Skip to main content
. 2023 Nov 23;13:20605. doi: 10.1038/s41598-023-48004-9

Table 1.

Table of the state-of-the-art performances achieved in previous works about NSCLC recurrence prediction.

N. of patients Dataset Model Performances
Wang et al.51 157 Private Handcrafted Radiomic features based Acc = 0.85
Aonpong et al.50 88 Public CNN + gene-expression based

AUC = 0.77

Acc = 0.83

Kim et al.49 326 Public CNN based + Handcrafted Radiomic based + Clinical based

AUC = 0.77

Acc = 0.73

Hindocha et al.52 657 Private Clinical based AUC = 0.69
Bove et al.14 144 Public CNN based + Clinical based

AUC = 0.83

Acc = 0.79

Our proposed model Public CNN + Transformer based

AUC = 0.91

Acc = 0.89

Our proposed model 144 ViT + Transformer based

AUC = 0.90

Acc = 0.86