in just over 3 years.

Methods and evolution of SARS-CoV-2 WGS
Multiple methods have been applied and adapted for sequencing the en
tire genome of SARS-CoV-2 (Figure 3). The first viral genome sequences 
were generated from respiratory specimens of workers at a seafood 
wholesale market in Wuhan, China, who had been hospitalized for severe 
respiratory distress syndromes in late December 2019.24,25 These earliest 
sequences were assembled from meta-transcriptomic sequencing of to
tal RNA extracted from the patient specimens. The novelty of the newly 
emerged pathogen greatly limited the techniques available for isolating 
its genome sequence from the background of host and commensal mi
crobe genomes, thus necessitating a broad, unbiased approach to se
quencing. As COVID-19 spread and case numbers increased worldwide, 
the high cost and low specimen throughput of metagenomic sequencing 
approaches limited their broader application to genomic surveillance.

Soon after the first SARS-CoV-2 genome sequences were made avail
able, multiplex PCR primer sets producing tiled amplicons across the en
tire genome were designed to amplify the complete genome sequence 
directly from patient specimens. This tiled amplicon approach greatly 
minimized the amount of contaminating host or other nucleic acids 

Viruses mutate and 
diversify

Mutations that decrease 
viral fitness are selected 
against

Genetic diversity is the basis 
of natural selection

Mutations that increase 
viral fitness under selective 
pressure persist

Figure 1. Viral genetic diversity is the basis of natural selection and viral evolution. All viruses mutate over time. Mutations that are disadvantageous or 
that come at a cost to viral fitness are selected against. Mutations that confer a fitness advantage, especially in the presence of a selective pressure 
(represented by the horizontal dotted line), will be more likely to persist in future generations. This figure appears in colour in the online version of JAC 
and in black and white in the print version of JAC.
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from patient specimens and allowed viral genomes to be sequenced in 
greater volumes and at lower cost. One of the earliest amplicon sequen
cing protocols was developed in late January 2020 by the ARTIC network 
for molecular epidemiology for outbreak response (https://artic.network/ 
ncov-2019) and was derived from similar approaches previously devel
oped for sequencing Ebola and Zika viruses.26 The ARTIC primer set is 
comprised of 98–99 primer pairs that yield amplicons averaging roughly 
350 bp in length. The primer sequences have been modified and adapted 
throughout the pandemic as mutations in certain primer binding sites 
have emerged in the genomes of new viral variants.27–29 The ARTIC pri
mer scheme was widely adopted among labs performing SARS-CoV-2 se
quencing for research and surveillance, and it has been incorporated into 
several commercial sequencing kits. A similar tiled amplicon scheme, the 
‘midnight’ primer set consisting of 29 primer pairs producing roughly 
1200 bp amplicons, was also developed and widely adopted.30,31 The 
lower number of primer binding sites in the midnight scheme reduces 
the relative risk of primer site mutation, theoretically necessitating fewer 
primer updates to respond to viral variant emergence.

Target capture approaches represent a third method applied to 
SARS-CoV-2 genomic sequencing. This technique employs DNA probes 
complementary to the viral sequence that selectively hybridize with 
SARS-CoV-2 genomic material and enrich it from the background host 
and commensal bacterial DNA. By incorporating longer probe sequences, 
approximately 120 bp each, and/or multiple overlapping probe se
quences, these assays are more tolerant of viral mutation than amplicon- 

based approaches. Furthermore, the use of larger probe sets that also in
clude sequences targeting other respiratory viruses allows this method to 
detect co-infections in COVID-19. Several target capture assays have 
been developed for SARS-CoV-232–34 and have been incorporated into 
some commercial kits. Once genomic libraries have been prepared 
from a patient or other samples using one of the above approaches, se
quencing is performed on any one of multiple next-generation sequen
cing (NGS) platforms. As ongoing transmission of SARS-CoV-2 continues 
to drive evolution of the virus in response to natural and vaccine immun
ity, therapeutics and co-infections, diverse and adaptable genome se
quencing approaches remain vital to effective global surveillance efforts.

Early diversification and the Spike D614G 
mutation
During the very early stages of the pandemic, analysis of the first 
SARS-CoV-2 sequences showed fairly homogeneous viral popula
tions circulating globally.20,21,35 This picture dramatically chan
ged around April 2020, when a distinct lineage of the virus 
rapidly expanded in Europe and the USA leading to a global gen
etic sweep.36,37 This new viral lineage was characterized by sub
stitution of aspartic acid (D) with glycine (G) at position 614 in the 
Spike protein (S). S:D614G was rare in March 2020 but could be 
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Figure 2. Different SARS-CoV-2 ORFs have accumulated different amounts of variability. (a) Schematic of the SARS-CoV-2 genome and encoded pro
teins, separated broadly in the figure by function. (b) Entropy (a measure of genetic variability) in each SARS-CoV-2 ORF. Dot size and colour reflect the 
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detected in over 74% of all published sequences by June 2020 
(Figure 4). Viruses harbouring the S:D614G mutation rapidly re
placed all other lineages circulating at the time, indicative of 
the significant fitness benefit afforded by the mutation. Since 
2020, this mutation has become fixed in the SARS-CoV-2 genome 
and all subsequent viral lineages have maintained S:G614.

The SARS-CoV-2 S protein mediates host cell entry by catalysing 
fusion of the virus envelope lipid bilayer with the target cell mem
brane.38 Because S decorates the virion surface, it is also a major 
antigen and induces neutralizing antibody responses.39 Therefore, 
S has served as a primary target for the development of diagnostics, 
therapeutics and—most importantly—vaccines. Consequently, this 
protein is subjected to strong selective processes, making it the 
most variable region in the SARS-CoV-2 genome (Figure 2b). 
Several studies performed on the S:D614G mutation demonstrated 
that this mutation facilitated enhanced cell entry through stabiliza
tion of the S subunits and through enhanced sampling of the open 
confirmation of the protein that enabled an interaction between the 
receptor binding domain (RBD) and the host receptor, ACE2.40,41

Subsequent studies confirmed that S:D614G conferred a clear bio
logical fitness advantage in vitro, enhanced transmission in vivo, 
and resulted in higher viral loads in patient upper airways.37,42 S: 
D614G was the first naturally selected mutation in SARS-CoV-2 to 
be observed at the population level. Although the term had not 
yet been defined, this new lineage was the first SARS-CoV-2 ‘variant 
of concern’ (VOC) and was likely essential for the global expansion 
and consolidation of the pandemic.

Emergence of VOCs
In December 2020, the COVID-19 Genomics Consortium UK 
(CoG-UK) and Public Health England (PHE) reported the rapid ex
pansion of a phylogenetically distinct lineage of SARS-CoV-2, 
termed B.1.1.7, that carried 17 lineage-defining non-synonymous 
mutations and deletions, 8 of which occurred in Spike alone 
(Figure 4a).43,44 Predicted to have emerged in September 2020, 
lineage B.1.1.7 accounted for over half of all cases in the UK by 
early December, becoming the first official SARS-CoV-2 VOC to 
be tracked by PHE.45 VOCs are defined by the WHO as variants 
with increasing relative prevalence and case counts that are asso
ciated with an increase in transmissibility, disease severity and/or 
therapeutic/immune evasion.46 The B.1.1.7 lineage quickly spread 
across the globe, accounting for a majority of cases worldwide by 
the spring of 2021 (Figure 4b). The WHO began labelling VOCs with 
letters of the Greek alphabet in May 2021, naming lineage B.1.1.7 
the ‘Alpha’ variant.47 This coincided with the emergence of 
several VOCs in geographically disparate regions of the globe in 
early to mid-2021, including the Beta variant in South Africa (lin
eage B.1.351), the Delta variant in India (lineage B.1.617.2), and 
the Gamma variant in Brazil (lineage P.1), among others 
(Figure 4b).48–51

Despite being phylogenetically distinct (Figure 4a), some of 
the new VOCs shared mutations in Spike, including S:N501Y 
(Alpha, Beta and Gamma), S:E484K (Beta and Gamma) and S: 
K417N (Beta and Delta), suggestive of convergent evolution.52

Laboratory studies using non-infectious virus-like particles engi
neered to express Spike proteins with these different mutations 
(i.e. pseudotyped virus particles) demonstrated that the S: 
N501Y and S:E484K mutations increased binding efficiency to 
the host ACE2 receptor, facilitating cell entry.53–56 Studies in ani
mal models and epidemiological studies of these variants in hu
man populations demonstrated that these same mutations 
contributed to enhanced transmission, facilitating their rapid 
spread.57 The S:E484K and S:K417N mutations were furthermore 
found to contribute to immune resistance against certain classes 
of neutralizing antibodies.58–60

The emergence of VOCs harbouring changes in the Spike pro
tein resulted in changes in the efficacy of monoclonal antibody 
therapeutics due to changes in their neutralizing capacity.61–63

For example, the S:E484K mutation (Beta and Gamma) and the 
S:T452R mutation (Delta) in the epitope region of Class II neutral
izing antibodies conferred resistance to several monoclonal anti
body therapeutics, including bamlanivimab.60,64–66 Indeed, 
several Spike mutations associated with VOCs that have been as
sociated with immune escape have been observed to arise intra- 
host after monoclonal antibody administration,67 especially in 
immunocompromised hosts with persistent infection.68–71 This 
has led to the theory that persistent infection in immunocom
promised or immunosuppressed hosts may have enabled the ra
pid evolution of SARS-CoV-2 and the simultaneous emergence of 
several distinct VOCs across the globe, though this is still under 
investigation.72

The co-circulation of many different VOCs with different mono
clonal antibody therapeutic sensitivities in early 2021 increased 
the salience of viral genotypic information to optimize clinical 
care and resulted in a major investment in SARS-CoV-2 genomic 
surveillance.73 Given that timely assessment of the SARS-CoV-2 
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genotype in patients is not clinically tenable in most healthcare 
systems, the choice of monoclonal therapeutic agent to adminis
ter to COVID-19 patients has been determined based on the 

regional frequency of a specific variant.74 Whereas variant distri
butions have largely been assessed by WGS, a number of cheaper, 
PCR-based alternatives for rapid SARS-CoV-2 genotyping were 
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developed in response to this need.75,76 These assays rely on PCR 
primer-probe sets that span one or more sequence mismatches 
between variants to enable specific amplification and detection 
of different VOCs. For example, a two amino acid deletion in 
Spike at positions 69 and 70 in the Alpha variant resulted in a 
loss of S gene amplification in a widely used multiplexed diagnos
tic assay (Thermopath TaqPath).43 This ‘S gene target failure’ 
(SGTF) became a reliable indicator of this deletion and a proxy 
for Alpha variant detection during early 2021. As this deletion 
has arisen independently in multiple lineages, only WGS can be 
used to unambiguously assign SARS-CoV-2 lineages, but 
PCR-based genotyping methods have been useful for powering 
large-scale clinical and translational research studies.57,77,78

Global predominance of the Omicron variants
By late fall of 2021, the Delta VOC was predominant worldwide 
and represented over 95% of all SARS-CoV-2 sequences 
(Figure 4b). However, in November 2021, a rapid increase in 
COVID-19 cases in Gauteng province, South Africa, coupled 
with a sudden increase in SGTF frequency prompted a rapid gen
omic surveillance response.79 These efforts uncovered a new, 
highly divergent SARS-CoV-2 lineage, B.1.1.529 (Figure 4a), which 
was designated as the Omicron VOC by the WHO only days after
wards.80 This highly divergent variant contained over 30 non- 
synonymous changes and deletions in Spike, including 15 in the 
Spike protein RBD alone.79 The Omicron VOC spread rapidly, caus
ing massive surges in cases counts and hospitalizations in late 
2021 and early 2022.81–83 By February 2022, Omicron had dis
placed Delta as the predominant VOC worldwide (Figure 4b).

Fortunately, early detection and reporting of the Omicron vari
ant enabled a rapid research and public health response, such 
that healthcare systems were able to adjust their clinical care 
practices in real time as the Omicron VOC emerged in their re
gions. Most notably, the significant antigenic shift in Spike dra
matically curtailed the effectiveness of most approved 
monoclonal therapeutics, including all approved Class I and 
Class II antibodies at the time.84 The Class III antibodies sotrovi
mab and bebtelovimab, which targeted relatively conserved re
gions of the RBD away from the receptor-binding motif, were 
the only two approved monoclonal antibody therapeutics with 
sustained efficacy against the Omicron VOC, though even these 
lost efficacy as the variant continued to diversify.62,84–86

The large number of mutations in the antigenic regions of Spike 
reduced the efficacy of certain monoclonal antibodies used as 
therapeutics, but were also sufficient to circumvent polyclonal 
antibody responses induced by vaccination and/or prior infec
tion.87 During the very first wave of the Omicron VOC in South 
Africa, it was found that fully vaccinated individuals were becom
ing infected at higher rates than previously seen.79 Indeed, one of 
the first studies to monitor vaccine effectiveness against Omicron 
found that two doses of the BNT162b2 mRNA vaccine produced by 
Pfizer and BioNTech provided only 33% efficacy against ‘break
through’ infection (compared with over 70% for Delta) and pro
vided only 70% efficacy against hospitalization (compared with 
over 90% for Delta).88 Follow-up studies in several countries con
firmed these results, but also found that administration of a third- 
dose booster shot significantly increased neutralizing antibody 
titre and vaccine efficacy against Omicron.89,90 Parallel studies 

at several sites likewise reported a drop in the effectiveness of prior 
infection in protecting against Omicron reinfection.91

Although this increased risk of vaccine breakthrough infec
tions and reinfections resulted in a massive increase in Omicron 
cases, hospitalizations and deaths due to COVID-19 did not in
crease proportionally.92–94 In a study of over 1 million adults 
who tested positive for SARS-CoV-2 in the UK in December 
2021, death certificate records verified that the risk of 
COVID-19-related death was 66% lower in people infected with 
Omicron compared with the Delta VOC, even when controlling 
for vaccination and prior infection.95 Several similar studies like
wise found that the Omicron variant was associated with less se
vere disease and better patient outcomes.96,97 This, combined 
with a different disease presentation featuring increased likeli
hood of sore throat and decreased likelihood of loss of smell 
compared with other variants,98 suggests that the underlying 
disease pathogenesis of Omicron may be different from prior var
iants. It has been suggested that these changes may be due to 
the Omicron variant’s altered viral tropism due to use of an alter
native cell entry pathway favouring the upper respiratory tract, 
but these studies are still ongoing.99,100

Since the emergence and global spread of the Omicron VOC, 
the virus has continued to diversify, with several successive sub
lineages outcompeting one another over time (BA.1, BA.2, BA.4, 
BA.5, XBB.1.5, etc.). Each of these sublineages has been found 
to have slightly different fitness advantages, with different im
mune escape mutations and neutralizing antibody resistance 
profiles, but all descend from the same parental lineage.101 As 
such, each sublineage has been classified as a ‘variant of interest’ 
(VOI) by the WHO, but none has been classified as a new VOC or 
issued a new Greek alphabet moniker.102 To date, no named VOC 
(Alpha, Beta, Delta, Gamma, Omicron) has descended from an
other VOC (Figure 4a), though the current global dominance of 
the Omicron sublineages makes it more likely that future variants 
will be derived from this genetic background.

Viral persistence and antiviral resistance
Intra-host longitudinal viral genomics studies have described the 
emergence of viral mutations in patients with COVID-19 over the 
course of a single infection. This viral evolution is most readily ob
served in the context of prolonged or persistent infections in im
munocompromised hosts who have impaired viral clearance. For 
example, we reported the emergence of S mutations associated 
with immune escape in two immunosuppressed patients with 
persistent SARS-CoV-2 infection with detectable viral loads and 
intermittent symptoms over 106–138 days.70 In addition to in
creasing intra-host viral diversity over time, immune escape mu
tations at S:E484 and S:241–243del (characteristic of the Beta 
and Gamma VOCs) independently emerged in both indivi
duals.103 Other studies have similarly described the development 
of immune escape mutations in SARS-CoV-2 during persistent in
fections, which is thought to be one source for the emergence of 
new variants with enhanced infection and/or immune evasion 
potential.104–107

Diversification in the SARS-CoV-2 genome at drug target sites 
could lead to the emergence of antiviral resistance, particularly in 
cases where there is persistent viral replication in hosts undergo
ing treatment with direct-acting antivirals such as remdesivir, 
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molnupiravir or nirmatrelvir/ritonavir. Remdesivir is a nucleotide 
analogue incorporated by the viral RNA-dependent RNA polymer
ase (RdRp) into nascent viral transcripts resulting in premature 
chain termination and inhibition of viral replication.108,109

Mutations in nsp12 in ORF1b, which encodes the RdRp, have 
been reported in in vitro selection experiments (nsp12:V166L) 
and have been detected in patients being treated with remdesivir 
(nsp12:E802D and nsp12:V792I).110–112 Although remdesivir has 
been approved for the treatment of SARS-CoV-2 since May 2020 
in the USA and many other countries, the frequency of these or 
other potentially resistance-associated mutations remains very 
low in global sequence databases.113 The frequency of 12 known 
or potential remdesivir resistance mutations catalogued by the 
Stanford Antiviral and Resistance Database (CoV-RDB) is at 
most 0.07% among sequenced SARS-CoV-2 genomes.114,115

Several of these mutations were found to come at a significant 
replicative fitness cost, which may explain their limited spread, 
though it is also possible that remdesivir does not elicit strong se
lective pressure in vivo.

Nirmatrelvir, the active component of nirmatrelvir/ritonavir, is 
an oral peptidomimetic that employs a nitrile electrophilic func
tional group, or ‘warhead’, to covalently bind the catalytic cyst
eine residue in the active site of the 3CL main protease (Mpro) 
required for processing and expression of critical viral proteins 
during replication.116,117 Protease mutations have been de
scribed in in vitro selection experiments, including Mpro:E166A 
and Mpro:L167F, which each confer low-level resistance to nir
matrelvir, as well as the triple mutant Mpro:L50F/E166A/L167F, 
which was 6 to 72 times more resistant to nirmatrelvir in bio
chemical assays.118 Notably, these substitutions were also asso
ciated with a significant reduction in Mpro enzymatic activity, 
implying a steep evolutionary fitness cost. To date, no single nu
cleotide mutations in Mpro have been described that both confer 
high-level resistance to nirmatrelvir/ritonavir and preserve en
zyme function, suggesting that clinically significant resistance 
to nirmatrelvir/ritonavir likely requires multiple compensatory 
mutations. 119,120

Molnupiravir is the oral prodrug of β-D-N(4)-hydroxycytidine, a 
ribonucleoside recognized by RdRp (nsp12/ORF1b) that acts by 
inducing lethal mutagenesis, most often through transition mu
tations (G→A or C→U) made during viral replication.121 An exam
ination of the global population structure of SARS-CoV-2 genome 
sequences revealed long phylogenetic branches enriched for 
transition mutations that occurred almost exclusively after 
2022 when molnupiravir treatment was introduced, and that 
were also localized to countries and age groups in which molnu
piravir was more heavily prescribed.122 Molnupiravir is thought to 
have a high barrier to resistance, and to date no studies have re
ported numerically significant, lineage-fixed mutations with clin
ical molnupiravir resistance.123 However, given its limited clinical 
performance and the inherent risk of inducing mutagenesis to
wards accelerated adaptive evolution, clinical usage of this agent 
over other alternative therapeutics is under question.124,125

Lessons learned and future considerations
Global efforts for genomic sequencing and surveillance during 
the COVID-19 pandemic have been historic in their scope and vol
ume. Previous pathogen sequencing efforts played an important 

role in informing and supporting this global effort. After the first 
HIV genome sequences were published in 1985, sequencing 
was applied to characterizing antiviral resistance mutations, 
tracking potential risk networks for public health interventions, 
and studying global and within-host evolutionary patterns in 
HIV.126–130 Similarly, genomic surveillance of influenza viruses 
has been increasing in the last two decades with the goals of track
ing the emergence of new viral strains, characterizing outbreaks 
within institutions or communities, and guiding vaccine develop
ment.131–134 Genome sequence databases, such as those main
tained by the NCBI or GISAID, provided ready infrastructure able 
to be quickly adapted to the needs of SARS-CoV-2 data sharing.135

Similarly, sequencing techniques and analysis tools developed for 
the study of other viruses were rapidly adapted to the public 
health, clinical and research needs of the COVID-19 pandemic, 
underscoring the value of robust pathogen genomics expertise 
in responding to new pandemic threats.

With increasing natural and vaccine-based immunity and 
waning COVID-19 case counts worldwide, sequencing pro
grammes and infrastructure that were implemented or scaled 
up to meet the demands of SARS-CoV-2 surveillance and study 
are being transitioned away from national-level efforts into 
more state or regional public health programmes or are being 
dismantled entirely. The challenge facing sequencing pro
grammes in a period of contracting resources is in maintaining 
the appropriate balance of surveillance of persistent infectious 
public health threats and specimen banking capacity to quickly 
respond to outbreaks or pandemics with timely and effective 
pathogen sequencing. Unfortunately, despite the shared experi
ence of the scientific community over the last 3 years and the im
provements in genomic surveillance capacity and expertise 
gained over this time, several structural limitations that predated 
the COVID-19 pandemic remain largely in place. These include 
limited communication and coordination among public health, 
academic and private industry entities, lack of clearly defined 
central direction of surveillance efforts, and important patient 
privacy protections that can also present significant barriers to ef
fective data sharing and interpretation. These limitations each 
serve to increase costs and reduce the effectiveness of pathogen 
genomic surveillance efforts for tracking, treating or preventing 
the next pandemic. Ongoing and future initiatives to improve 
data sharing, cross-centre communication and funding in this 
area are greatly needed.

Finally, the importance of boosting global contributions to 
pandemic surveillance cannot be overstated. The great majority 
of SARS-CoV-2 genomic sequencing has been performed in high- 
income countries, primarily in North America and Europe, with 
considerable disparities in sequencing volume from low-income 
countries around the world.136 To ensure rapid detection of the 
next pandemic threat and the greatest possible lead-time for de
veloping and approving therapeutics and vaccines, a comprehen
sive global sequence-based surveillance network is needed. This 
will require building infrastructure and expertise for pathogen 
genomic sequencing not just in high-income regions, but also 
in locations at comparatively higher risk of zoonotic or environ
mental infection spillover events. These often include low- 
income countries and regions with higher amounts of human/ 
wildlife interactions, greater population densities, or inadequate 
sanitation or healthcare resources.137 Investing in global 
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genomic sequencing resources and training will allow for faster, 
more representative sampling and data availability for earlier de
tection of new pandemic threats, more timely and effective ther
apeutics development, and better targeted public health 
responses in affected countries and globally.
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