Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 May;75(1):67–69. doi: 10.1104/pp.75.1.67

Effect of Endosperm Removal on 7 Normal NaOH-Labile Indole-3-acetic Acid Conjugates in Shoots and Roots of Zea mays Seedlings 1

Yoshie S Momonoki 1, Robert S Bandurski 1
PMCID: PMC1066835  PMID: 16663602

Abstract

The pool of amide-linked indole-3-acetic acid (amide IAA) in the shoot of growing etiolated seedlings of Zea mays increases between the 3rd and 5th day of germination to equal the amount of free IAA and two-thirds the amount of ester IAA. Deseeding the germinant changes the pool size of free and amide IAA in a manner suggestive of conversion of endogenous free IAA to amide IAA. Deseeding also caused an almost total disappearance of amide IAA from the root, demonstrating that the pool of amide IAA is not inert and can be actively metabolized in young Z. mays seedlings.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandurski R. S., Schulze A., Cohen J. D. Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1219–1223. doi: 10.1016/0006-291x(77)91136-6. [DOI] [PubMed] [Google Scholar]
  2. Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chisnell J. R. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue. Plant Physiol. 1984;74:278–283. doi: 10.1104/pp.74.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen J. D. Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L. Plant Physiol. 1982 Sep;70(3):749–753. doi: 10.1104/pp.70.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen J. D., Schulze A. Double-standard isotope dilution assay. I. Quantitative assay of indole-3-acetic acid. Anal Biochem. 1981 Apr;112(2):249–257. doi: 10.1016/0003-2697(81)90290-6. [DOI] [PubMed] [Google Scholar]
  6. Corcuera L. J., Bandurski R. S. Biosynthesis of Indol-3-yl-acetyl-myo-inositol Arabinoside in Kernels of Zea mays L. Plant Physiol. 1982 Dec;70(6):1664–1666. doi: 10.1104/pp.70.6.1664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidonis G. H., Hamilton R. H., Mumma R. O. Metabolism of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Soybean Root Callus : EVIDENCE FOR THE CONVERSION OF 2,4-D AMINO ACID CONJUGATES TO FREE 2,4-D. Plant Physiol. 1980 Oct;66(4):537–540. doi: 10.1104/pp.66.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidonis G. H., Hamilton R. H., Vallejo R. P., Buly R., Mumma R. O. Biological Properties of d-Amino Acid Conjugates of 2,4-D. Plant Physiol. 1982 Aug;70(2):357–360. doi: 10.1104/pp.70.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein E., Cohen J. D., Bandurski R. S. Concentration and Metabolic Turnover of Indoles in Germinating Kernels of Zea mays L. Plant Physiol. 1980 Mar;65(3):415–421. doi: 10.1104/pp.65.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hall P. L., Bandurski R. S. Movement of Indole-3-acetic Acid and Tryptophan-derived Indole-3-acetic Acid from the Endosperm to the Shoot of Zea mays L. Plant Physiol. 1978 Mar;61(3):425–429. doi: 10.1104/pp.61.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hangarter R. P., Good N. E. Evidence That IAA Conjugates Are Slow-Release Sources of Free IAA in Plant Tissues. Plant Physiol. 1981 Dec;68(6):1424–1427. doi: 10.1104/pp.68.6.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson D. L., McWha J. A. Translocation and Metabolism of Endosperm-Applied [2-C] Indoleacetic Acid in Etiolated Avena sativa L. Seedlings. Plant Physiol. 1983 Oct;73(2):316–323. doi: 10.1104/pp.73.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Magnus V., Bandurski R. S., Schulze A. Synthesis of 4,5,6,7 and 2,4,5,6,7 Deuterium-labeled Indole-3-Acetic Acid for Use in Mass Spectrometric Assays. Plant Physiol. 1980 Oct;66(4):775–781. doi: 10.1104/pp.66.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Momonoki Y. S., Schulze A., Bandurski R. S. Effect of Deseeding on the Indole-3-acetic Acid Content of Shoots and Roots of Zea mays Seedlings. Plant Physiol. 1983 Jun;72(2):526–529. doi: 10.1104/pp.72.2.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nowacki J., Bandurski R. S. Myo-Inositol Esters of Indole-3-acetic Acid as Seed Auxin Precursors of Zea mays L. Plant Physiol. 1980 Mar;65(3):422–427. doi: 10.1104/pp.65.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES