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Hi-C metagenome sequencing reveals soil
phage–host interactions

Ruonan Wu 1, Michelle R. Davison1, William C. Nelson 1, Montana L. Smith 1,
Mary S. Lipton1, Janet K. Jansson 1, Ryan S.McClure1, Jason E.McDermott 1,2 &
Kirsten S. Hofmockel 1,3

Bacteriophages are abundant in soils. However, the majority are unchar-
acterized, and their hosts are unknown. Here, we apply high-throughput
chromosome conformation capture (Hi–C) to directly capture phage-host
relationships. Some hosts have high centralities in bacterial community co-
occurrence networks, suggesting phage infections have an important impact
on the soil bacterial community interactions. We observe increased average
viral copies per host (VPH) and decreased viral transcriptional activity fol-
lowing a two-week soil-drying incubation, indicating an increase in lysogenic
infections. Soil drying also alters the observed phage host range. A significant
negative correlation between VPH and host abundance prior to drying indi-
cates more lytic infections result in more host death and inversely influence
host abundance. This study provides empirical evidence of phage-mediated
bacterial population dynamics in soil by directly capturing specific phage-host
interactions.

Viruses are highly abundant in soil, with estimates of 107 to 1010 viral-
like particles per gram of soil1, and influence the regulation of host
population dynamics2. Current studies suggest that drier soils favor a
temperate (lysogenic) lifestyle for bacteriophages (or phages), in
which they reside as prophages in their bacterial hosts3–5. By contrast,
under wet soil conditions, phages tend to become lytic, actively
replicating, and killing their hosts3–5. Transitions between lysogenic
and lytic lifestyles can have significant impacts on host abundances
and thus soil microbial composition and function. However, it remains
challenging to identify which phage infects which host(s) when
examining the complexmicrobial community in soil. This knowledge is
needed for amore accurate understanding of the impact of soil phages
on the soil microbial community composition and function and how
shifts in soil moisture impact specific phage–host interactions.

Most current techniques for identifying phage-host pairs rely on
indirect sequence-based evidence. These methods include matching
CRISPR spacers to phage genomes6,7 and searching for similarities
between phage and host genomes using alignment-dependent (e.g.,
VPF-Class8) or alignment-free methods (e.g., WIsH9, VHM10, and PHP11).

These approaches have provided insights into which host taxa are
potentially infected by soil phages. However, phage infection is a
dynamic process. For example, changing environmental conditions
over time could cause changes in the susceptibility of hostmicrobes to
phage infection. Meanwhile, phage genomes constantly undergo
mutations and recombination12. Therefore, host predictions based on
microbial genomic features could fail to capture viral infections at the
time of sampling. Misinterpretation of phage–host interactions may
lead to a biased perspective of phage impacts on the soil microbiome.

In this work, we overcome the current limitations of capturing
phage–host interactions at the time of sampling by using high-
throughput chromosome conformation capture (Hi–C) metagenomic
sequencing. The Hi–C technique relies on chemically cross-linking the
DNAof an infecting phage (phage that enters the intact host cell) to the
genome of the host organism. This approach has previously been used
to track phage infections in the human gut13,14. No previous study, to
our knowledge, has applied Hi-C sequencing to soil samples to directly
capture specific phage-host interactions at the time of sampling.
We apply the Hi–C sequencing approach to grassland soils that were
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collected either before or after drying during a two-week incubation.
Desiccated soil was detected with potentially lysogenic phages that
have a broader host range and/or target hosts with fitness advantages.
This study provides knowledge about how phage–host interactions
change as soil moisture shifts and has implications for predicting the
consequences of climate change on soil ecology.

Results
Identification of infections in the soil microbiome using Hi–C
metagenome sequencing
Shotgun metagenomes sequenced from each of the replicate soil
samples (Supplementary Data 1a) were assembled and screened for
viral sequences as shown in theworkflowdiagram(Fig. 1). A total of 583
viral contigs were identified (Supplementary Data 1b) and clustered
into 479 viral operational taxonomic units (vOTUs, Supplementary
Data 2 and Supplementary Data 3). The sequences all corresponded to
bacteriophages and therefore we refer to the viruses as phages. Nearly
half of the vOTUs could not be classified, with the rest assigned to the
class Caudoviticetes. A viral tree composed of three major clades was
used to visualize the genome-wide similarities of the vOTUs within
each sample (Fig. 2).

To enable the targeted detection of host-associated phages, we
appliedHi-Cmetagenomics to the same soil samples (Supplementary
Data 1c). Specific phage–host interactions were captured using the
Hi–C approach through chemical cross-linking of the phage and host
DNAmolecules that were co-localizedwithin the same cell at the time

of sampling (Fig. 1). Phage–host linkages that were identified in the
Hi–Cmetagenomeswere quality-filtered (SupplementaryData 1d and
Supplementary Data 4) to identify 118 unique phage-host pairs
(Supplementary Data 5). A total of 148 unique metagenome-
assembled genomes (MAGs) spanning nine bacterial phyla were
binned by following the Hi-C metagenome deconvolution protocol
(details in Methods; Supplementary Data 6). Phages belonging to 19
of the 479 detected vOTUs were assigned to their respective hosts
represented by unique bacterial MAGs via the identified phage–host
pairs (Supplementary Data 5, orange and dark blue cells in the rings
of Fig. 2). The host-associated phages accounted for 5.3% to 15.0%
of the total phage sequence abundance detected in the samples
(Supplementary Data 3).

To demonstrate that Hi-C sequencing can capture viral infections
at the time of sampling, we compared the phage–host links detected
by Hi–C with those predicted by CRISPR spacer matching, which is
currently themain bioinformaticmethod for viral host prediction15,16. A
total of 124 CRISPR spacers recalled from the CRISPR arrays in MAGs
were matched to phage contigs, generating 121 unique phage-host
links (Supplementary Data 7). Although the number of phage–host
links predictedby theCRISPR spacermethodanddetectedby theHi–C
method are comparable, none of the Hi–C links were detected using
the CRISPR spacer approach (Supplementary Data 5 and Supplemen-
tary Data 7). Because the CRISPR-Cas system provides an adaptive
immunity to host cells, the immunity memory based on prior viral
infections17 may not detect more recent or current viral infections.

Fig. 1 | Schematic of the experimental design and data analysis workflow.
aDescription of sample treatment and the collected sequencing data. Soil samples
were collected pre- (75% water holding capacity, represented by the first soil jar
icon) and post-desiccation (soil dried to consistent weight, represented by the
second soil jar icon). Shotgun metagenomes (sequenced on the total DNA,
demonstrated in the first box), (bulk) metatranscriptomes (sequenced on the total
RNA, demonstrated in the first box), and Hi-C metagenomes (sequenced on the
cross-linked DNA, demonstrated in the second box) were generated from each
replicate sample.bData analysis and integration. Shotgunmetagenome-assembled
contigs were used to screen for viral contigs. The normalized read coverages of the

identified viral contigs in shotgun metagenomes and metatranscriptomes were
used to detect the viral (phage) community compositions and transcriptional
activities in the soil samples before and after desiccation. Hi-C metagenomes
containing the sequenced cross-linked DNA of the extracted host microbial cells
were used to identify contig-contig linkages. The quality-filtered linkageswere used
to cluster linked contigs into metagenome assembled genomes (MAGs) and to
identify phage-host pairs. Co-analysis of thepaired shotgun andHi-Cmetagenomes
was performed for the detection of phage-host interactions under wet and dry soil
conditions and to determine phage-host interactions.
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Hi–C sequencing overcomes this challenge by directly capturing
phage–host interactions at the time of sampling.

Hi–C metagenomes and metatranscriptomes reveal increased
lysogeny following soil drying
The Hi–C metagenome sequencing approach was combined with
shotgun metagenome and metatranscriptome sequencing to investi-
gate how soil drying impacts phage–host interactions. Results were
compared from before and after a two-week drying incubation (pre-
and post-desiccation, Fig. 1) that simulated summer desiccation that
frequently occurs in these arid grassland soils. Screening of the shot-
gun metagenomes revealed that the soil phage community shifted in
response to soil drying. Only 18.0% of the total vOTUs were detected
in both the pre- and post-desiccation soils (Fig. 2). Similar to the
phage communities detected in the shotgun metagenomes, the host-
associated phage communities in the Hi–C metagenomes were

significantly impacted by soil drying (p <= 0.005, Fig. S1). A sig-
nificantly larger fraction of detected vOTUs (relative richness) were
host-associated in post-desiccation soil when compared to pre-
desiccation soil (p <0.05, Fig. 3a). However, the relative abundance
of the host-associated vOTUs (versus the total abundance of all
recovered vOTUs) was not significantly different between pre- and
post-desiccation soils (p =0.18, Fig. 3b).

We further applied complementarymetatranscriptomes to assess
the transcriptional profiles of the host-associated phage (Supplemen-
tary Data 1e, Fig. 1b). Metatranscriptomic data revealed that a higher
percentage of transcriptionally active vOTUs were identified as host-
associated following soil desiccation (Fig. 3c). However, the fraction of
transcripts which mapped to those host-associated vOTUs was lower
post soil desiccation (Fig. 3d), suggesting that the average transcrip-
tional activity of the host-associated vOTUs declined following soil
drying.

Fig. 2 | Soil phage–host interactions revealed using Hi–C metagenomics. Hi–C
metagenomics was used to characterize host-associated vOTUs in pre- and post-
desiccation soils. The tree of all the detected vOTUs based on genome-wide simi-
larities is shown in the center with the three major clades colored in yellow (Clade
1), purple (Clade 2) and green (Clade 3). The two heatmapsoutside the tree indicate
the vOTUs that were detected in each of the three replicate samples. The outlines
underneath each heatmap indicate the experimental conditions: Pre-desiccation

(inner circle, blue); Post-desiccation (outer circle, red). The cells of the heatmaps
are colored by the type of phage-host interaction of each vOTU: Multiple Hosts in
orange, One Host in dark blue, and No Host Detected in gray. Empty (white) cells
indicate the vOTUs were not detected in the sample. The vOTUs linked to the same
host(s) in at least two replicates are labeled. Source data are provided as a Source
Data file.
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Hi-C reconstructs soil phage-host infection network
MAGs identified as phage hosts by Hi-C sequencing included mem-
bers of Acidobacteria, Actinobacteria, Chlamydiae, Gemmatimona-
dota, and Proteobacteria (Supplementary Data 5 and Supplementary
Data 6). A single MAG linked to one or more phages by Hi-C
sequencing represents one host population. Two of the five host-
associated vOTUs in pre-desiccation soils were linked to a single host
MAG, and each of these linkages was only observed in one of the
three replicates (Fig. 2). The other three vOTUs were linked to mul-
tiple hosts (V1, V2 and V3), and these linkages were consistently
found in all three replicates (Fig. 2).

An infection network containing phage-host pairs that were
detected in at least two replicate samples was constructed and
showed that the same hosts for V1, V2 and V3 were observed in
multiple replicates (Fig. 4a). V1 phages infected members of both
Acidobacteria and Alphaproteobacteria, while V2 phages infected
bacteria belonging to Rhizobiales/Hyphomicrobiales (Rhizobiales
has been updated to Hyphomicrobiales in the current NCBI
taxonomy18) and two MAGs with unclassified taxonomy. All four
hosts of V3 phages remain unclassified. A larger number of phage-
host pairs were found in the post-desiccation soils, with a total of 14
vOTUs having linkages to hosts (Fig. 2). Inmost cases, the association
between vOTUs and hosts was consistent across the replicates. For
example, V8 phages were found to infect the same Actinobacterial
host in all replicates (Fig. 4a). V9, V10 and V11 phages were all asso-
ciated with multiple hosts. The vOTUs that were linked to multiple
hosts had both higher richness and abundances (relative to the
total recovered vOTUs) than those with only one host detected

(Fig. 3e versus Fig. 3f, Fig. 3g versus Fig. 3h). This was especially true
in the pre-desiccation soils (p < 0.05, Fig. 3e versus Fig. 3f) where
phages were also generally more transcriptionally active (Fig. 3d).

The phage-host pairs included in the infection network were
exclusively found in either pre- or post-desiccation soil (Fig. 4a),
indicating that the soil drying process altered phage-host interac-
tions and infections. Only one host population, with the repre-
sentative MAG classified as Alphaproteobacteria (B94), was infected
by phages both pre- (V1 and V2) and post-desiccation (V5 and V11). In
post-desiccation soils, a host population represented by Actino-
bacterial MAG B117 was targeted by six vOTUs (V4, V7, V8, V9, V10,
and V12). vOTUs in post-desiccation soils were generally associated
with a relatively lower richness of host MAGs compared to pre-
desiccation soil (Fig. 4a).

Phage hosts are central community members
Community co-occurrence networks were used to identify microbial
members that have high centrality, which is to say that they are con-
nected to many other species (high degree) or occupy key bridge
points in the network (high betweenness). Centrality has been recog-
nized as a strong proxy for the importance of a species to a biological
system19. We, therefore, cross-referenced bacterial community co-
occurrence networks with the infection network to gauge to what
degree soil phages target highly central members of the bacterial
community network. Co-occurrencenetworkswere constructedbased
on transcript abundance of the arginine-tRNA ligase (argS) house-
keeping gene as a proxy for MAG abundance (Supplementary Data 8
and Supplementary Data 9).

Fig. 3 | Richness, abundance, and transcriptional activities of host-
associated vOTUs. a Relative richness of host-associated vOTUs to total vOTU
richness in pre- and post-desiccation soil incubations. The relative richness of the
host-associated vOTUs was calculated by dividing the number of host-associated
vOTUs by the number of the total recovered vOTUs. b Relative abundance of the
host-associated vOTUs to total vOTU abundance. c Percentage of transcriptionally
active vOTUs that were host-associated. d Percentage of transcripts that were
mapped to the host-associated vOTUs. Comparison of relative richness e and
relative abundances f of the vOTUs infecting multiple hosts (Multiple Hosts) and
the vOTUs infecting one host (One Host) in wet soils. Comparison of relative
richness g and relative abundances h of the vOTUs infecting multiple hosts (Mul-
tiple Hosts) and the vOTUs infecting one host (One Host) in post-desiccation soils.
The relative richness of the vOTUs infecting multiple hosts or one host was cal-
culated by dividing the number of those vOTUs by the number of the total

recovered vOTUs. Each panel contains a box plot for comparing the three biolo-
gical replicates with the pre-desiccation treatment (n = 3) against the three biolo-
gical replicates with the post-desiccation treatment (n = 3). Boxes colored in blue
and red represent Pre-desiccation and Post-desiccation soil incubation treatments,
respectively. In each boxplot, the top and bottom of each box represent the 25th
and 75th percentiles, and the center line indicates themedian. The upper and lower
whiskers of each box represent themaximum andminimum values detected in the
three biological replicates, respectively. The differences between the pre-and post-
desiccation treatments were assessed using a two-sided t-test. The significant dif-
ferences in all panels arehighlighted by asterisks, with * representing p <0.05 and **
p <0.01. The exact p-values of the comparisons shown in panels a–h are 0.02, 0.18,
0.009, 0.06, 0.02, 0.006, 0.28and0.06, respectively. Sourcedata are provided as a
Source Data file.
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Three complementary network inference methods, context like-
lihood relatedness (CLR), random forest (GENIE3) and Pearson corre-
lation coefficient, were used to construct community co-occurrence
networks20,21. Together these approaches provided a more compre-
hensive identification of bacterial taxa that were central to the com-
munity structure. The resulting networks contained 33 to 64 MAGs
(Supplementary Data 8). MAGs identified as phage hosts were some of
the most central nodes in the networks. For example, MAG B117,
representing an Actinobacterial population, was associated with sev-
eral vOTUs that were detected in post-desiccation soil (Fig. 4a). The
two B117 argS genes were the second and thirdmost central nodes in a
network inferred using CLR (out of 64 nodes in total, Supplementary
Data 8) (Fig. 4b). This centrality ranking was based on betweenness
centrality, a measure of the extent to which a node (MAG) serves as a
connection point between other nodes. When looking at degree (the
number of connections (edges) a node has), these two B117 argS nodes
were the second and fourth most central nodes. Host MAGs B8 and
B102 were the first and second most central nodes as determined by
betweenness and the first and fourth as determined by degree in a
GENIE3 network (Fig. 4b). MAG B102 was also found to be highly
central in the Pearson correlation coefficient network (Fig. 4b).We also
confirmed that centrality in the networkwas notmerely a function of a
MAG being highly abundant (Table S1). Some MAGs that were central
were abundant, butmany were not, showing that abundance is not the
main driver of centrality in our host co-abundance network.

Phage infection regulates host population dynamics
Alphaproteobacteria, Chlamydiae, Acidobacteria and some unclassi-
fied phyla were the major host taxa in pre-desiccation soil, and

Alphaproteobacteria, Betaproteobacteria and Actinobacteria were the
major host taxa inpost-desiccation soil.We calculated the average viral
copies per host (VPH) as an estimation of the degree of phage infection
across host populations. The average VPH and the VPHs of some host
populations (e.g., Actinobacteria) were significantly higher after soil
drying (p < 0.05, Fig. 5a). A higher average VPH indicates that either a
higher fraction of the host populations are infected by phages (more
individuals infected) or a subset of thehost populations are infectedby
a higher number of phages (multiple phages per individual). As such,
comparing VPH alone in soils pre- and post-desiccation can indicate a
change in phage-host relationships but cannot determine the natureof
the change. Because we observed lower transcriptional activity and
lower relative abundance for the phages infecting multiple hosts in
post-desiccation soil, the higher VPH after soil dryingmay suggest that
phage infection was more prevalent among the individuals within the
host population (more individuals infected). To further investigate the
potential impact of phage infection on host population dynamics, we
fit regression models to test the relationship between VPH and host
abundance. Prior to soil desiccation, VPH and host abundances were
significantly negatively correlated (p <0.001, Slope = -0.41, Fig. 5b).
This result may suggest phage infection in pre-desiccation soil inver-
sely influenced host abundance, indicative of lytic infections. No
obvious relationship was observed in post-desiccation soil (p =0.59,
Slope = 0.089, Fig. 5c).

Discussion
This is a pioneer study to provide empirical evidence of phage-host
associations in soil by applying Hi-C metagenomics to chemically
link phages to their infected hosts. Previous attempts to identify

Fig. 4 | Phage–host infection network and community co-occurrence analysis.
a Phage–host infection network showing phage-host pairs that were detected in at
least two replicate soils. vOTUs and their linkedhosts are shownasnodes in circular
and rectangular shapes, respectively. The nodes are colored by taxonomic
assignment. Host–host and vOTU-vOTU edges are colored in gray and the vOTU-
host edges are colored by treatment (Pre-desiccation: blue; Post-desiccation: red).

Edge thickness corresponds to the number of replicates in which the vOTU-host
interaction was observed. b The top fivemetagenome assembled genomes (MAGs)
by betweenness centrality using three network inference methods. The MAGs
identified as phage hosts are highlighted and colored by their taxonomic assign-
ment following the same color scheme used in panel a. Source data are provided as
a Source Data file.
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hosts of soil viruses have been challenging due to the complexity of
the soil environment, coupled with the vast diversity of largely
uncharacterized soil viruses2,22. As a result, the current state-of-the-
science has been to bioinformatically predict soil viral hosts from
metagenomes5–7,16. For example, CRISPR spacer matching is one of the
most widely used bioinformatic methods for phage host prediction in
the absence of direct evidence15,16. This approach relies on the storage
of immunity memories to prior viral infections in spacer arrays in the
host DNA17. CRISPR spacers can be conserved for years in prokaryotic
genomes as exact matches to the protospacer targets from past
infections23. As a result, the number of spacers that the prokaryotic
hosts acquire and maintain can range from 10 to 100 and the majority
of the spacers acquired do not represent current viral infections24. This
may partly explain why there were no overlaps in phage-host links
predicted by the CRISPR spacer matching method and those detected
byHi–C sequencing. Therefore, althoughCRISPR spacermatching and
other current bioinformatic approaches are valuable for revealing
potential phage–host interactions5–7,16, they are deficient in the iden-
tification of specific hosts that phage are infecting at the time of
sampling. The Hi–C approach provides an important advance for soil
microbial ecology by chemically linking phages to their bacterial host
cells and generating experimental evidence of infection at the time of
sampling. We acknowledge, however, that both of these approaches
are subject to under-sampling considering the high diversity of soil
phages2. With deeper sequencing, we anticipate that there would be
some overlap between phages detected using the two approaches.
Currently, the combination of both methods is complementary and
provides better coverage of soil phages than using only one approach.

We also acknowledge that the Hi–C approach does not detect all
possible phage-host pairs in complex soil samples because it relies on
the extraction of host cells and their associated phage from the bulk
soil matrix prior to sequencing. This could be a reason for the lower
relative abundance of Hi-C-detected host-associated phages in this soil
study (5.3% to 15.0%) compared to that in other systems that have used
this approach to date; such as the human gut ( ~ 94%, assigned to
MAG)14 and wastewater treatment plants ( ~ 37%)25. The lower propor-
tion of infected hosts in soil implies that a large proportion of the
bacterial hosts were not extracted from the soilmatrix. Alternatively, a
higher fraction of the soil phage community consists of free phages
that have not infected their hosts. Regardless of these shortcomings,
the findings reported here emphasize the value of the Hi-C approach
for identifying real-time phage-host pairs in soil. These findings also
revealed the impacts of changes in soil conditions on phage infections
of the soil microbiome.

Using the Hi-C sequencing approach, we provide direct evidence
of the response of host-associated phages to soil drying. As soil dries
and aqueous habitats becomemore sparse and fragmented26, free soil
phages can irreversibly bind to the dried soil particles and thus
become inactive27,28. Therefore, we hypothesized that in desiccated
soil, phages residing inside their hosts wouldbe preferentially retained
in a lysogenic lifecycle. In support of this hypothesis, the host-
associated phages in post-desiccation soil had lower levels of tran-
scriptional activity, suggestive of lysogeny. In addition, the higher
average VPH in the soil after drying indicated that a higher proportion
of hosts were infected by phage, and thesewere presumably lysogenic.
By contrast, in pre-desiccation soil the phage infections resulted in a

Fig. 5 | Prevalence of phage infections in bacterial host populations. a The viral
(phage) copies per host (VPH) detected in soils pre- andpost-desiccation. Eachdata
point is a single de-replicated MAG linked to phage by Hi-C sequencing and
represents a phage host population. The phage host populations are identified
from at least two of the three biological replicates of the soils with the pre-
desiccation (n = 49 unique populations) or post-desiccation treatment (n = 69
unique populations). Datapoints are colored by host taxonomic assignment. The
top and bottomof each box represent the 25th and 75th percentiles, and the center
line indicates the median. The upper and lower whiskers of each box represent the

maximum and minimum values detected in the three biological replicates,
respectively. The differences between the pre-and post-desiccation treatments
were assessed using a two-sided t-test. The significant difference (p <0.05) is
highlighted by an asterisk (*). The exact p-value is 0.03. b, c The correlations
between VPH and host abundance in soils pre- and post-desiccation, respectively.
The regions shaded in dark gray along the lines represent the 95% confidence level
intervals in linear regression. The significance of the regression analysis was
determinedby an F-test with the adjustedR2 and p-value to estimate the strength of
the relationship. Source data are provided as a Source Data file.
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significant decrease in host abundances, suggesting that the hosts
were lysed by phage via the lytic cycle. Together these results
suggest that as soil dries, there is a transition of phage lifestyles from
primarily lytic to lysogenic. These results support prior studies that
reported more lysogenic markers (i.e., genes encoding integrases and
excisionases)5 but fewer viral transcripts in dry compared to wet soil4.
In this study, the Hi-C approach provides direct evidence of the impact
of soil drying on soil phage lifestyles and specific phage host
interactions.

Hi-C sequencing revealed shifts in phage-host interactions fol-
lowing a two-week experimental desiccation period. Few overlaps in
phage-host pairs were detected pre- and post-desiccation. Both phy-
sical and biological factors could contribute to the differences in host
selection, and in turn the types of phages that persist in soil under
changing moisture conditions. Because soil desiccation leads to a
fragmented soil habitat with micro-niches that are not connected by
water26,29, this physical separation limitsmicrobial dispersal andphage-
host interactions. This may explain the reduced richness of bacterial
host MAGs in post-desiccation soil. However, phage speciation often
overcomes barriers to reproduction when phages and hosts are spa-
tially separated30,31. Therefore, soil desiccation may promote niche
differentiation and phage diversification as supported by our finding
of a higher richness of the host-associated phages after soil drying. We
note that our experimental design and data cannot address the pos-
sibility that changes occurred over time independent of the moisture
treatment, or that desiccation affected the susceptibility of hosts due
to changes in outer membrane composition. Other factors that may
contribute to the differences in phage-host pairs detected in soils after
desiccation include the survival, metabolic activity, and reproductive
capacity of different potential host populations. Host metabolism and
replication are critical for phage replication. Some phages even
encode sigma factors to prevent bacterial dormancy to enhance their
ability to replicate with their hosts32. Previous studies have reported
the responses of different bacterial taxa to changes in soil
moisture33–35. For example, some members of the Actinobacteria are
known for their tolerance to low soil moisture and have been shown to
be relatively more abundant in drier soils33–35. Interestingly, in post-
desiccation soils Actinobacteria was one of the dominant phyla with
primarily lysogenic infections. These findings support the Piggyback-
the-Winner hypothesis36, suggesting that lysogenic phages favor hosts
withfitness advantages (e.g., bacteria that are able to survive under dry
conditions and retain higher microbial abundances). Understanding
how the changing environment influences phage-host interactions is
therefore important for predicting the consequences of soil phages on
microbial compositions and functions.

Phage infections influence the soil bacterial community structure.
Previous studies have linked high centrality in a community co-
occurrence networkwith biological importance19. MAGs that occupied
central nodes in the bacterial co-occurrence networks represent the
taxa that were presumably central to the soil bacterial community
structure (i.e., central taxa). Our finding of phage infections within the
central taxa suggests that changes in phage abundances and their
lifecycles as a function of soil moisture shifts have impacts on inter-
species interactions among soil bacterial communities, even if only a
small number of taxa are infected37–39. Phage predation can influence
nutrient availability and affect the soil bacterial community structure
as well. Host lysis due to viral infection releases cellular material that
can be assimilated by other microbes (the process is known as viral
shunt40). Additionally, phage infection can remodel the hostmetabolic
potential, for example, via lysogenic conversion41,42 and expression of
auxiliary metabolic functions43. Therefore, phage predation of the
central taxa may have outsized effects on the whole soil bacterial
community44.

Thedetectionof phages infectingmultiple hosts (viral generalists)
using Hi-C sequencing is intriguing. Although putative viral generalists

have been reported in various ecosystems5,16,45, they were primarily
identified based on CRISPR spacers and genomic similarities5–7,16,
except for few studies that experimentally isolated phage generalists
with host ranges across bacterial phyla such as from Lake Michigan46.
Applying Hi-C sequencing provided us with an opportunity to use
direct experimental evidence to assign viral generalists in soil. We
acknowledge that there could be limitations in coverage thatmask the
true extent of soil phage-host interactions when using the Hi-C
approach. As the cut-offs we used for clustering phages were at the
species rank47, the vOTUs that were associated with multiple de-
replicated host MAGs clustered phages that were phage generalists.
The detection of 15 unique viral contigs linked tomultiple dereplicated
MAGs provides direct evidence of the presence of phage generalists in
soil. The emergence and persistence of phage generalists are sug-
gested to be a result of phage adaptation to diverse bacterial com-
munities. A previous study showed that phage generalists evolved as
early as four days after the ancestor phages were co-cultured with the
original Escherichia coli hosts and the non-permissive strains48.
Therefore, the detection of phage generalists in our study suggests
phages actively evolve and adapt to the bacterial communities in soil.
Furthermore, we found that phage generalists had a higher richness
after soil drying and were relatively more abundant than phage spe-
cialists (phages infecting one host). These results suggest that having a
broad host range provides a competitive advantage to phages to
enable them to exploit diverse hosts and maximize their fitness in
desiccated soil12. Similarly, phage generalists were detected in some of
the most abundant vOTUs of Arctic peat soil under stressful anoxic
conditions45. Our study provides the direct evidence of the presence of
phage generalists in soil using metagenomes and points to the
opportunities for more quantitative measures of the fitness of soil
phage generalists and specialists as well as fitness trade-offs of being a
generalist are needed in future studies.

This is the primary application of Hi-C sequencing to a soil
environment to capture ongoing viral infections and to determine
specific viral host interactions. This study also provides direct experi-
mental evidence of the presence of viral generalists that, to this date,
had mainly been predicted bioinformatically. By applying Hi-C toge-
ther with other DNA and RNA sequencing approaches, this study
provides insights into the impact of soil drying on phage-host inter-
actions and the downstream impacts on bacterial community inter-
actions. Although this study reveals the promise of the Hi-C approach
for detecting phage-host interactions in complex samples, such as soil,
it has the potential to be further improved with additional experi-
mental optimization. This will allow future studies to further explore
the application of the Hi-C approach for detecting viral infections in
other soil systems and natural environments. We note that the Hi-C
approach is also applicable for the detection of environmental viruses
that are potential biothreats. This study demonstrates that Hi-C
sequencing is applicable to soil and the results have value for pre-
dicting the impact of climate change on soil viruses and the ensuing
ecological consequences.

Methods
Soil sampling and incubation
Soils were collected in collaboration and compliance with the
Washington State University Irrigated Agriculture Research and
Extension Center. Surface soils (0-20 cm deep, 5 cm diameter cores)
were collected from 16 randomly selected locations immediately
adjacent to the Tall Wheatgrass Irrigation Field Trial experiment in
Prosser, WA (46°15’04“N, 119°43’43“W) in June 2020. The average
summer temperature is 30 °C and the average annual precipitation is
180 mm5. Samples were transported to the Pacific Northwest National
Laboratory (PNNL) on ice and stored at 4°C until processing. Soils were
homogenized on ethanol-sterilized 4mm sieves, and rocks were
removed. Gravimetric soilmoisture content was determined by drying
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three subsamples of 10 g of soil in an incubator at 60 °C for 24 h.Water
holding capacity was determined by saturating 5 g of soil, weighing
after 2 h when soils were completely drained, and drying at 60 °C for
24 h. The weight difference between saturated and desiccated soils
was used to calculate the water holding capacity of the soil.

Sixty grams (dry weight soil equivalent) were weighed into auto-
claved 4oz jars, and the soils were brought to 75% water holding
capacity by addition of sterile deionized water. Three replicate incu-
bations were set up for each of the two sampling time points (n = 6).
First, the soils were preincubated for one week during which time
they were gradually exposed to increasing temperature until the
target incubation temperature of 30°C average summer temperature
(https://www.usclimatedata.com/climate/prosser/washington/united-
states/uswa0355) was reached. The incubation temperatures were: 10
°C onday 1, 15°C on day 3, 25°C on day 5 and 30°Con day 7. During the
pre-incubation water was added to the soils daily to maintain them at
75% water holding capacity by mass.

Once at 30°C, three samples were harvested representing the pre-
desiccation soils. The remaining three incubation jars continued to
incubate at 30°C, without any further moisture additions. Moisture
loss was monitored by mass, until complete desiccation was achieved
after 14 days. Then the final three replicate samples were harvested,
representing the post-desiccation soils. The incubation of soil samples
under field-relevant conditions (i.e., 30°C for 2 weeks) mimicked the
natural soil drying process in hot weather typical of Prosser,
Washington summers. The six soil samples, with three from each
timepoint, were stored at -80°C until being processed for DNA and
RNA extractions.

DNA and RNA extraction, shotgun library generation and
sequencing
Frozen soil samples (n = 6, three for each time point) were handled on
dry ice during aliquoting/transfer to extraction tubes. DNA was
extracted from 0.25 g of individual soil samples using the ZYMO-
biomics DNA miniprep kit (Zymo Research, Irvine, CA, USA), and RNA
was extracted from 2g of individual soil samples using the PowerSoil
RNA isolation kit (Qiagen, CA, USA), each in accordance with the
manufacturers’ instructions. The genomic DNA extracted from the six
samples was quality-checked using Qubit BR (Invitrogen, Waltham,
MA, USA) and shipped to Phase Genomics on dry ice. The paired-end
deep sequencing libraries were prepared using ProxiMeta library
preparation reagents (Phase Genomics, Seattle, WA). Sequencing was
performed on an Illumina NovaSeq generating an average of 177 mil-
lion PE150 read pairs.

The extracted RNA was treated with Turbo DNase (Invitrogen,
Waltham, MA, USA) followed by clean up with a Zymo RNA Clean and
Concentrator Kit purification kit (ZymoResearch, Irvine, CA,USA). The
resultingRNAwas quality checkedusing anAgilent RNA6000Nanokit
(Agilent, Santa Clara, CA, USA) and quantified using a Qubit (Invitro-
gen, Waltham, MA, USA). The RNA extracted from the six samples
was sent to the Joint Genome Institute (JGI) to be sequenced using
the standard metatranscriptome workflow (https://jgi.doe.gov/user-
programs/pmo-overview/project-materials-submission-overview/rna-
submission-guidelines/). The metatranscriptome sequencing was per-
formed on an Illumina NovaSeq S4. The sequencing statistics for the
shotgun/bulk metagenomes and metatranscriptomes are shown in
Supplementary Data 1a and e, respectively.

Hi–C sequencing
For each replicate, 5 g of soil per time-point were sent on dry ice to
Phase Genomics to be processed per their low-biomass protocol
(ProxiMetaTM Hi-C Kit Protocol v4.0). In brief, samples were mixed in
25ml of water and vortexed for 5min. The tubes were centrifuged at
1000 x g for 10min. to allow sediment to settle. The supernatant was
transferred to a new tube and formaldehyde was added to a final

concentration of 1% (v/v). The tubes were incubated at room tem-
perature for 20min. with occasional gentle mixing by inversion or
rotation. Glycine (ProxiMetaTMHi-CKit, PhaseGenomics, Seattle,WA)
was added to a final concentration of 1% (v/v) to quench the cross-
linking reaction and the samples were incubated at room temperature
for 20min. with occasional gentle mixing by rotation.

A Hi-C library was created using a ProxiMeta Hi-C Microbiome
v4.0 Kit (Phase Genomics, Seattle, WA) which is the commercially
available version of the Hi-C protocol49. Following the manufacturer’s
instructions, the cross-linked DNA extracted from each replicate was
digested using Sau3AI and MlucI restriction enzymes (ProxiMetaTM
Hi-C Kit, Phase Genomics, Seattle, WA), and proximity-ligated with
biotinylated nucleotides (ProxiMetaTM Hi-C Kit, Phase Genomics,
Seattle, WA) to create chimeric molecules composed of fragments
from different regions of genomes that were physically proximal
in vivo. Chimeric molecules were pulled down with streptavidin beads
andprocessedusing the ProxiMeta librarypreparation reagents (Phase
Genomics, Seattle,WA). TheHi-Cmetagenomeswere sequenced on an
Illumina NovaSeq. The quality matrices demonstrated strong proxi-
mity signals in each Hi-C library were included in Supplementary
Data 1C.

Shotgun sequence processing and viral contig detection
Shotgun sequencing reads were trimmed, quality-filtered and nor-
malized using fastp (v0.20.1)50. The resulting sequence data from
replicate sampleswereco-assembledusingMEGAHIT (v1.2.9) using the
meta-large preset option. Contigs longer than 1 kb were retained for
downstream analysis (Supplementary Data 1b).

Metagenome-assembled contigs with lengths longer than 5 kb
were screened for viral sequences (Supplementary Data 1b). To reduce
the possibility of introducing false positives, multiple viral bioinfor-
matic detection algorithms were used, incorporating stringent or sug-
gested cut-offs. These tools included VirSorter (v2, aminimum score of
0.5)51, VIBRANT (v1.2.1, with ‘virus’ tag predicted by neural network
model)52, DeepVirfinder (v 2020.11.21, score > 0.9 and p <0.05)53, and
CheckV (v0.7.0) for assessing viral genome quality54. Contigs were
classified as viral if they met the following criteria: (1) classified as viral
by at least two of the three viral detection tools, or (2) classified by one
viral detection tool as complete or with high-to-medium genome
quality. Applying this voting strategy to the results from multiple tools
is intended to avoid potential limitations in one tool and minimize the
detection of false positives.

Hi-C sequence processing
Hi-C reads were quality-controlled via the same method that was
applied to the shotgun metagenome. The quality-filtered Hi-C reads
were aligned to the de-novo assemblies obtained from the paired
shotgun metagenomes following the Hi-C kit manufacturer’s recom-
mendations (Phase Genomics, Seattle, WA, https://phasegenomics.
github.io/2019/09/19/hic-alignment-and-qc.html). Briefly, reads were
aligned using BWA-MEM (v0.7.17)55 with the -5SP options specified to
reduce the secondary and alternative mappings. SAMBLASTER
(v0.1.24)56 was used to flag PCR duplicates, which were later excluded
from the analysis. Alignments were then filtered with samtools (v1.9)57

using the -F 2304 filtering flag to remove non-primary and secondary
alignments.

Metagenome binning and clustering
Metagenome deconvolution was performed with ProxiMeta58,59, which
implements a graph-based clustering algorithm using the shotgun
metagenome assembly and Hi-C mapping as input to generate
metagenome-assembled genomes (MAGs). Briefly, Hi-C mappings
were filtered with a minimum score of 20 after removing the Hi-C
metagenomic paired-end reads that were non-uniquely mapped to
contigs or mapped to the same contig (length of the contig > 1 kb).
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The filtered Hi-Cmappings were then used to generate a contig-contig
interactionnetwork. These contigswere further clustered intogenome
bins using a proprietary Markov chain Monte Carlo (MCMC)-based
algorithm60. The genomebins orMAGswere assessed for quality using
CheckM (v1.2.0)60. To visualize the grouping of the linked contigs, the
Hi-C contactmapswere generatedusing thequality-filtered assemblies
and the readsmapping files (BAM files) via bin3C (v0.11)61,62 and shown
in Figure S2.

MAGs obtained from each replicate after the deconvolution pro-
cess were quality-filtered ( < 9% contamination) and dereplicated at
99% identity using dRep (v3.4.0)63. Taxonomies of the unique MAGs
were assigned by CheckM (v1.2.0, lineage-wf) and validated using the
Genome Taxonomy Database Toolkit (GTDB-Tk, v2.1.0, classify-wf).
The abundance of the MAG was estimated by average read depth
normalized by length.

DNA viral sequence clustering, and taxonomy assignment
To compare the richness of viral communities, the quality-filtered viral
contigs were clustered into species-level equivalent vOTUs at 95% of
average nucleotide identity (ANI) and 85%of alignment fraction (AF) as
recommended previously47. A greedy centroid algorithm was applied
in clustering as described in the published workflow (https://github.
com/snayfach/MGV/blob/master/ani_cluster/README.md)64. In brief,
viral contigs were first sorted by length and the one with the longest
length was selected as the centroid or representative sequence of a
new cluster. The rest of the viral contigs were scanned and assigned to
an existing cluster if they met the cutoffs of 95% ANI and 85% AF. A
proteomic tree of the vOTU representative sequenceswas constructed
using a neighbor joining method via ViPTreeGen (v1.1.2, a command-
line version of ViPTree65). In brief, the pairwise similarities of the vOTU
representative sequences were computed based on the tBLASTx
results. The distance between the viral sequences was demonstrated in
a dendrogram that was further clustered using the neighbor-joining
algorithm.

For taxonomic assignments of the detected viral contigs, the
representative sequences of the vOTUs were clustered with genomes
deposited in the INfrastructure for a PHAge REference Database
(INPHARED) using the same clustering algorithms and cutoffs as
mentioned above (https://github.com/snayfach/MGV/blob/master/
ani_cluster/README.md)64, and with NCBI Refseq viral genomes
(v201) using vConTACT2 (v0.9.19, default settings). Due to the high
sequence diversity and novelty of the detected viral contigs from soils,
none of the representative sequences were able to be clustered with
reference viral genomes using both ANI and protein sharing matrix
(implemented in vConTACT2) methods. Additionally, we exhausted
another approach to assigning viral order and family using amino acid
homology searches against viral reference sequences in TrEMBL66 that
is implemented in the Demovir workflow67. Nearly half of the viral
contigs remained unclassified with the rest assigned to Family levels:
Myoviridae, Podoviridae and Siphoviridae. According to the latest
release of the International Committee on Taxonomyof Viruses (ICTV)
(Release 2021), these three families were recommended to be abol-
ished and assigned to class Caudoviticetes68,69. Thus, these viral con-
tigs were annotated as Caudoviticetes.

Calculation of DNA viral coverage in metagenomes and
metatranscriptomes
Per-sample coverage depth and breadth were calculated for each
contig using BBMap (v 38.34)70. Contigs with more than 50% of their
genomemapped (i.e., breadth of the coverage) were considered to be
positively detected in the respective metagenome5,71. The richness of
the viral community was represented by the number of vOTUs that
were positively detected. The abundances of the contigs with more
than 50% breadth of coverage were estimated using the average base
coverage mapped by the reads of the respective metagenome (i.e.,

depth of the coverage). The abundance estimates of the contigs with a
breadth of coverage lower than 50% were recorded as zero. The
abundance estimates were then normalized by the number of assem-
bled reads for each metagenome.

The quality-filteredmetatranscriptome reads weremapped to the
viral contigs that were positively detected inmetagenomes (described
above) from the same sample by BamM (v1.7.3, bammmake). The read
mapping was filtered at 95% of identity and 80% of alignment fraction
(BamMv1.7.3, bamm filter). Transcription levels were estimated by the
average base coverage of the viral sequences using samtools (v1.9,
samtools depth)72 normalized by the total counts of metatran-
scriptome reads per sample. The richness of the viral community that
waspotentially transcriptionally activewas representedby the number
of vOTUs that were detected by the metatranscriptome.

Phage-host network construction and analysis using Hi–C data
The average viral copy per host cell (VPH) was estimated using Hi–C
link count (L(v) representing Hi–C links of the phage with all possible
hosts, L representing Hi-C links of each phage-host pair), host-
associated vOTU abundance (V), and host abundance (H) (Eq. 1)73.
The phage-host pairs linked by Hi–C reads were screened by two
rounds of filtering to remove false positives.

VPH=
V
H

L
P

LðvÞ ð1Þ

The first-round filtering criteria73 include the following: (1) at least
two Hi–C reads linking the phage and host MAG, (2) a phage-host
connectivity ratio (R’) of 0.1, and (3) intra-MAG connectivity of 10 links.
The phage-host connectivity ratio (R’) was calculated using a Hi–C
connectivity density of the phage-host pair (DVH) and of the MAG to
itself (DH) after normalized by VPH (Eq. 2). The Hi–C link count per kb2

of sequence was used to estimate the connectivity density.

R0= DVH

DH

H
P

LðvÞ
VL

ð2Þ

The second round of filtering was based on the threshold value
from a receiver operating characteristic (ROC) curve. The optimal
threshold is the value which maximizes the number of phages with at
least one host, while also removing the largest number of phage-host
links. Additional filtering removed the phage-host linkages with aver-
age counts that were less than 80% of the highest count of the linkages
of the same viral contig. Finally, some phages which interact with a
high fraction of host MAGs in the sample were further evaluated and
adjusted to control for phage sequenceswhich are rich in false positive
interactions.

The phage-host infection pairs identified from Hi-C sequencing
were further grouped by combing the viral contigs that were clustered
in the same vOTU with host bins that were more than 99% identical
(indicated by dRep, v3.4.0)63). As a result, we generated unique phage-
host infection pairs and assessed whether those pairs were con-
sistently detected across replicates under each treatment (Supple-
mentary Data 1D). The vOTUs that were assigned to more than one
unique host bin and those assigned to only one unique host bin byHi-C
sequencing were categorized as vOTUswithmultiple hosts and vOTUs
with one host, respectively. The rest of the vOTUs that were not cap-
tured by Hi-C sequencing or not host-associated were classified as no
host detected.

Phage-host links predicted by the CRISPR spacer
matching method
The phage-host links were also independently predicted using the
CRISPR spacer matching method. The CRISPR spacers of each MAG
were retrieved using CRISPRCasFinder (v3.1.0) with the options of
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-gscf and -cas. The viral contigs screened from shotgun metagenome-
assembled contigs were formatted into a BLAST database. All the
CRISPR spacers were queried against the viral contig database using
the task option of blastn-short. The additional parameters including a
percent identity of 95%, one maximum target sequence and at most
one mismatch allowed were applied to filter the matching result16.

Microbial co-occurrence network
Because we had metatranscriptomic data from a wider range and
number of samples than metagenomic data, the microbial co-
occurrence networks were constructed from metatranscriptomic
data to maximize the number of input samples. The argS gene was
selected as the proxy because it is a housekeeping gene that is single-
copy inmostorganisms andwaspresent in amajority of theMAGs. The
depth of coverage for transcripts of the argS gene was converted to
relative abundance, and correlation networks were inferred using
Pearson’s correlation coefficient, Context Likelihood of Relatedness
(CLR)20 or GENIE321. Three methods were chosen for a more compre-
hensive analysis of bacterial community structure of the studied soil.
Each of these chosenmethods had elements that spoke to its inclusion.
Pearson is a common network inference method here that has been
used previously for microbial co-abundance networks74. CLR includes
an element of context, using the resulting network matrix to better
report putative edges20 and GENIE3 was found to be highly accurate in
network inference75,76. For CLR networks, the top 200 edges were
collected (representing the edges with values in the 95th percentile).
For GENIE3 a similar edge cutoff was used, but since GENIE3 is a
directional network method this led to slightly more edges (311). For
Pearson correlation coefficient networks, any edge with an absolute
value of > 0.8 was used (186 edges). Once each network was inferred,
Cystoscape77 was used to determine betweenness and degree cen-
trality values for eachnode.Nodes (bins)with high centralitywere then
compared to those bins that were targeted by phage.

Statistical analysis
T-tests were used to assess the significance of the differences in viral
richness, relative abundances, transcription levels and potential life
strategies (lytic or lysogenic) of viral communities in the soil replicate
samples before and after the soil drying treatment. A linear regression
model with a 0.95 confidence level was applied to test the correlations
between the average viral copies per host cell and the estimated
abundances of hosts. The statistical tests were performed via RStudio
(v2022.07.1) with R (v4.2.0). Differences between each comparison or
correlationwith a p-value less than0.05were considered as significant.
The experiment was run using three replicate samples for each treat-
ment for generating reproducible results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw or large processed data generated in this study have been
packaged and publicly available at DataHub (https://data.pnnl.gov/
group/nodes/dataset/33511) as well as NCBI under BioProject
PRJNA1006511. Fourdatapackages include: (1) raw sequences of the six
shotgun metagenomes (https://doi.org/10.25584/1922087, https://
data.pnnl.gov/group/nodes/dataset/33337, NCBI: SRR25682926-
SRR25682930), (2) all the shotgun metagenome-assembled contigs
( > 1 kb), MAGs and the dereplicated viral contigs (https://doi.org/10.
25584/1922088, https://data.pnnl.gov/group/nodes/dataset/33338,
NCBI: JAWMQX000000000 and JAWMQY000000000 for the contigs
assembled from soils with pre- or post-desiccation treatment), (3) the
unique phage-host pairs detected by Hi-C (https://doi.org/10.25584/
1922090, https://data.pnnl.gov/group/nodes/dataset/33339), (4) the

quality-filtered metatranscriptomes (https://doi.org/10.25584/
1922091, https://data.pnnl.gov/group/nodes/dataset/33340, NCBI:
SRR25916027- SRR25916064), and (5) raw sequences of the six Hi-C
metagenomes (https://doi.org/10.25584/1970740, https://data.pnnl.
gov/group/nodes/dataset/33511, NCBI: SRR25689209-SRR25689214).
A detailed description of each data package is in Supplementary
Data 1. Source data are provided with this paper.

Code availability
The R codes used to plot the main figures are available on GitHub
(https://github.com/Ruonan0101/SFA_Hi_C_MS)78 with no restriction
to access.
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