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Non-Small cell lung cancer (NSCLC) is one of the most dangerous cancers, with 85% of all new lung 
cancer diagnoses and a 30–55% of recurrence rate after surgery. Thus, an accurate prediction of 
recurrence risk in NSCLC patients during diagnosis could be essential to drive targeted therapies 
preventing either overtreatment or undertreatment of cancer patients. The radiomic analysis of 
CT images has already shown great potential in solving this task; specifically, Convolutional Neural 
Networks (CNNs) have already been proposed providing good performances. Recently, Vision 
Transformers (ViTs) have been introduced, reaching comparable and even better performances 
than traditional CNNs in image classification. The aim of the proposed paper was to compare the 
performances of different state-of-the-art deep learning algorithms to predict cancer recurrence in 
NSCLC patients. In this work, using a public database of 144 patients, we implemented a transfer 
learning approach, involving different Transformers architectures like pre-trained ViTs, pre-trained 
Pyramid Vision Transformers, and pre-trained Swin Transformers to predict the recurrence of NSCLC 
patients from CT images, comparing their performances with state-of-the-art CNNs. Although, the 
best performances in this study are reached via CNNs with AUC, Accuracy, Sensitivity, Specificity, 
and Precision equal to 0.91, 0.89, 0.85, 0.90, and 0.78, respectively, Transformer architectures reach 
comparable ones with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.90, 0.86, 
0.81, 0.89, and 0.75, respectively. Based on our preliminary experimental results, it appears that 
Transformers architectures do not add improvements in terms of predictive performance to the 
addressed problem.

Non-small cell lung cancer (NSCLC) represents the most frequent form of lung cancer, treated mainly with sur-
gery and modern radiotherapy1–3. Therapeutic approaches for NSCLC patients differ according tothe histological 
characteristics of the tumor and the patient’s condition. The treatment path for patients with locally advanced 
NSCLC currently includes chemoradiotherapy possibly followed by immunotherapy. For early-stage patients, 
however, surgical resection followed by chemotherapy currently remains the only potentially curative treatment. 
Nonetheless, 30–55% of these patients develop post-resection tumor recurrence within the first 5 years2. There-
fore, the early identification of patients most prone to developing a recurrence is a challenge that is currently still 
open and would allow clinicians to plan a more accurate therapeutic surveillance plan.
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Several works have been proposed on the prediction of recurrence-free survival and overall survival in 
NSCLC patients. However, the state-of-the-art is lacking of models designed for the early prediction of disease 
recurrence. Furthermore, although all proposed models show encouraging results, they are still not suitable for 
a clinical application, even when they involve genomic-based models which are expensive and time-consuming 
procedures. In recent years, artificial intelligence has already demonstrated its potential in defining predictive 
and prognostic models. Specifically, the predictive power of radiomic features extracted from biomedical images 
is now well established in the scientific community4–8.

Recently, radiomics via Convolutional Neural Networks (CNNs) has been extensively used showing strong 
potential5–20. CNNs can be of two types: custom or pre-trained. In the former, scientists build their own network 
which is then trained to execute a specific task; in the latter case, a transfer-learning approach is used15–20. Net-
works are first trained on millions of images of different classes (e.g., ImageNet) in recognizing specific patterns 
like edges, dots, color gradients, shapes, etc.21. After that, this gained knowledge is transferred to the specific 
set of images to study. In this work, we adopted only the transfer learning approach. Typically, CNNs consist of 
several layers of convolutions and max pooling. When applied to images, the bottom layers (close to the input 
layer) focus on local simple features like edges, dots, and color gradients; higher layers, instead, combine the 
previous features into more complex ones and can be used to train Machine Learning models.

However, CNNs require high computational resources; second, they focus more on the entire image instead 
of its portions which could contain the lesion22, 23.

In 2020, the first ViT architecture was introduced and after that, a variety of different architectures 
appeared24–40. Differently from CNNs, ViTs consist of a small number of layers and can decompose the image in 
patches gaining information with the attention mechanism37–40. They turned out to reach promising performances 
even outperforming traditional CNNs22, 23, 41–48.

In this scenario, in light of innovative algorithms proposed in the literature, the aim of our work was to 
compare the performances of different state-of-the-art deep learning algorithms to predict disease recurrence 
in NSCLC patients. To the best of our knowledge, the state-of-the-art lacks a comparative study on the classifica-
tion performances obtained by these two architectural families in relation to the problem of disease recurrence 
prediction evaluated on the same reference dataset. This information would allow us to lay the foundations for 
future studies aimed at defining and validating an accurate model of personalized medicine. Therefore, in this 
preliminary work, we used various Transformer architectures to predict NSCLC recurrence14, 49–52. We used a 
public database of CT images of 144 NCSLC patients for recurrence classification comparing the performances 
of ViTs and CNNs53. The paper is organized as follows: in Section “Results”, Materials and Methods, we intro-
duce the database of patients and the network architectures; then, in Sections “Discussion and conclusion” and 
“Materials and methods”, Results and Discussion, we present the results of our transfer-learning-based model, 
discussing their performances.

Results
The performances of diverse Transformer families are summarized in the radar plot of Figs. 1, 2, and 3: ViTb_32 
and ViTb16 (Fig. 1a,b), PVT-B1 and PVT-B0 (Fig. 2a,b), Swin-tiny and Swin-small (Fig. 3a,b).

Among all the structures evaluated for this family of architectures, PTV_B1 shows the best performance 
(Fig. 2). It was highly performing with an AUC value, accuracy sensitivity, specificity and precision of 0.90 ± 0.04, 
0.86 ± 0.04, 0.81 ± 0.12, 0.89 ± 0.07, and 0.75 ± 0.11 respectively.

On the other hand, performances of CNNs are shown in the radar plots of Fig. 4. InceptionV3 (Fig. 4b) 
outperformed the other structures by achieving an AUC value, accuracy, sensitivity, specificity, and precision of 
0.91 ± 0.03, 0.89 ± 0.04, 0.85 ± 0.05, 0.90 ± 0.06 and 0.78 ± 0.10, respectively.

As additional result, Fig. 5 shows a histogram of the validation loss values, averaged over all the epochs, folds 
and rounds of cross-validation, for ViTs, PVTs, Swins and CNNs. ViTb_16, PVT-B1, Swin-tiny, and InceptionV3 

Figure 1.   Radar plots of the performances AUC, Accuracy (Acc), Sensitivity (Sens), Specificity (Spe), and 
Precision (Pre) of ViTb_32 (a) and ViTb_16 (b). For each metric, the mean value, among all the cross-validation 
20 rounds, is shown with its standard deviation.
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show the lowest validation loss in the histogram within their family. The best trade-off between the performances 
achieved and the loss valued was reached by InceptionV3.

Discussion and conclusion
The a m of the study was to evaluate the performances of different deep learning algorithms for predicting recur-
rence in NSCLC patients by analyzing baseline CT. Our experimental results showed that ViTb_16, has higher 
performances, reaching an AUC and Accuracy values of 0.84 ± 0.04 and 0.83 ± 0.05, respectively, against ViTb_32, 
values equal to 0.67 ± 0.05 and 0.64 ± 0.08 respectively due to their different architectures. Indeed, ViTb_16 
decomposes the input images into patches of size 16 × 16 pixels, while ViTb_32 into patches of size 32 × 32 pixels. 
Therefore, if the patch size is smaller, the transformer encoder’s attention would be higher, bringing to a better 

Figure 2.   Radar plots of the performances AUC, Accuracy (Acc), Sensitivity (Sens), Specificity (Spe), and 
Precision (Pre) of PVT-B1 (a) and PVT-B0 (b). For each metric, the mean value, among all the cross-validation 
20 rounds, is shown with its standard deviation.

Figure 3.   Radar plots of the performances AUC, Accuracy (Acc), Sensitivity (Sens), Specificity (Spe), and 
Precision (Pre) of Swin-tiny (a) and Swin-small (b). For each metric, the mean value, among all the cross-
validation 20 rounds, is shown with its standard deviation.

Figure 4.   Radar plots of the performances AUC, Accuracy (Acc), Sensitivity (Sens), Specificity (Spe), and 
Precision (Pre) of three CNNs: ResNet50 (a), InceptionV3 (b), and DenseNet201 (c). For each metric, the mean 
value, among all the cross-validation 20 rounds, is shown with its standard deviation.
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classification. As regards the Swin cases, both Swin-tiny and Swin-small are comparable (AUC = 0.82 ± 0.04 
and 0.80 ± 0.07; Accuracy = 0.79 ± 0.04 and 0.77 ± 0.04 respectively). The best performances among the consid-
ered Transformers techniques are reached with PVT-B1 with the AUC and Accuracy value of 0.90 ± 0.04 and 
0.86 ± 0.04 respectively. These better performances, among all considered Transformers, could depend on the 
PVT overlapping patch embedding mechanism allowing the Transformer to extract more information from the 
CT image than ViTs and Swins29. In the end, the best performances of this study are reached via pre-trained CNN 
InceptionV3 with AUC and Accuracy equal to 0.91 ± 0.03 and 0.89 ± 0.04 respectively. Even if CNNs perform 
best, the considered Transformers ViTs, PVTs and Swins still reach high and comparable performances.

As regards the topic of NSCLC classification, we scanned the literature and, to the best of our knowledge, we 
identified the state-of-the-art works which mainly use clinical features or radiomic ones. The latter can be further 
split into handcrafted features or extracted via CNNs14, 49–52. To the best of our knowledge, we use pre-trained 
ViTs, PVTs, and Swins for the first time, for the specific task of NSCLC classification. Table 1 summarizes the 
principal results proposed in the state-of-the-art according to the topic of our clinical task.

S. Hindocha et al. predicted recurrence, recurrence-free survival, and overall survival of NSCLC patients, 
employing only clinical features from a cohort of 657 patients. As regards the task of recurrence prediction, 
an AUC equals to 0.69 was reached51. In the work of Wang et al., for example, CT images from a cohort of 157 
NSCLC patients were analyzed using only handcrafted-radiomic features reaching an a ccuracy equals to 0.8552.

As regards NSCLC recurrence radiomic studies based on deep learning models, we mention the works of 
Aonpong et al., Kim et al., and Bove et al.14, 49, 50. In the former, Authors used a subsample of our same radiog-
enomic database to predict the NSCLC recurrence implementing a genotype-guided radiomic model focusing 
on a smaller cohort of 88 patients50. Using various state-of-the-art CNNs, gene expression data were extracted 
from CT images achieving an AUC equals to 0.77, and a ccuracy equals to 0.83. In the second one, Kim et al.49 
built various ensemble-based prediction models using a database of 326 patients including our one. Clinical data, 
handcrafted radiomic features, and deep learning radiomic ones were considered and combined with each other. 
The best performances combining all together were AUC equals to 0.77, and Accuracy equals to 0.73. Finally, 
in the work of Bove et al. a transfer learning approach was implemented extracting radiomic features from the 
cropped CT images, around the tumor area, of our same NSCLC radiogenomic dataset53 via pre-trained CNNs, 

Figure 5.   Example of the training loss function and validation loss plots as a function of the 30 epochs of 
training (a). Histogram of the validation loss values, averaged over all the epochs, rounds, and folds of the cross-
validation for ViTs, PVTs, Swins, and CNNs (b).

Table 1.   Table of the state-of-the-art performances achieved in previous works about NSCLC recurrence 
prediction.

N. of patients Dataset Model Performances

Wang et al.51 157 Private Handcrafted Radiomic features based Acc = 0.85

Aonpong et al.50 88 Public CNN + gene-expression based AUC = 0.77
Acc = 0.83

Kim et al.49 326 Public CNN based + Handcrafted Radiomic based + Clinical based AUC = 0.77
Acc = 0.73

Hindocha et al.52 657 Private Clinical based AUC = 0.69

Bove et al.14 144 Public CNN based + Clinical based AUC = 0.83
Acc = 0.79

Our proposed model Public CNN + Transformer based AUC = 0.91
Acc = 0.89

Our proposed model 144 ViT + Transformer based AUC = 0.90
Acc = 0.86
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reducing the number of radiomic features and combining them with the clinical data of the database. The best 
reached performances consisted of AUC and Accuracy equal to 0.83 and 0.79 respectively14.

Considering all the results, in our model pre-trained CNN InceptionV3 seems to outperform the state-of-
the-art works on NSCLC recurrence classification topic.

We would like to underline that the comparison with the state of the art is purely naïve. Unfortunately, the 
works proposed in the literature on the same clinical task have often been developed starting from private data-
sets. Even when they use the same public dataset to which we referred, the authors integrated the public data with 
private data (as in the work presented by Kim et al.49), without then differentiating the results obtained, or selected 
a subset of data according to certain criteria, which could be compatible with the objective of our work (as for the 
work presented by Aonpong et al.50). Therefore, it is difficult to make objective comparisons on the same dataset.

However, our model still suffers from some limitations. Indeed, although a data augmentation technique 
has been used to reinforce the training of the last layers of the pre-trained networks used, the obtained perfor-
mances are strongly influenced by the retrospective nature and small dimension of the dataset. Specifically, the 
model needs to be validated in a more robust manner also using an external validation set, preferably referring 
to a sample of private data, although the use of a public database as is known allows an objective comparison 
of the proposed methods. Therefore, for the future, we intend to collect a larger database of NSCLC patients 
to validate and optimize the proposed models; moreover, we will also evaluate other public dataset to test the 
obtained results. Another possible future direction in the research would include a further investigation of more 
Transformer architectures and their correspondent performances. Moreover, further studies could include both 
combined deep radiomic and clinical features to train suitable Machine Learning classifiers to predict NSCLC 
recurrence after years with the help of the Explainable Artificial Intelligence (XAI) to detect the most relevant 
and decisive features for the prediction54, 55.

Materials and methods
Experimental dataset
In our work, we used a public radiogenomics dataset of NSCLC available in the Cancer Imaging Archive 
(TCIA)53. The public database consisted of 211 subjects divided into two sub-cohorts:

(1)	 The R01 cohort with 162 patients (38 females and 124 males, age at scan: mean 68, range: 42–86) from Stan-
ford University School of Medicine (69) and Palo Alto Veterans Affairs Healthcare System (93) recruited 
between April 7ths 2008 and September 15th, 2012;

(2)	 The second AMC cohort consisting of 49 additional subjects (33 females, 16 males, age at scan: mean 67, 
range 24–80) was retrospectively collected from Stanford University School of Medicine based on the same 
criteria.

We chose to focus only on the (1) sub-cohort R01 because they had both tumor segmentation binary masks 
and the axial CT available. Among the 162 patients of cohort R01, the tumor segmentation mask was not available 
for 18 patients, so the final number of patients involved in this study is equal to 144, of which 40 (27.78%) with 
a recurrence event within eight years from the first diagnosis. For each patient, a CT image in DICOM format 
was available and was acquired by preoperative CT scans with a thickness of 0.625–3 mm and an X-ray tube cur-
rent at 124–699 mA at 80–140 KVp. On the other hand, the related segmentations were defined on the axial CT 
image series by thoracic radiologists with more than five years of experience and adjusted using ePAD software53.

Beyond CTs and binary tumor masks, the adopted database includes the following clinical features: Recur-
rence (values: yes, no), age at histological diagnosis, weight, gender (values: female, male), histology (values: 
adenocarcinoma, squamous cell carcinoma, not otherwise specified), pathological T (values: T1, T2, T3, T4), 
pathological N stage (values: N0, N1, N2), histopathological grade (values: G1, G2 and G3), lymphovascular 
invasion (values: absent, present, not collected) and pleural invasion (values: yes, no)53. All these clinical features 
are listed in Table 2.

In this study, the clinical data were not used, and the recurrence feature (yes = 1, no = 0) was chosen as a label 
for image classification.

For each patient, we first detected the segmentation mask with the largest tumour area and found the cor-
responding CT slide for the analysis as shown in Fig. 6.

ViTs, PVTs, Swins and CNNs architectures
After detecting the CTs with the largest tumor area, we adopted a deep learning transfer-learning approach 
involving pre-trained ViTs, PVTs, Swins, and CNNs. All the analysis steps were performed using Python pro-
gramming language with Tensorflow-Keras56, 57.

First, the original CT image pixels were normalized in the range [0;1] and then reshaped to the specific input 
size of the Transformers and CNNs. Then, the whole pre-processed images became the input for the various 
models.

The usual architecture of state-of-the-art CNNs, shown in Fig. 7, consists of three key elements represented 
by the convolutional layers, the pooling layers, and the fully connected. Once the CNN receives an input image 
suitably pre-processed, the convolutional layers are the ones dedicated to learning features from the input images, 
instead, the max-pooling layers are responsible for the reduction of the size of feature maps. At the end of the 
CNN, fully connected layers are added in a stacked way which, via a specific function (e.g., SoftMax or Sigmoid), 
provides classification10–20.

The architecture of the Transformers, shown in Fig. 8 according to the architecture of A. Dosovitskiy et al., 
is quite different from traditional CNNs24. ViTs derive from the original transformer model used in the natural 
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language processing (NLP), where the input object consists of one-dimensional word tokens. The input images, of 
typical size 224 × 224 pixels, of height H, width W, and channels C are divided into smaller patches with number 
N = HW/P2 being P × P the pixel size of the input image. To perform the classification task, ViTs are equipped 
with an encoder that receives the sequence of embedded picture patches, together with positional data, and a 
learnable class embedding suspended sequence. The latter is sent to the classification head coupled to the output 
of the encoder. Therefore, the data sequence is the following:

•	 Original images are resized to size e.g., 224 × 224, and normalized between [0;1]. They are then decomposed 
in the N patches.

•	 The obtained patches are then flattened obtaining a linear patch projection.
•	 Learnable embeddings with patch projections are then concatenated. The positional embedding marks the 

order of the single patch in the sequence.
•	 The output of the transformer encoder is sent to a Multilayer perceptron head (MLP) that with additional 

layers of this work, e.g., a Flatten layer, a Batch Normalization layer, a Dense layer with 64 units, another 
Batch Normalization layer, and the final Dense layer with sigmoid function shown in red dashed box of Fig. 3, 
provide classification.

In this study, we performed different experiments using two ViT models: a base model with 16 × 16 image 
patch size (ViTb_16) and a base model with 32 × 32 image patch size (ViTb_32) both consisting of 12 hidden 

Table 2.   Table of the clinical features of the adopted dataset and their distributions. “Nan” means “Not A 
Number” if the data is missing in the database, “abs” stands for “absolute value”.

Clinical feature Distribution

Recurrence

 Yes (abs; %) (40; 27.78%)

 No (abs; %) (104; 72.22%)

Age at histological diagnosis

 Median [q1; q3] 69 [64; 76]

Weight (lbs)

 Median [q1; q3] 173.5 [145.13; 198.90]

 Nan (abs; %) (10; 6.94%)

Gender

 Female (abs; %) (36; 25%)

 Male (abs; %) (108; 75%)

Histology

 Adenocarcinoma (abs; %) (112; 77.77%)

 Squamous cell carcinoma (abs; %) (29; 20.14%)

 Not otherwise specified (abs; %) (3; 2.08%)

Pathological T stage

 T1 (abs; %) (74; 51.39%)

 T2 (abs; %) (49; 34.03%)

 T3 (abs; %) (16; 11.11%)

 T4 (abs; %) (5; 3.47%)

Pathological N stage

 N0 (abs; %) (115; 79.86%)

 N1 (abs; %) (12; 8.33%)

 N2 (abs; %) (17; 11.8%)

Histopathological grade

 G1 (abs; %) (37; 25.69%)

 G2 (abs; %) (80; 55.56%)

 G3 Poorly differentiated (abs; %) (27; 18.75%)

Lymphovascular invasion

 Absent (abs; %) (121; 84.03%)

 Present (abs; %) (18; 12.5%)

 Not Collected (abs; %) (5; 3.47%)

Pleural invasion

 No (abs; %) (105; 72.92%)

 Yes (abs; %) (39; 27.08%)
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layers22–24. PVTs represent a variant of the original ViTs and as stated by their name, they possess a columnar 
pyramid structure similar to traditional CNNs29, 30. In this work, we adopted the improved version PVTs v2, from 
Wang et al. (2022), which introduced the linear complexity attention layer, the overlapping patch embedding 
and convolutional feed-forward network orthogonal to original PVTs. From now on, throughout the text, for the 
sake of simplicity, we will use the term PVT to indicate PVT v2 architecture of Wang et al.29, 30. We considered 
two models of this family: PVT-B0 and PVT-B1. Both consist of four stages characterized by Ci channel number 
of the output of stage i, Ri reduction ratio, Ni head number, Ei expansion ratio of the feed forward layer, and Li 
number of encoder layers for i = 1–4 hyperparameters. For both L1–L4 equals 2 whereas Ci, for i = 1–4, of PVT-B1 
is double of the correspondent PVT-B029, 30. The Swin Transformer is another Transformer architecture27. As the 
name states, Shifted Window, the key idea of this type of Transformer is to build a hierarchy starting from small-
sized patches and gradually merging neighbouring patches into deep Tranformer layers. Between a self-attention 
layer and the next one, there is a window shift resulting in a new one. We adopted two types of this architecture 
consisting of the Swin-tiny and Swin-small which provided the best performances. The hyper-parameters of 
these types of Swins are represented by the channel number C of hidden layers in the first stage being C = 96 for 
both the Swin-tiny and small and the layer numbers being {2,2,6,2} ({2,2,18,2}) for the tiny one (small)27. For all 
the analyzed Transformers the ideal image size has been set to 224 × 224 pixels.

Figure 6.   An example of a binary Mask with the largest tumor area and its corresponding CT are shown. The 
yellow lines mark the tumor area in the CT. For each patient, we detected this correspondence, and the CTs, 
suitably rescaled in the range [0;1] and with a specific input size, were then used as input for the ViTs, PVTs, 
Swins, and CNNs.

Figure 7.   Typical architecture of a CNN. It takes the input image, suitably resized, and elaborates it through a 
series of internal layers consisting of convolutional ones, max-pooling layers, and fully connected layers until 
final classification10–20.
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As regards traditional CNNs, we used three well-established state-of-the-art CNNs of different families: 
ResNet50, DenseNet201, and InceptionV3.

In Python Tensorflow-Keras, ResNet50 requires input images of size 224 × 224 pixels with 177 total layers. 
Differently, InceptionV3 needs input images of 299 × 299 pixels with 313 total layers. In the end, DenseNet201 
accepts input images of 224 × 224 pixels size with a total of 709 layers56, 57.

Learning model
We built transfer learning models using pre-trained ViTs, PVTs, Swins, and CNNs on the ImageNet natural image 
dataset to train the dataset of NCSLC patients to predict the recurrence event56–58. The application of transfer 
learning to ViT, PVT, and Swin architectures consisted in replacing the last layer with the following layers: a flat-
tening layer plus a batch normalization, one dense layer with Gelu activation function followed by another batch 
normalization, and the final dense layer as classifier with a sigmoid activation function. The red dashed box in 
Fig. 8 shows the added layers. This scheme was also adopted for CNNs replacing the Gelu with the Relu activa-
tion function for the added dense layer. These new networks were then trained for the image classification task. 
We implemented a stratified tenfold cross-validation in 20 external rounds on the entire dataset of 144 patients. 
In each fold of the cross-validation, 90% of the dataset corresponding to 130 elements is used as a training set, 
whereas the remaining 10%, corresponding to 14 elements, is used as the test set.

In this study, all the models were trained for 30 epochs in each fold of the cross-validation with batch size 
equal to 10 elements. Adam optimizer with an initial learning rate of 10–4 was used to optimize the weights of 
the network. To handle the imbalancing of the dataset, a sigmoid focal cross-entropy was used as loss function 
with balancing factor α and modulating factor β equal 0.25 and 2.0 respectively59. Considering our database is 
relatively small, to make our analysis more robust we implemented a data augmentation process, in addition to 
the transfer-learning approach, using three built-in Keras transformations such as Random Flip, Random Rota-
tion, and Random Contrast57. This data augmentation was added as an additional layer in the models.

After the training phase, the model was used to predict the probability scores and then used to compute the 
performances via the Scikit-learn library functions58. Performances of classification of NSCLC recurrence for 
pre-trained ViTs, PVTs, Swins and CNNs have been evaluated in terms of the Area Under the Curve (AUC), 
Accuracy, Sensitivity, Specificity, and Precision. These metrics are computed in each of the 20 rounds of the 
stratified cross-validation so, in the end, the final performances, of the specific model, are evaluated as an aver-
age of all the 20 values with their corresponding standard deviation. To better balance these metrics, a Youden 
index test was performed60.

Data availability
The data was obtained from the open-access NSCLC-Radiogenomics dataset publicly available at The Cancer 
Imaging Archive (TCIA) database (https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​NSCLC+​Radio​genom​
ics). Imaging and the clinical data have been de-identified by TCIA and approved by the Institutional Review 
Board of the TCIA hosting institution. Ethical approval was reviewed and approved by Washington University 
Institutional Review Board protocols. Informed consent was obtained from all individual participants included 
in this study53. The source codes can be found at the following link: https://​github.​com/​mcome​s92/​NSCLC_​
Vit_​CNN.

Figure 8.   Proposed architecture of the ViTs starting from Dosovitskiy et al.24. The original input image, suitably 
pre-processed, is then decomposed into N patches then flattened obtaining a linear patch projection. Through 
the Transformer Encoder, these elements are sent to the head of MLP, which provides classification. The yellow 
final boxes placed after the MLP, inside the red dashed rectangle, indicate the new added layers of the proposed; 
these have also been adopted for the CNNs.

https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://github.com/mcomes92/NSCLC_Vit_CNN
https://github.com/mcomes92/NSCLC_Vit_CNN
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