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Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is
significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still
elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs)
but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA
was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion,
and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs.
Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and
bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein
kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory auto-
immune disease that primarily affects small joints and is
characterized by synovial inflammation and proliferation,
cartilage erosion, and bone destruction [1]. Synovial hyper-
plasia is a central pathological change of RA and the main
factor to the formation of an invasive pannus [2]. In RA,
synovial hyperplasia is mainly caused by the proliferation
of fibroblast-like synoviocytes (FLSs) and the infiltration of
adaptive immune cells, including T cells, B cells, and macro-
phages [3, 4]. Of the potential cellular participants in RA,
rheumatoid FLSs contribute to the production of proinflam-
matory cytokines and matrix metalloproteinases (MMPs),
which degrade the extracellular matrix. In addition, FLSs
develop unusual proliferative and aggressive phenotypes
inexorably linked to cancer cells, but the precise etiology is
still not known [5, 6].

Bone erosion is another important pathological feature of
RA, and its severity is parallel to disease severity because it
deteriorates the functional capacities of patients. Activated
osteoclasts (OCs) at the interface between pannus and bone
are the only cell type responsible for articular RA bone ero-
sion [7, 8]. In spite of severe synovial inflammation and
cartilage destruction, the progression of bone erosion is
slow in RA patients with osteosclerosis [9]. Such role of
OC is indicated by impaired osteoclastogenesis in the mouse
models of arthritis, which were fully protected from bone
destruction despite synovial inflammation [10]. OCs differ-
entiate from the myeloid monocyte/macrophage lineage
orchestrated by the receptor activator of nuclear factor-κB
(RANK) and RANK ligand (RANKL). RANKL is highly
expressed in the synovial tissues of patients with RA, and
its specific receptor RANK is on mononuclear OC precursors
[11]. Osteoprotegerin (OPG) is a soluble decoy receptor of
RANKL and can competitively inhibit the RANKL-RANK

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 5057009, 15 pages
https://doi.org/10.1155/2023/5057009

https://orcid.org/0000-0001-8768-4246
https://orcid.org/0000-0001-5053-9184
https://orcid.org/0000-0003-0620-877X
https://orcid.org/0000-0001-9323-2123
https://orcid.org/0000-0002-5700-0461
https://orcid.org/0000-0003-1075-3631
https://orcid.org/0000-0001-5171-196X
mailto:gaojif@qq.com
mailto:dongbaozhao@163.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5057009


binding, and, thus, OC differentiation and activation are sup-
pressed [12]. Conventional antirheumatic drugs for RA seem
to have bone-sparing effects simply by effectively alleviating
synovitis. Thus, the progression of bone erosion can still occur
in patients with RA even with clinical remission because of
residual synovitis and osteitis [13].

Wnt signaling cascades have essential roles in cell differen-
tiation, proliferation,migration, and tissue homeostasis and are
involved in RA pathogenesis [14, 15]. The canonical Wnt sig-
naling in synovium is activated during RA development, result-
ing in synovial hyperplasia, inflammatory cell infiltration, and
pannus formation [16]. Moreover, the noncanonical Wnt/PCP
pathway not only participates in the activation of RA-FLS and
the expression of RANKL [17] but also is implicated in the
differentiation and activation of OCs [18]. In the Wnt/planar
cell polarity (PCP) pathway, Wnt5a binds to its Frizzled recep-
tor and receptor tyrosine kinase-like orphan receptor 2/related
to tyrosine (Y) kinase (Ror2/RYK) coreceptors to recruit
Dishevelled (Dvl), thereby triggering to the activation of
Rho GTPases and downstream molecule Rho-associated pro-
tein kinase (ROCK) or c-Jun N-terminal kinase (JNK) [19].
Wnt5a is overexpressed in RA-FLS, and noncanonical Wnt5a
signaling contributes to the aggressive phenotype of RA-FLS
via the Wnt/Ca2+ andWnt/PCP signaling pathways coupling
with p38, ERK, and PI3K/AKT signaling [18]. In addition,
Wnt/PCP signaling pathway is implicated in systemic and
localized bone loss in patients with RA [20].

RhoA belongs to the Rho family GTPases [21]. It is a key
component of the Wnt/PCP signaling pathway and signifi-
cantly upregulated in RA serum exosomes [22]. RhoA acts as
a molecular switch that regulates the activation of cytoskele-
tal proteins, and is pivotal for innate and adaptive immunity
cell activation and migration [21]. ROCK, as a key down-
stream effector of RhoA, belongs to a family of the serine/
threonine kinase and has two paralogs (ROCK1 and ROCK2)
encoded by two different genes [23]. Previous studies on
RhoA/ROCK were mainly concentrated on the area of cancer
[24], and few studies in RA or inflammatory arthritis animal
models were conducted. Here, the effect and mechanism of
RhoA/ROCK on the biological phenotype of RA-FLS and
mouse OC differentiation in vitro were investigated, and its
role on the collagen-induced arthritis (CIA)model in vivowas
demonstrated. Our study may provide a potential basis for
novel therapeutic targets for ameliorating synovial inflamma-
tion and repairing bone erosion simultaneously in RA.

2. Materials and Methods

2.1. Patients Enrollment and Synovial Tissue Preparation.
Synovial tissues were collected from six patients with RA
(two cases from arthroscopic operation and four cases from
knee replacement surgery) and six patients with knee injury
(osteoarthritis and inflammatory arthritis were excluded by
arthroscopy). The inclusion criteria for RA were based on
the 2010 American College of Rheumatology/European
Alliance of Associations for Rheumatology (ACR/EULAR)
classification criteria [25]. This study was approved by the

Institutional Ethics Committee of the Changhai Hospital,
Shanghai, China.

2.2. Immunohistochemical of Synovial Tissue and Histopathology
of Mice. The synovial tissues of joints were immersed in 4%
paraformaldehyde for 48 hr and then analyzed by immunohis-
tochemistry (IHC). The IHC scores were in calculating the
percentage of RhoA positive cells (0= 0%−9%, 1= 10%
−24%, 2= 25%−49%, 3= 50%−74%, 4= 75%−100%) and
staining strength (0=unstained, 1= light yellow, 2= brown-
yellow, 3= brown) according to the standards of previous stud-
ies [26, 27].

The knee joints of mice were fixed in 4% paraformalde-
hyde for 72 hr, decalcified in 14% EDTA-glycerol for 4 weeks
at 37°C, and embedded in paraffin. Immunohistochemical
staining was performed according to previous methods.
Hematoxylin and eosin (H&E) and tartrate-resistant acid
phosphatase (TRAP) staining were performed for the exam-
ination of synovitis and OC infiltration. The severity of
arthritis in CIA mice was assessed according to the H&E
scoring standard [28]. The number of TRAP positive cells
per unit area of the joint synovium was determined.

2.3. RA-FLSs Isolation and Culture. The synovial tissues were
cut into 1mm2 pieces and digested in type II collagenase solu-
tion (1mg/ml) at 37°C constant temperature shaker for 4 hr.
The cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
(Gibco, USA) at 37°C and 5%CO2 humidified incubator. They
were harvested for experiments at three to six passages [27].
For the identification of isolated FLSs, the expression levels
of CD68 (negative) and vimentin (positive) were detected
by immunofluorescence.

2.4. BMMC Isolation and OC Induction.Mouse marrow cav-
ity was rinsed with a-MEM, and then the marrow flushing
solution was filtered by a cell filter (200 µm mesh). RBC lysis
solution was added to remove RBCs. The cells were resus-
pended using a-MEM (containing 10% FBS) and cultured at
37°C in a 5% CO2 humidified incubator. The next day, unad-
herent cells were collected using culture medium containing
30 ng/ml M-CSF (PeproTech, USA) and were harvested
when the cell density was 80%. Bone marrow mononuclear
cells (BMMCs) were inoculated into 12-well plates (1×105/well),
and 30ng/ml MSCF and 100ng/ml RANKL (PeproTech, USA)
were added to the culture medium to induce OC formation.
The medium was changed regularly. RNA and protein were
extracted for the detection of RhoA expression before induction
and on the 3rd and 5th day of induction.

2.5. Immunofluorescence. The distribution of RhoA in the
FLSs of two groups was assessed by immunofluorescence,
which was performed as described previously [29]. After
staining, the cells were then visualized and imaged with a
fluorescence microscope (Olympus, Tokyo, Japan) [27].

2.6. Cell Infection. Lentiviruses encoding RhoA (siRNA in
human and mouse cosource region) was constructed and
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produced by Jikai Technology (Shanghai, China). The RA-
FLSs were cultured in six-well plates for 24 hr, and the cell
density was 20%–30% on the next day. According to the
multiplicity of infection (MOI) obtained in the preexperi-
ment, the venom was prepared and added to the six-well
plates gently. After 8 hr, the liquid was changed. The best
MOI for Sh-Ctr and Sh-RhoA was 10 and 20, respectively.
Then, 72 hr after lentivirus infection, 4 μg/ml puromycin
(Sigma-Aldrich, USA) was added to remove wild cells, and
a follow-up experiment was conducted 1 week later. Western
blot was performed to determine the efficiency of infection.

BMMCs were inoculated into six-well plates, and the den-
sity of the cells was about 40% on the next day. The MOI of
control and Sh-RhoA lentivirus was both 10. Seventy-two
hours later, the transfection effect was observed with fluores-
cence microscopy, and qPCR was used in determining virus
transfection efficiency.

2.7. Cell Migration. Transwell cell migration test and wound
healing assay were used in determining the migration ability
of RA-FLSs after lentivirus infection. Transwell invasion
chambers (Corning, USA) were placed in 24-well plates,
and the numbers of RA-FLSs in five randomly selected fields
under the microscope in each well were calculated according
to a previously described method [30]. The cell migration
rate was determined as the average numbers of invading cells
compared to the Sh-Ctr group.

The transfected cells were inoculated into six-well plates.
The wound healing process was analyzed by phase contrast
microscopy (Leitz, Germany) at 0 and 24 hr, according to a
previous report [30]. The area of cell migration at different
time points was calculated by Image J software. Mobility=
(0 hr scratch area – 24 hr scratch area)/0 hr scratch area [27].

2.8. Measurement of Apoptosis. Apoptosis was assessed with
a one-step tunel apoptosis detection kit (Beyotime, China).
Briefly, serum-free medium was added to infected RA-FLSs
to induce apoptosis, and then the cells were fixed with form-
aldehyde 48 hr later. This procedure was followed by treat-
ment with TdT enzyme and fluorescent-labeled solution for
60min at 37°C in the dark. The nucleus was stained with
Hoechst solution, and the apoptosis rates of the two groups
were compared under a fluorescence microscope.

2.9. Cell Viability Assay. The impact of Sh-RhoA on cell
viability was assessed using Cell Counting Kit-8 (CCK-8)
(Dojindo, Japan). The infected RA-FLSs were incubated in
96-well plates (3× 103 cells/well) for 24 or 48hr, and then 10 μl
of CCK-8 solution and 100 μl of DMEM/well were added.
After incubation at 37°C for 4 hr, absorbance was measured
at 450 nm wavelength with a spectrophotometer [27].

2.10. TRAP Staining of OC. The BMMCs were inoculated
into 12-well plates with about 1× 105 cells/well, and 30 ng/ml
MSCF and 100ng/ml RANKL were added to the culture
medium for induction. Five days after induction, TRAP
staining was performed according to the standard protocol
(Sigma-Aldrich), and changes were photographed under a
microscope.

2.11. Dil Cell Membrane Fusion Experiment. BMMCs in
blank, Sh-Ctr, and Sh-RhoA group were inoculated into
new 12-well plates for induction. On the 3rd day of induc-
tion, the cell supernatant was discarded, and the cells were
washed three times with prewarmed a-MEM. Dil working
solution (1 μl of Dil and 10ml of a-MEM) was then added.
The cell dish was shaken gently and placed in the incubator
at 37°C for 30min. The Dil solution was removed, and the
cells were washed three times and resuspended with a new
culture medium containing M-CSF and RANKL. The cells
were counted and then inoculated into 12-well plates again
for further culture. After 24 hr, the BMMCs were fixed for
10min with formaldehyde, and the nucleus was stained with
Hoechst solution. Changes were observed and photographed
under a fluorescence microscope.

2.12. Animal Studies.We used three normal mice (DBA/1) in
exploring the dose of the virus. After injecting lentivirus into
mouse knee joint (once a week) for 3 weeks, we performed
IHC to detect the expression of the enhanced green fluores-
cent protein (EGFP) gene carried by the lentivirus. The
DBA/1 male mice were 8 weeks old (they had been kept in
the SPF animal center of our hospital for 1 week to adapt to
the environment) and purchased from SLRC Laboratory
Animals (Shanghai, China). All animal procedures and han-
dling were approved by the Animal Care and Use Committee
of Changhai Hospital (Shanghai). A total of 18 mice were
randomly divided into three groups: Sh-Ctr, Sh-RhoA, and
normal control groups, and CIA was established as previously
described. The lentivirus was administered into the knee
joints of mice 28 days after the first immunization. Clinical
arthritis can be usually observed at this time. After the second
immunization, the severity of arthritis was scored every other
day [31], and scoring was independently conducted by two
people. The final average was obtained. Finally, on the 54th
day, the knee joints were stained by IHC, H&E, and TRAP.

2.13. Collagen-Induced Arthritis Model. Use a handheld
grinder (Northern Tool Equipment, Ningbo, China) to emul-
sify 4mg/ml complete Freund’s adjuvant (Chondrex, Red-
mond, WA, USA) with 2mg/ml bovine type II collagen
solution (Chondrex) at ratio of 1 : 1 until the obtained liquid
had a milky white appearance and was insoluble in water. The
whole emulsification process required to be performed on ice
to prevent heating. Each mouse was injected with 100μl of
the emulsion subcutaneously in the tail. The booster injection
was performed on the 21st day with the same method, while
an emulsion of incomplete Freund’s adjuvant (Chondrex)
and bovine type II collage was recommended. For more spe-
cific directions, please refer to this published protocol [31].

2.14. Micro-CT. The micrographs of the subchondral bone of
the mice knee were obtained using micro-CT system (Sky-
scan 1172) at 16 μm isotropic voxel size. After scanning, CT-
Vol software (version 1.14) was used for three-dimensional
analysis.

2.15. ELISA Assay. The venous blood of mice was collected,
kept at room temperature for 30min, and centrifuged at
1,000 g for 10min. The supernatant was then collected.
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The levels of IL-17 and IL-21 were detected with an ELISA
kit (R&D System, USA).

2.16. qPCR Assays. Total RNA was extracted from infected
RA-FLSs and BMMCs by using TRIzol Reagent (Invitrogen)
according to the manufacturer’s instructions. cDNA synthe-
sis and RT-PCR were performed according to protocols of
the PrimeScript RT Reagent Kit and SYBR Green (Takara).
The expression of GAPDH in the cDNA samples was used
as the control. The primers used are shown in Tables S1 and
S2. The 2−ΔΔCt method was used in quantifying the relative
mRNA expression levels.

2.17. Western Blot. Synovial tissue and cells were lysed using
proper lysis buffer, and the proteins were collected after centri-
fugation. Quantitative protein samples were separated through
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes. The mem-
branes were incubated overnight with appropriate antibodies.
GAPDH antibodies (Sigma-Aldrich) were incubated as
controls. After incubation with horseradish peroxidase (HRP)-
conjugated secondary antibodies (CST), immunoreactive bands
were visualized using chemiluminescence reagents (BIORAD).
The catalog numbers of the regarding antibodies are shown in
Table S3.

2.18. Immunoprecipitation. Third-generation RA-FLSs were
harvested and lysed using NP40 lysate buffer with protease
and phosphatase inhibitors (Beyotime, China). The super-
natants were collected after centrifugation. Corresponding
antibodies or IgG (negative control) and magnetic beads
were added to the quantitative protein samples, which were
then incubated overnight at 4°C on a rotary shaker. Immu-
nological complexes were extracted and boiled, and western
blotting was performed.

2.19. Statistical Analysis. All the data are from at least three
independent experiments and expressed as the mean stan-
dard error. By using SPSS 26.0, differences between two were
compared with Student’s t-test, and three groups were com-
pared with one-way analysis of variance (ANOVA), followed
by a Tukey’s multiple comparison posttest. All significant
differences were considered at P-values< 0.05.

3. Results

3.1. RhoA Expression Increased in the Synovial of Patients
with RA and CIA Mice. Our previous studies have described
that RhoA is significantly upregulated in RA-derived serum
exosomes [22]. To assess the expression of RhoA in patients
with RA and CIA mice, we collected human synovial tissues
from RA (n= 6) and trauma (n= 6) patients and joint sam-
ples from CIA (n= 6) and normal mice (n= 6).

The IHC results (Figures 1(a) and 1(b)) confirmed that
expression levels of RhoAwere higher in synovial tissues from
RA than in those from trauma patients, which were present as
brown granules in the cytoplasm and nucleus. Then, we fur-
ther examined the expression of RhoA in RA-associated syno-
vial tissues through western blotting (Figures 1(c) and 1(d)),
and similar results showed that it was 2.160-fold of the con-
trol. We performed immunofluorescence (Figure 1(e)) and

western blotting (Figures 1(f) and 1(g)) to detect the level of
RhoA in RA-FLSs and trauma-FLSs, and the results indicated
that RhoA significantly increased in RA-FLSs compared with
the control. A similar increase in RhoA expression was
observed in the knee joints from CIA mice compared with
wild-type mice by IHC analysis (Figures 1(h) and 1(i)).

3.2. Sh-RhoA Inhibited the Proliferation, Invasion, and
Inflammation of RA-FLS and Upregulated the OPG/RANKL
Ratio. Sh-RhoA lentivirus was transfected into RA-FLSs at
an MOI of 20. After 48 hr of transfection, puromycin was
added to the medium, and infected cells were collected. After
5 days, transfection efficiency was measured by western blot-
ting (Figures 2(a) and 2(b)), and RhoA expression (a 0.432-
fold decrease) was obviously inhibited in the RA-FLSs of
interfering group.

Research has shown that RA-FLS possesses the ability of
tumor-like invasion and proliferation, while apoptosis decreases
significantly. Data from scratch wound healing (Figures 2(c)
and 2(d)) and Transwell assay (Figures 2(e) and 2(f)) indicated
that Sh-RhoA significantly inhibited themigration and invasion
of RA-FLSs. By terminal deoxynucleotidyl transferase mediated
dUTPnick-end labeling (TUNEL) assay (Figures 2(g) and 2(h)),
we found that TUNEL-positive cells had a 1.929-fold increase in
the Sh-RhoA group, revealing that RhoA had an important
role in preventing apoptosis. CCK-8 assay (Figure 2(i)) was
used in investigating the effects of RhoA on RA-FLS prolifer-
ation, and Sh-RhoA significantly restrained the growth of RA-
FLSs. At 24 and 48 hr, the absorbance values of the Sh-RhoA
group were 0.833 and 0.726 times of the control group,
respectively. MMPs help RA-FLSs to invade articular carti-
lage, thus resulting in articular cartilage impairment [32].
Western blot (Figures 2(j) and 2(k)) revealed that Sh-RhoA
dramatically decreased the expression of MMP-3 (0.370-fold)
and MMP-13 (0.533-fold).

IL-17 is significantly upregulated in synovial fluids and
synovial tissues [33, 34]. Therefore, we explored the inflam-
matory cytokines of RA-FLSs by qPCR (Figure 2(l)) and
found that the expression of IL-17 mRNA was a 0.514-fold
decrease after RhoA knockdown.

Previous studies on patients with RA and animal models
have observed that decrease in the OPG/RANKL ratio can
promote OC formation [17]. Our results (Figures 2(m) and 2
(n)) confirmed that Sh-RhoA can lower the level of RANKL
mRNA and increase the OPG/RANKL ratio.

3.3. Sh-RhoA Inhibited Differentiation of BMMCs into OCs.
BMMCs were extracted from the femoral bone marrow of
C57BL/6 mice and stimulated with RANKL+M-CSF. RhoA
protein andmRNA expression levels in the 0, 3th, and 5th day
of induction were detected by western blotting (Figures 3(a) and
3(b)) and qPCR (Figure 3(c)), respectively. Our data revealed
that RhoA expression was dramatically elevated (2.051-fold) on
the 3rd day, which was maintained until the 5th day.

Mouse BMMCs were transfected with Sh-RhoA lentivirus
at an MOI of 10, and transfection efficiency was measured
using qPCR (Figure 3(e)) after 72 hr. Compared with the con-
trol group, the relative quantity of Rho mRNA expression was
0.581Æ 0.062 (p¼ 0:007). BMMCs successfully transfected
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FIGURE 1: Validation of RhoA expression in the synovium and FLSs from RA and CIA mice. (a and b) IHC analysis tested the expression of
RhoA in synovial extracts from trauma (n= 6) and RA (n= 6) patients, p¼ 0:002. (c and d) Western blot results for RhoA and GAPDH of
synovial tissues from trauma (n= 6) and RA (n= 6) group, p¼ 0:035. (e) The immunofluorescence analysis of RhoA expression in the FLSs
of RA and trauma patients (n= 4). (f and g) Western blot analysis which was used in detecting the expression of RhoA in trauma-FLSs and
RA-FLSs (n= 4), p<0:001. (h and i) RhoA IHC analysis of knee synovium from wide or CIA mice (n= 5), p¼ 0:003. ∗p<0:05, ∗∗p<0:01,
∗∗∗p<0:001.
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FIGURE 2: Continued.
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were stimulated with the same method. Figure 3(d) shows the
typical fluorescence images of transfected BMMCs that differ-
entiated into OCs.

The TRAP assay (Figures 3(f ) and 3(h)) was carried out
to evaluate OC formation. The percentage of mature OCs in
the Sh-RhoA group was lower than that in the Sh-Ctr group
(p¼ 0:012), suggesting that RhoA played a crucial role in OC
differentiation. Given a significant increase in RhoA during
the middle term of differentiation, we assessed BMMC mem-
brane fusion by Dil staining on the 3rd day after the stimula-
tion. The results (Figures 3(g) and 3(i)) revealed that BMMC
membrane fusion rate was significantly reduced (0.144Æ 0.010

vs. 0.335Æ 0.016) in the Sh-RhoA group compared with the
Sh-Ctr group.

3.4. Sh-RhoA Attenuated Synovial Inflammation, Bone
Destruction, and Bone Loss in CIA Mice. To demonstrate
the treatment effects of RhoA on RA in vivo, we established
a CIAmodel (Figure 4(a)), in which lentivirus (1× 109 IU/ml)
was injected into the stifle joints of mice. For transfection
efficiency testing, EGFP expression levels were detected by
IHC (Figure 4(b)). The western blot results (Figures 4(c)
and 4(d)) confirmed downregulated RhoA expression in the
synovial tissues of the stifle joint.
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FIGURE 2: Impact of Sh-RhoA on migration, apoptosis, viability, and inflammatory response of RA-FLSs. (a) The effects of Sh-RhoA infection
on protein expression. (b) Differences in the relative ratios of RhoA to GAPDH between three groups (n= 3); p¼ 0:001, Sh-RhoA versus
blank; p¼ 0:006, Sh-RhoA versus Sh-Ctr. (c and d) The results of wound healing assay showed that the cell migration ability in the Sh-RhoA
group was lower than that in the control group, p¼ 0:003. (e) The results of Transwell cell migration test in RA-FLSs. (f ) The number of
migration cells in Sh-RhoA group was lower than that in the Sh-Ctr group, p<0:001. (g) Representative images showing the Tunel+ cells
(red) of Sh-RhoA group and control. The nucleus was stained with Hoechst solution (blue). (h) The statistic percentage of Tunel+ cells in
indicated conditions, p¼ 0:034. (i) The results of CCK-8 assay revealed that Sh-RhoA reduced the viability of RA-FLSs, p¼ 0:004, 0.004.
(j and k) Western blot analyses revealed that in the Sh-RhoA group, the expression of MMP-3 and MMP-13 was lower than that in the
control group, p¼ 0:017, 0.003. (l) The relative mRNA levels of TNF-α, IL-1β, IL-17, and IL-21. Sh-RhoA only restrained the secretion of
IL-17 (p¼ 0:616, 0.088, 0.001, 0.120). (m) The relative mRNA levels of OPG and RANKL. Sh-RhoA inhibited the level of RANKL in RA-FLSs
(p¼ 0:374, 0.006). (n) The ratio of OPG/RANKL increased significantly in the Sh-RhoA group (n= 3), p¼ 0:028. ∗p<0:05, ∗∗p<0:01,
∗∗∗p<0:001.
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FIGURE 4: Continued.
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By H&E staining of the stifle joint from different groups,
we showed that Sh-RhoA reduced inflammatory cell infiltration,
synovial hyperplasia, pannus formation, and bone destruction
(Figures 4(e) and 4(f)). The arthritis scores in the Sh-RhoA
group were significantly ameliorated after the third intra-
articular injection (day 47, p¼ 0:004) (Figure 4(g)) compared
with those in the Sh-Ctr group.

To further observe the role of RhoA on OC precursor
and OC formation in synovial pannus and bone destruction
sites in vivo, we performed TRAP staining on the stifle joints
of mice. As shown in Figures 4(h) and 4(i), synovial tissues in
the Sh-RhoA group had fewer TRAP-positive cells than
those in the Sh-Ctr group, and the Sh-RhoA group displayed
reduced levels of bone erosion and destruction. Micro-CT
and 3D reconstruction showed the effects of RhoA on sub-
chondral bone microstructure in CIA mice. The results
showed that compared with Sh-Ctr, Sh-RhoA greatly reduced
bone destruction, as quantitatively evidenced by the regularly
and densely arranged bone trabeculae and a statistically sig-
nificant increase in BV/TV (p¼ 0:026).

To determine the effects of RhoA on the secretion of
inflammatory cytokines in vivo, we investigated the expres-
sion of IL-17 and IL-21 in serum by ELISA. As shown in
Figure 4(l), the expression of IL-17 and IL-21 in the Sh-RhoA
group was lower than that in the Sh-Ctr group.

3.5. RhoA Regulates the Behavior of OCs and FLSs through
ROCK2. The Wnt/PCP pathway plays a vital role in regulat-
ing synovial proliferation and bone remodeling [35, 36].
Through qPCR (Figure 5(a)), our studies found that Sh-
RhoA remarkably suppressed the expression of ROCK2,
Janus kinase 2 (JAK2), and signal transducer and activator
of transcription 3 (STAT3) in RA-FLSs. Western blotting
(Figure 5(a)) results confirmed that RhoA silencing can
attenuate the expression of ROCK2 and p-STAT3.

RANKL mediates OC fusion and differentiation by
inducing the expression of c-Fos and nuclear factor-activated
T-cell 1 (NFATc1) [37]. Our qPCR (Figure 5(d)–5(f)) results
revealed that Sh-RhoA significantly decreased the expression
of ROCK2 (0.226-fold), c-Fos (0.534-fold), and NFATc1
(0.372-fold) mRNA in mouse OC precursor cells (BMMCs)
3 days after stimulation, whereas Sh-RhoA only decreased
NFATc1 mRNA expression on the 5th day.

Co-immunoprecipitation (CO-IP) was used in studying
the interactions between RhoA with ROCK2, ROCK2, and
pSTAT3. Our results (Figures 5(g) and 5(h)) suggested that
RhoA in RA-FLSs works through direct impacts on ROCK2,
and RhoA/ROCK2 signal transduction can couple with the
JAK/STAT pathway to regulate the behavior of RA-FLSs.

4. Discussion

RA is a chronic inflammatory autoimmune disease. Synovitis
and bone erosion are the two main pathological features, and
synovitis is the important cause of bone erosion, which is
closely related to the RA severity and joint function status in
RA [38]. Our previous study suggested that Dvl3 expression
increased in the synovium and FLS of RA and significantly
upregulated the expression of β-catenin and RhoA [22].
Meanwhile, the activation of different domains of Dvl3 in
OCs can activate the Wnt/β-catenin and RhoA/ROCK path-
ways [39].

Our study showed that the expression of RhoA was sig-
nificantly upregulated in the joint synovium of RA and CIA
and in RA-FLSs, suggesting that the Wnt/PCP pathway is
activated in RA and animal models of inflammatory arthritis.
We observed that the expression of RhoA gradually increased
during the differentiation of mouse BMMCs into OCs, espe-
cially on the 3rd day of induction process. This result sug-
gested that RhoA plays a certain role in the differentiation of
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FIGURE 4: Effect of Sh-RhoA on CIA mice. (a) Joint changes in CIA mice. (b) The IHC analysis tested the EGFP expression to determine the
transfected effect. (c and d) The western blot result showed that the expression of RhoA in the joint synoviumwas significantly downregulated
in the Sh-RhoA group compared with the Sh-Ctr group (n= 3), p¼ 0:017. (e) The typical HE changes in knee joint in the three groups (n= 5).
(f ) The H&E scores were significantly lower in the Sh-RhoA group than in the control group (n= 5), p<0:001. (g) Compared with the Sh-Ctr
group, the arthritis scores in Sh-RhoA group were significantly ameliorated after the third intra-articular injection (n= 5), p¼ 0:004, p<0:001,
p¼ 0:001. (h and i) TRAP staining on joints synovium showed that the Sh-RhoA group had fewer TRAP-positive cells (n= 5), p¼ 0:004.
(j and k) Micro-CT showed the influence of Sh-RhoA on the microstructure of subchondral bone in CIAmice. The results indicated that bone
volume/tissue volume (BV/TV) was elevated in the Sh-RhoA group compared with the control group (n= 3), p¼ 0:026. (l) The levels of IL-17
and IL-21 in mouse serum tested by an ELISA assay kit (n= 3), p¼ 0:008, 0.040. ∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001.
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FIGURE 5: Mechanism research of RhoA involved in synovitis and bone erosion. (a) Relative mRNA expression levels of JNK, JAK2, STAT3,
ROCK2, and NF-κB in transfected RA-FLSs, p= 0.380, 0.016, 0.025, 0.004, 0.321. (b and c) The protein levels of RhoA (p¼ 0:004), ROCK2 (p¼
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OC.We hypothesized that RhoA not only plays an important
role in the pathogenesis of RA synovitis but also participates
in the activation of OC, causing bone erosion and osteoporo-
sis in RA.

To determine the effect of RhoA on the phenotype of
RA-FLS, we transfected RA-FLSs with RhoA interference
and control lentivirus. The results showed that Sh-RhoA sig-
nificantly inhibited the migration and proliferation of
RA-FLSs and inhibited the expression of MMP-3–13. MMPs
are important causes of cartilage erosion [40]. Reduced apo-
ptosis is an important feature of RA-FLSs [41]. Apoptosis is a
controlled form of cell death [42]. The RhoA/ROCK signaling
pathway plays an important role in apoptosis, but the proa-
poptotic or antiapoptotic effects mainly depend on cell type
and surrounding microenvironment [43]. Our study first
showed that the downregulation of RhoA expression in
RA-FLSs plays a proapoptotic role.

The RhoA/ROCK pathway can regulate the differentia-
tion of Th17 cells, and Th17 mainly secretes inflammatory
factors IL-17 and IL-21 [33, 44]. IL-17 is highly expressed in
the synovium of RA and plays an important role in local
inflammation, and can promote the secretion of RANKL
by RA-FLSs and induce the formation of OCs [34, 45].
The results of this study showed that the downregulation
of RhoA only inhibited the expression of IL-17 in vitro,
whereas sh-RhoA inhibited the secretion of IL-17 and IL-21
in the serum of CIA mice in vivo. This phenomenon suggests
that RhoA directly participates in the metabolic process of
IL-17, but other pathways may be involved in the secretion of
IL-21. The specific mechanism still needs to be further studied.

OC is the only cell in the body that can absorb bone [46].
RANKL is essential for OC differentiation in humans and
mice [47]. OPG is a soluble bait receptor for RANKL [48].
Decrease in serum OPG/RANKL ratio in newly diagnosed
RA is an independent predictor of rapid joint destruction
and sustained progression [49]. Our study showed that Sh-
RhoA can inhibit RANKL expression, increase OPG/RANKL
ratio in RA-FLSs, and significantly inhibit BMMC fusion,
and the proportion of mature OC significantly decreased.

The study in vivo further verified the therapeutic effect of
Sh-RhoA. Injection of Sh-RhoA lentivirus into the knee sig-
nificantly reduced the joint score, synovial inflammation,
infiltration of OC precursor cells, and secretion of inflamma-
tory factors in mice. The subchondral bone volume fraction
of the experimental group mice increased correspondingly.

After clarifying the effects of RhoA on RA-FLS, OC, and
CIA models in vitro and in vivo, we further investigated the
related mechanisms. The results of qPCR, western blot,
and CO-IP showed that RhoA transduced signals through
ROCK2 in RA-FLS and ROCK2 interacted with phosphory-
lated STAT3, which played a role in RA synovitis. In addi-
tion, Sh-RhoA can inhibit the expression of ROCK2, c-Fos,
and NFATc1 mRNA in mouse BMMC. RANKL regulates
OC differentiation mainly through c-Fos and NFATc1 [50].
c-Fos is the molecular basis of OC differentiation, and
NFATc1 is the target gene of c-Fos [51]. Calcineurin inhibi-
tors can effectively inhibit OC differentiation by inhibiting

NFATc1 [52]. The results suggested that RhoA/ROCK2 had
a direct effect on RANKL-induced OC differentiation.

Previous studies have shown that targeting ROCK2 can
regulate the balance between Th17 and Treg to restore
immune homeostasis [53]. Our study is the first to propose
that RhoA/ROCK2 affects the biological behavior of RA-FLS
and the differentiation of OC in mice. The JAK/STAT path-
way represents a central pathway that mediates cellular
responses to various cytokines and growth factors [54]. JAK
inhibitor (JAKi) can significantly downregulate pSTAT3, and
the correlation between STAT3 and Wnt pathways has been
reported, which plays a synergistic role in cell survival and
proliferation [55, 56]. Our findings suggested that RhoA/
ROCK2 plays a proinflammatory and proproliferative role
by interacting with pSTAT3 in RA-FLS. InOC differentiation,
the expression levels of c-Fos, NFATc1, and other key regu-
lators are directly related to the RhoA/ROCK2 pathway.

Studies of RA pathogenesis have shown an inseparable link
between bone and the immune system [57]. Adaptive immune
cell infiltration in the synovial lining is an important patho-
logical change in RA, with half of the cells being CD4+mem-
ory T cells [58]. The validity of CTLA4-Ig points to a relative
contribution of T-cell activation even in the bone-destroying
phase of RA [57]. The search for sharedmolecules between the
skeleton and the immune system is conducive to the clinical
transformation of RA therapy. As a key regulator of innate and
adaptive immunity, RhoA is crucial for T-cell activation and
migration [21]. The coupling of the RhoA/ROCK pathway to
the JAK/STAT pathway was first discovered during differenti-
ation of Th17 cells. Our study provides new evidence for the
functional coupling betweenRhoA/ROCK and JAK/STAT sig-
naling. Previous studies have shown that JAKi not only delays
the bone erosion of RA, but also increases serum
OPG/RANKL ratio and promotes bonemass growth in animal
models of inflammatory arthritis, but the specific mechanism
remains unclear [59]. The results of this study may partially
explain the bone protection effect of JAKi. In summary, RhoA/
ROCK2 is involved in RA-FLSs migration and proliferation,
production of inflammatory mediators and metalloprotei-
nases, expression of RANKL, and osteoclastogenesis. Precision
targeted therapy is the current therapeutic trend in RA, so
finding targeted pathogenic molecules that are involved in
multiple aspects of the disease is of great clinical importance.

5. Conclusion

RhoA/ROCK2 participates in RA synovitis by coupling with
the JAK2/STAT3 pathway and participates in OC bone ero-
sion by regulating the expression of c-Fos and NFATc1
simultaneously. This study provides a theoretical basis for
improving synovitis and repairing bone erosion simulta-
neously and lays a foundation for the development of novel
RA-targeting drugs.
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