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Abstract 

Background  Women with dense breasts have an increased risk of breast cancer. However, breast density is measured 
with variability, which may reduce the reliability and accuracy of its association with breast cancer risk. This is particu-
larly relevant when visually assessing breast density due to variation in inter- and intra-reader assessments. To address 
this issue, we developed a longitudinal breast density measure which uses an individual woman’s entire history 
of mammographic density, and we evaluated its association with breast cancer risk as well as its predictive ability.

Methods  In total, 132,439 women, aged 40–73 yr, who were enrolled in Kaiser Permanente Washington and had 
multiple screening mammograms taken between 1996 and 2013 were followed up for invasive breast cancer 
through 2014. Breast Imaging Reporting and Data System (BI-RADS) density was assessed at each screen. Continu-
ous and derived categorical longitudinal density measures were developed using a linear mixed model that allowed 
for longitudinal density to be updated at each screen. Predictive ability was assessed using (1) age and body mass 
index-adjusted hazard ratios (HR) for breast density (time-varying covariate), (2) likelihood-ratio statistics (ΔLR-χ2) 
and (3) concordance indices.

Results  In total, 2704 invasive breast cancers were diagnosed during follow-up (median = 5.2 yr; median mammo-
grams per woman = 3). When compared with an age- and body mass index-only model, the gain in statistical infor-
mation provided by the continuous longitudinal density measure was 23% greater than that provided by BI-RADS 
density (follow-up after baseline mammogram: ΔLR-χ2 = 379.6 (degrees of freedom (df) = 2) vs. 307.7 (df = 3)), which 
increased to 35% (ΔLR-χ2 = 251.2 vs. 186.7) for follow-up after three mammograms (n = 76,313, 2169 cancers). There 
was a sixfold difference in observed risk between densest and fattiest eight-category longitudinal density (HR = 6.3, 
95% CI 4.7–8.7), versus a fourfold difference with BI-RADS density (HR = 4.3, 95% CI 3.4–5.5). Discriminatory accuracy 
was marginally greater for longitudinal versus BI-RADS density (c-index = 0.64 vs. 0.63, mean difference = 0.008, 95% CI 
0.003–0.012).

Conclusions  Estimating mammographic density using a woman’s history of breast density is likely to be more reli-
able than using the most recent observation only, which may lead to more reliable and accurate estimates of individ-
ual breast cancer risk. Longitudinal breast density has the potential to improve personal breast cancer risk estimation 
in women attending mammography screening.
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Background
Mammographic density is one of the strongest known 
risk factors for breast cancer [1]. Mammographic density 
is commonly measured using the Breast Imaging Report-
ing and Data System (BI-RADS) four-category scale, 
summarised as (A) almost entirely fat, (B) scattered fibro-
glandular, (C) heterogeneously dense or (D) extremely 
dense breasts [2]. Including BI-RADS density in breast 
cancer risk models improves the accuracy of individual 
risk assessment [3]. Providing accurate estimation of a 
woman’s breast cancer risk could aid decisions regarding 
supplemental screening, risk-reducing strategies based 
on diet and exercise, preventive therapy and risk-strati-
fied screening.

Most studies assessing the effect of mammographic 
density on breast cancer risk are based on a single meas-
urement. Whilst some studies measure density at more 
than one time point, the majority of studies assess change 
in density between mammograms taken at two time 
points [4, 5]. Moreover, the focus of many of these studies 
is on the association between density change and breast 
cancer risk, rather than the predictive ability of multi-
ple serial measurements of density. A recent systematic 
review [4] identified just one study that had evaluated 
the predictive performance of using more than one serial 
density measurement for risk of subsequent breast cancer 
[6]. This US cohort study of ~ 700,000 women explored 
using two density values over two years to assess inva-
sive breast cancer risk and observed a small improve-
ment in risk discrimination (concordance index 0.640 
vs. 0.635) [6]. However, using a woman’s entire history of 
breast density measurements might be more informative 
for breast cancer risk estimation than using only one or 
two time points. This is partly because mammographic 
density is a dynamic trait that decreases most strongly 
with increasing body mass index (BMI) [7, 8], age [9, 10] 
and during the menopause [10, 11]. It also decreases in 
response to endocrine treatment [12–15] and increases 
with current hormone replacement therapy use [16–
18]. There is also variation in radiologists’ visual inter-
pretation of mammographic density due to inter- and 
intra-reader variability [19], and thus, there is a need for 
measurements of breast density to be more reliable than 
they are at present [20]. Using a woman’s history of pre-
vious density measurements should help to reduce such 
measurement error. In addition, when using a breast den-
sity history with more than two records, it may be impor-
tant to include information on mammograms arbitrarily 

spaced through time, i.e. not necessarily only two mam-
mograms approximately one or two years apart, but pre-
vious work does not appear to have considered this.

Methods
The aim of this cohort study was to develop a method to 
assess breast cancer risk using a longitudinal history of 
breast density and to assess the predictive value of this 
approach in comparison with breast density measured at 
a single time point.

Setting and study population
This analysis included women from the Kaiser Perma-
nente Washington Breast Cancer Surveillance Con-
sortium (BCSC) breast imaging registry (National 
Cancer Institute RRID:SCR_011403) [21, 22], an inte-
grated healthcare system that provides insurance and 
health care in Washington State. The cohort has previ-
ously been used to assess the long-term performance of 
breast cancer risk assessment with and without density 
[3]. Women in the cohort attended screening from 1 Jan-
uary 1996 to 31 December 2013 (with follow-up from 1 
January 1996 to 31 December 2014) with no prior diag-
nosis of invasive breast cancer, ductal carcinoma in  situ 
(DCIS) or lobular carcinoma in situ at study entry. Exclu-
sions were made for women aged < 40  yr or > 73  yr at 
their baseline screening mammogram and women with 
less than 6-month follow-up (to obtain a cohort who 
were breast cancer-free within 6 months of their baseline 
screening mammogram).

Endpoints
The primary outcome was diagnosis of invasive breast 
cancer. Women were followed up from 6  months after 
their first screening mammogram with an available den-
sity assessment (baseline mammogram) until the earli-
est of: diagnosis of invasive breast cancer or censoring 
(age 75  yr, the recommended end of screening age; 31 
December 2014, the end of calendar time follow-up; 
DCIS; death; or health plan disenrollment). Outcomes 
were obtained through electronic health data and linkage 
with the regional population-based Surveillance, Epide-
miology, and End Results tumour registry and pathology 
databases.

Exposure variables
Mammographic density was recorded by the interpreting 
radiologist using BI-RADS density categories (A = almost 
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entirely fat, B = scattered fibroglandular, C = heteroge-
neously dense or D = extremely dense). Mammograms 
missing BI-RADS density were excluded (24,707/721,406; 
3%). Self-reported height and weight were collected using 
a questionnaire completed at each screening mammo-
gram to calculate BMI (dividing weight (kg) by height (m) 
squared). Self-reported race and ethnicity were collected 
at baseline questionnaire. Values were checked for valid-
ity at the time of scanning for research purposes. A flow 
chart detailing availability of mammograms and women 
included in the study is shown in Additional file  1: Fig. 
S1.

Longitudinal breast density measures
Continuous longitudinal density measures were derived 
from a linear mixed model with BI-RADS density as the 
outcome variable (treated as an integer 1–4). The model 
form was determined based on iterative testing and 
examination of model fit. The final model was fitted by 
maximum likelihood with fixed effects for intercept, age 
(per 5  yr; quartic polynomial terms; continuous), BMI 
(per kg/m2; continuous) and interaction between age (per 
5 yr; linear term only) and BMI. Intercept and time (age) 
were treated as random effects with an unstructured 2 × 2 
covariance matrix. The continuous longitudinal density 
measure at each time point was the predicted density 
from the model using the data observed to that point, fol-
lowing an empirical Bayes approach [23]. Briefly, empiri-
cal Bayes is a statistical method which estimates a prior 
probability distribution using the observed data. Stand-
ard errors for the model parameters were based on robust 
sandwich estimators [24–26]. The main measure of inter-
est is continuous longitudinal breast density. However, in 
order to help with clinical interpretations of the hazard 
ratios (HRs) associated with the continuous longitudinal 
density measure, we also derived a categorical variable 
for longitudinal breast density (i.e. to show the spread 
of risk when using smaller bins, which will eventually 
approach a continuous measure). To do this, continuous 
longitudinal density was categorised with cut points cho-
sen so that the percentage of women at baseline in cate-
gories 1–2 matched BI-RADS A, categories 3–4 matched 
BI-RADS B, etc.; and there was an equal split within cat-
egories 1–2, 3–4, 5–6 and 7–8, e.g. the lower 50% of BI-
RADS A at baseline was in category 1 and the upper 50% 
was in category 2. An intuitive explanation of the longi-
tudinal breast density measure is described in Additional 
file 1: Methods.

Statistical analysis
BMI was missing for 5% of baseline mammograms 
(6047/132,439) and 16% of follow-up mammograms 
(72,539/450,189). Missing BMI at baseline was imputed 

using the sample mean BMI given the woman’s age at 
baseline. Missing BMI at follow-up mammograms was 
carried forward from the woman’s last recorded BMI. 
Therefore, all women had density, age and BMI at each 
mammogram used in the final dataset. BMI was win-
sorised for values below 15 kg/m2 [baseline: 155/132,439 
(0.1%); follow-up: 351/450,189 (0.1%)] and above 
35  kg/m2 [baseline: 18,410/132,439 (14%); follow-up: 
66,418/450,189 (15%)]. This was done so that women 
who were morbidly obese would have the same breast 
cancer risk due to adiposity as women who were obese.

Proportional-hazards models were fitted with one of 
the three time-varying density covariates measured at 
each mammogram: (1) BI-RADS categorical density; (2) 
continuous longitudinal density; and (3) eight-category 
longitudinal density. All models were adjusted for age 
at baseline (per yr; continuous) and time-varying BMI 
(per kg/m2; continuous). All time-varying variables were 
updated at each screening examination. To allow for a 
possible nonlinear relationship, density was treated as a 
factor variable for models 1 and 3 (degrees of freedom 
(df) = 3 and 7, respectively), and model 2 included lin-
ear and quadratic terms (df = 2) related to the continu-
ous longitudinal density measure. Age was sometimes 
presented as categories for younger or older than 55  yr 
as a crude approximation for pre- or postmenopausal, 
respectively. Likelihood-ratio statistics (ΔLR-χ2(df)) were 
from the proportional-hazards models, relative to a pro-
portional-hazards model including age and BMI only. A 
concordance index (yC) was estimated to measure dis-
criminatory ability (Additional file 1: Methods), with 95% 
confidence intervals (95% CI) from empirical bootstraps 
with 10,000 resamples.

Primary analysis tested the continuous longitudi-
nal density measure on all women in the cohort, start-
ing from their first mammogram. Since the benefit was 
expected to be greater in women with more than one 
mammogram, a secondary analysis started from women’s 
third mammogram, in those with ≥ 3 mammograms.

To test robustness, we did sensitivity analyses using the 
complete cohort but excluding mammograms < 6 months 
before cancer diagnosis (incident screen-detected mam-
mograms) and excluding mammograms with imputed 
BMI, as well as evaluating the predictive performance of 
longitudinal density compared with BI-RADS density at 
baseline, and when it is defined as a four-category vari-
able (e.g. categories 1–2 for eight-category longitudinal 
density equal category 1 as a four-category variable). 
The evaluation of longitudinal density against baseline 
BI-RADS density was conducted because, according 
to a model by Boyd et  al. [27, 28], rates of breast tissue 
ageing are higher at younger ages due to higher levels of 
hormone exposure; therefore, baseline mammograms 
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(representing breast density at a younger age than time-
varying mammograms) may be more reflective of a wom-
an’s ‘peak’ available breast density and hence be more 
informative for risk prediction.

We hypothesised that longitudinal density would be 
more stable through time than BI-RADS density. To 
test this, we plotted cumulative distribution functions 
for relative risk of BI-RADS density or longitudinal den-
sity from second to third mammogram (hazard ratios 
from the proportional-hazards Cox model fitted to the 
complete cohort, including age at baseline and BMI), in 
women with ≥ 3 mammograms.

Exploratory analyses considered potential improve-
ments to the proportional-hazards model, including use 
of trajectories (random effect slopes) to reflect likely 
future within-woman rate of change, and interactions 
between density and age, BMI or race. The primary 
proportional-hazards model was also stratified by age at 
baseline (< 55 yr representing premenopausal and ≥ 55 yr 
representing postmenopausal) to assess whether the per-
formance of the longitudinal measure differed by meno-
pausal status. Two exploratory proportional-hazards 
models were also fitted with oestrogen receptor positive 
or negative subtype as the outcome (with censoring of 
the complementary subtype). Heterogeneity by oestrogen 
receptor subtype was evaluated using a case-only logistic 
regression model with subtype as the outcome, covariates 
for age, BMI and continuous longitudinal breast density 
(linear and quadratic; calculated using mammograms up 
to and including the screening visit immediately before 
the date of diagnosis or censoring, with correspond-
ing age and BMI also from the immediately preceding 
screening visit), and associated p-values for longitudinal 
breast density from Wald tests. We also evaluated longer-
term risk of longitudinal density using breast density at 
(BI-RADS)/to (longitudinal) the third mammogram only 
and not updating it further through follow-up time.

Analysis was conducted using Stata version 
13 (RRID:SCR_012763) [29] and R version 3.3.3 
(RRID:SCR_000432) [30], with two-sided hypothesis 
tests.

Results
The cohort included 132,439 women with a median fol-
low-up of 5.2  yr (interquartile range (IQR) 2.4–11.1  yr) 
and maximum follow-up of 19  yr. The median time 
between mammograms was 1.8 yr (IQR 1.0–2.0 yr) and 
the median number of mammograms per woman was 3 
(IQR 2–6), with 32,010 women (24.2%) having a baseline 
mammogram only. The number of mammograms was 
similar across different ages at baseline and through-
out the follow-up. Women were of Asian (9%), Black 
(4%), Mixed (3%), Other (3%), Unknown (2%) or White 

(80%) race, and Hispanic ethnicity was reported in 5% 
of women. In total, 2704 women (2.0%) were diagnosed 
with invasive breast cancer during follow-up. Summary 
statistics on age, BMI and breast density at baseline are 
shown in Table 1.

In the linear mixed model for continuous longitudi-
nal density (Additional file 1: Table S1), an unstructured 
covariance matrix was chosen because it provided a sub-
stantially better model fit than an independent structure 
(ΔLR-χ2(1) = 2473.3). A quartic polynomial term for age 
and an interaction between age and BMI were included 
because likelihood-ratio statistics and graphical plots of 
predicted density by age and BMI identified an improved 
model fit. There was also evidence of a nonlinear rela-
tionship between longitudinal density and breast cancer 
risk (Fig. 1), with improvement in model fit when includ-
ing a quadratic term (ΔLR-χ2(1) = 15.0), but not a cubic 
term (ΔLR-χ2(1) = 1.1).

All breast density methods were strongly associated 
with risk (Table 2), but most statistical information was 
in the continuous longitudinal density measure. It added 
23% more statistical information to an age- and BMI-
only model than BI-RADS density (ΔLR-χ2(2) = 379.6 
vs. ΔLR-χ2(3) = 307.7, respectively). This corresponded 
to a marginal increase in the mean c-index over all of 
the follow-up: 0.64 for continuous longitudinal den-
sity vs. 0.63 for BI-RADS density (mean difference in 
c-indices = 0.008, 95% CI 0.003–0.012) (Fig. 2). The eight-
category version of longitudinal density was inferior to 
the continuous measure (ΔLR-χ2(7) = 375.1), but aids 
interpretation of the hazard ratios associated with the 
continuous measure (Table  2). The densest of the eight 
categories (‘Extremely dense’ II) had threefold greater 
risk (HR = 3.0, 95% CI 2.5–3.7) than the reference (‘Scat-
tered’ I), with a sixfold greater risk when comparing dens-
est and fattiest breasts (HR = 6.3, 95% CI 4.7–8.7, relative 
to ‘Fatty’ I). This compared with a fourfold increased risk 
between densest and fattiest BI-RADS density (Extremely 
dense HR = 4.3, 95% CI 3.4–5.5, relative to Fatty).

In a secondary analysis restricted to women with at 
least three mammograms (n = 76,313 (58% of cohort), 
2169 cancers after third mammogram), the gain in sta-
tistical information when using the continuous lon-
gitudinal density measure was 35% more than when 
using BI-RADS density (ΔLR-χ2(2) = 251.2 vs. ΔLR-
χ2(3) = 186.7, Table 3), with respective mean c-indices of 
0.63 and 0.62 (mean difference in c-indices = 0.010, 95% 
CI 0.005–0.015). Using eight-category longitudinal den-
sity (ΔLR-χ2(7) = 246.3), the risk gradient between dens-
est and fattiest breasts was greater for the extremes of 
the eight-category longitudinal density (HR = 4.8, 95% 
CI 3.5–6.8) than BI-RADS density (HR = 3.5, 95% CI 
2.7–4.5). Using breast density measures at/to the third 
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mammogram and not updating further through time 
yielded similar results to the main analysis with breast 
density as a time-varying covariate (Table 3).

Cumulative distribution plots for relative risk associ-
ated with the second and third mammogram suggested 
that longitudinal density is more stable through time 
than BI-RADS density: 11% of women had an estimated 
relative risk outside of the stable range (relative risk was 
considered to be stable between 4/5 and 5/4) when using 
longitudinal density, compared with 28% when using BI-
RADS density (Fig. 3).

Exploratory analysis including density trajectories 
showed only a small improvement on the continuous 
longitudinal density model (ΔLR-χ2(1) = 4.0, p = 0.046), 
with a 1% gain in statistical information. There was little 

evidence of an interaction between continuous longi-
tudinal density and age, BMI or race (age at baseline 
interaction, HR (per 5 yr) = 0.99, 95% CI 0.94–1.03; BMI 
interaction, HR (per 5  kg/m2) = 1.08, 95% CI 0.99–1.17; 
race interaction, HR (non-White relative to White) = 0.99, 
95% CI 0.81–1.21). Longitudinal density performed 
better than BI-RADS density in both premenopausal 
(n = 87,156, 1581 invasive breast cancers) and postmeno-
pausal (n = 45,283, 1123 invasive breast cancers) women 
(ΔLR-χ2 was 23% and 21% greater for continuous longitu-
dinal density than BI-RADS density, respectively), and for 
both oestrogen receptor positive (n = 2175) and negative 
(n = 418) subtypes (excluding 111 invasive breast cancers 
with unknown oestrogen receptor status, n = 132,328 
in both the oestrogen receptor positive and negative 

Table 1  Hazard ratios for invasive breast cancer by age, body mass index and BI-RADS density (baseline)

n = 132,439

95% CIs from Wald tests

LR-χ2(df = 1) is the likelihood-ratio trend test for each variable alone

BI-RADS  Breast Imaging Reporting and Data System, BMI body mass index, df degrees of freedom, IQR interquartile range, 95% CI 95% confidence interval

*Hazard ratios from proportional-hazards Cox models (model for BI-RADS density is adjusted for continuous age and continuous BMI, models for age and BMI are 
univariable)

Baseline variable No. of women (%) Follow-up, 1000 
women-years

No. of invasive breast cancers Hazard ratio*
(95% CI)

Total 132,439 (100) 874 2704 -

Age (years)

 40–49 60,325 (45.6) 418 977 1 [Reference]

 50–59 43,878 (33.1) 317 1057 1.41 (1.29–1.53)

 60–73 28,236 (21.3) 139 670 2.26 (2.04–2.50)

 Continuous Median (IQR) = 50 (44–58) LR-χ2(df = 1) = 309.1 (p < 0.001)

BMI (kg/m2): < 55 years

 Underweight (< 18.5) 1087 (1.3) 7 13 0.70 (0.41–1.22)

 Healthy (≥ 18.5 to 25) 33,808 (38.8) 246 623 1 [Reference]

 Overweight (≥ 25 to 30) 26,428 (30.3) 186 513 1.10 (0.98–1.23)

 Obese (≥ 30 to 35) 13,126 (15.1) 92 221 0.96 (0.82–1.11)

 Morbidly obese (≥ 35) 12,707 (14.6) 87 211 0.98 (0.84–1.15)

 Continuous Median (IQR) = 26.6 (23.0–31.2) LR-χ2(df = 1) = 0.02 (p = 0.89)

BMI (kg/m2): ≥ 55 years

 Underweight (< 18.5) 570 (1.3) 3 12 1.18 (0.66–2.10)

 Healthy (≥ 18.5 to 25) 14,905 (32.9) 85 308 1 [Reference]

 Overweight (≥ 25 to 30) 16,440 (36.3) 92 449 1.35 (1.17–1.56)

 Obese (≥ 30 to 35) 7665 (16.9) 44 194 1.22 (1.02–1.46)

 Morbidly obese (≥ 35) 5703 (12.6) 33 160 1.33 (1.10–1.60)

 Continuous Median (IQR) = 27.4 (23.8–31.0) LR-χ2(df = 1) = 6.9 (p = 0.01)

BI-RADS density

 Fatty 10,387 (7.8) 61 107 0.59 (0.48–0.72)

 Scattered 46,206 (34.9) 309 786 1 [Reference]

 Heterogeneous 57,158 (43.2) 376 1338 1.76 (1.61–1.93)

 Extremely dense 18,688 (14.1) 128 473 2.31 (2.04–2.63)

 Continuous Median (IQR) = 3 (2–3) LR-χ2(df = 1) = 91.8 (p < 0.001)
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models, ΔLR-χ2 was 24% and 19% greater for continuous 
longitudinal density than BI-RADS density, respectively; 
heterogeneity p-values: linear = 0.816, quadratic = 0.772).

In sensitivity analyses, results were robust to exclud-
ing mammograms taken up to 6  months before an 
incident breast cancer (all women, follow-up from 
baseline mammogram, ΔLR-χ2 was 23% greater for con-
tinuous longitudinal density than BI-RADS density). 
We also found similar results when removing mam-
mograms with imputed BMI (n = 129,748, 2668 inva-
sive breast cancers, follow-up from updated baseline 
mammogram, ΔLR-χ2 was 30% greater for continuous 
longitudinal density than BI-RADS density). Further-
more, continuous longitudinal density outperformed 
baseline BI-RADS density (ΔLR-χ2(2) = 379.6 vs. ΔLR-
χ2(3) = 296.2, respectively, resulting in a ΔLR-χ2 that 
was 28% greater for continuous longitudinal density 
than baseline BI-RADS density; baseline BI-RADS den-
sity was adjusted for age at baseline and baseline BMI). 
This suggests that a greater gain in aetiological infor-
mation can be obtained by including multiple historical 

measures of mammographic density instead of a single 
measure that reflects a woman’s ‘peak’ available breast 
density. Four-category longitudinal breast density also 
performed slightly better than BI-RADS density (ΔLR-
χ2(3) = 312.3 vs. ΔLR-χ2(3) = 307.7), indicating that the 
improvement in statistical ability when using longitudi-
nal density is explained by more than just longitudinal 
density being measured continuously compared with 
categorical BI-RADS. Finally, in a post hoc sensitivity 
analysis, we tested whether the superior performance 
of longitudinal breast density compared with BI-RADS 
density could be due to the incorporation of an inter-
action term between age and BMI in the calculation 
of the longitudinal breast density measure. However, a 
proportional-hazards model including a single (time-
varying) BI-RADS density measure, age at baseline, 
BMI (time-varying) and an age–BMI interaction did 
not perform as well as the proportional-hazards model 
including longitudinal density (time-varying; includ-
ing a quadratic term), age at baseline and time-varying 
BMI (ΔLR-χ2(4) = 308.8 vs. ΔLR-χ2(2) = 379.6).

Fig. 1  Adjusted hazard ratios for invasive breast cancer by longitudinal breast density (continuous and categorical). n = 132,439. Adjusted hazard 
ratios from proportional-hazards Cox models for the new longitudinal breast density measure (continuous, time-varying) or derived eight-category 
longitudinal breast density (time-varying) which was based on the continuous longitudinal breast density measure (reference = Scattered I). Hazard 
ratios adjusted for age at baseline (continuous) and time-varying BMI (continuous). ‘Time-varying’ means that a woman’s values for breast density 
and BMI are updated through time, i.e. at each screening examination. Categorical longitudinal density on the x-axis is the mean of the new 
longitudinal breast density measure (continuous) in each group. Units of longitudinal density are non-standard. 95% CIs from Wald tests. Y-axis 
on a log scale. Red circles represent the adjusted hazard ratios for invasive breast cancer by categorical longitudinal density, and the error bars 
represent the 95% CIs for the hazard ratios. Green line represents the adjusted hazard ratios for invasive breast cancer by continuous longitudinal 
density, fitted with a linear term only. Blue line (representing the final model used in the analysis) represents the adjusted hazard ratios for invasive 
breast cancer by continuous longitudinal density, fitted with a linear term and a quadratic term. BMI body mass index, 95% CI 95% confidence 
interval
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Discussion
Using a woman’s longitudinal history of breast den-
sity could improve breast cancer risk estimation in 
women attending mammography screening over using 
a single measurement alone. Our proposed longitudi-
nal breast density measure provided a gain in statistical 
information that was 23% more than that provided by 
BI-RADS density. Women in the highest longitudinal 
density category had a sixfold greater risk of develop-
ing breast cancer than women in the lowest category, 
compared with a fourfold difference when using BI-
RADS density. This greater spread of risk with eight-
category longitudinal density (which demonstrates the 
greater spread of risk that is achievable when using the 

continuous longitudinal density measure) suggests a 
potential for improved risk stratification with the con-
tinuous longitudinal density measure. We consider 
there to be two main benefits of using repeated mam-
mograms and deriving a longitudinal breast density 
measure. Firstly, the longitudinal breast density meas-
ure is likely to be reflecting a woman’s long-term aver-
age exposure to breast density and therefore aligning 
with Boyd et  al.’s model of breast tissue ageing which 
suggests that cumulative rate of exposure to hormones, 
and consequently breast density, is positively associ-
ated with breast cancer risk [27, 28]. Secondly, since the 
longitudinal breast density measure appears to be more 
stable over time than a single measure of BI-RADS 

Table 2  Adjusted hazard ratios for invasive breast cancer by BI-RADS density or longitudinal breast density (continuous/categorical)

n = 132,439

Adjusted hazard ratios from proportional-hazards Cox models for BI-RADS density (time-varying) or the new longitudinal breast density measure (time-varying) as a 
continuous or eight-category value

Hazard ratios adjusted for age at baseline (continuous) and time-varying BMI (continuous)

‘Time-varying’ means that a woman’s values for breast density and BMI are updated through time, i.e. at each screening examination

Cut points for the eight-category new breast density measure were chosen so that, at baseline mammogram, the proportion of women in the Fatty, Scattered, 
Heterogeneous and Extremely dense categories are the same as for BI-RADS density, and then split equally into the I and II subgroups within each category

95% CIs from Wald tests

ΔLR-χ2 represents the additional information in the likelihood-ratio statistic when including breast density

BI-RADS  Breast Imaging Reporting and Data System, BMI body mass index, df degrees of freedom, 95% CI 95% confidence interval

*Units of longitudinal density are non-standard—interpretation may be facilitated by Fig. 1

Model Density measure Adjusted hazard 
ratio (95% CI)
(time-varying 
breast density 
covariate)

1 BI-RADS density

 Fatty 0.49 (0.40–0.60)

 Scattered 1 [Reference]

 Heterogeneous 1.71 (1.56–1.86)

 Extremely dense 2.11 (1.84–2.42)

ΔLR-χ2 (df = 3) = 307.7

2 Continuous longitudinal density

 Linear (per unit*) 5.53 (3.34–9.14)

 Quadratic (per unit2*) 0.83 (0.76–0.92)

ΔLR-χ2 (df = 2) = 379.6

3 Categorical longitudinal density

 Category 1: ‘Fatty’ I (< 1.5) 0.48 (0.36–0.63)

 Category 2: ‘Fatty’ II (1.5 to < 2.0) 0.83 (0.69–1.00)

 Category 3: ‘Scattered’ I (2.0 to < 2.2) 1 [Reference]

 Category 4: ‘Scattered’ II (2.2 to < 2.6) 1.43 (1.24–1.64)

 Category 5: ‘Heterogeneous’ I (2.6 to < 2.9) 1.82 (1.59–2.07)

 Category 6: ‘Heterogeneous’ II (2.9 to < 3.2) 2.44 (2.11–2.81)

 Category 7: ‘Extremely dense’ I (3.2 to < 3.6) 2.66 (2.23–3.17)

 Category 8: ‘Extremely dense’ II (≥ 3.6) 3.03 (2.48–3.70)

ΔLR-χ2 (df = 7) = 375.1
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density, it is likely that it reduces variation in estimates 
of an individual’s visual assessment of breast density 
and therefore also breast cancer risk between screens. 
This should prevent fluctuations in the classification of 
women into different risk categories through time. We 
also note that the improvement in discrimination when 
using longitudinal breast density was relatively small, 
suggesting that the benefit of the measure is more so 
in its ability to improve the reliability and accuracy of a 
woman’s breast density measurements and personalised 
estimate of breast cancer risk than in its ability to dif-
ferentiate between women who will, and will not, go on 
to develop breast cancer. However, given that the longi-
tudinal density measure is likely to reduce the amount 
of noise in data, its utilisation should result in an 

improvement in the performance of established breast 
cancer risk models that currently use BI-RADS density.

These results support previous findings that suggest 
an improvement in predictive ability of breast cancer 
risk estimation when using density values from more 
than one time point [6]. Kerlikowske et  al. assessed BI-
RADS density in a screening cohort of ~ 700,000 women 
from the BCSC, where a two-measure density score 
was developed combining first and last BI-RADS den-
sity measures taken on average 1.8 years apart [6]. They 
found an improvement in the BCSC 5-year risk model 
when using their two-measure score compared with a 
one-measure score, whereby the area under the receiver 
operating curve (AUC) increased by ~ 0.005. Our study 
(which includes some of the women in Kerlikowske et al.’s 

Fig. 2  Yearly mean concordance index through time for BI-RADS density or continuous longitudinal breast density. n = 132,439. yC is the yearly 
mean concordance index. ΔLR-χ2 represents the difference in likelihood-ratio statistics between a model fitted to age at baseline (continuous) 
and time-varying BMI (continuous) and a model additionally incorporating the density term(s). BI-RADS density and the new longitudinal 
breast density measure (continuous, including a quadratic term) are time-varying in the proportional-hazards Cox models. ‘Time-varying’ means 
that a woman’s values for breast density and BMI are updated through time, i.e. at each screening examination. The concordance index decreases 
through time because the age range in the cohort decreases over time. (Women aged 40 yr get older, and women are censored after age 75 yr.) 
Orange line represents the yC through time for BI-RADS density. Blue line represents the yC through time for longitudinal density. Error bars 
represent the standard errors for the yC values at yearly intervals, starting at 0.5 years. BI-RADS Breast Imaging Reporting and Data System, BMI body 
mass index
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study) also found a slight improvement in discriminatory 
accuracy when using multiple density measures (com-
pared with a single density measure, the concordance 
index increased by ~ 0.008). Several other studies have 
also made use of more than one serial density value [4, 
5], with most suggesting an association between change 
in density and breast cancer risk [5, 31–41], demonstrat-
ing the benefit of including more than one time point for 
breast cancer risk estimation. However, these association 
studies did not focus on evaluating the predictive ability 
of using serial density measurements to estimate future 
risk of breast cancer.

There is a question of whether the longitudinal breast 
density measure improves accuracy or whether it pro-
vides aetiological information. In our view, the main 

statistical advantage of longitudinal density is to reduce 
measurement error and improve reliability and accuracy 
by functioning as a shrinkage estimator making use of 
multiple data points. This was apparent from our results 
because the predictive ability of longitudinal density 
improved by a greater amount when it was included in 
the proportional-hazards survival analysis as a continu-
ous variable than as a categorical variable. This result 
also highlights the advantage of using finer-grained 
descriptions of a woman’s history of breast density. In 
addition, we initially hypothesised that including infor-
mation on the rate of change of each woman’s density 
might be informative (analysis including random slopes 
in the model). However, our data suggested only a small 
effect on predictive ability when including each woman’s 

Table 3  Adjusted hazard ratios for invasive breast cancer by breast density (BI-RADS/longitudinal): subgroup with ≥ 3 mammograms

n = 76,313 (subgroup of women with at least 3 mammograms); follow-up from the third mammogram

Adjusted hazard ratios from proportional-hazards Cox models for BI-RADS density (time-varying or at third mammogram) or the new longitudinal breast density 
measure (time-varying or to third mammogram) as a continuous or eight-category value

Hazard ratios adjusted for age at baseline (in this instance, where follow-up started at the third mammogram, age at third mammogram was used) (continuous) and 
BMI (continuous; time-varying or at third mammogram)

‘Time-varying’ means that a woman’s values for breast density and BMI are updated through time, i.e. at each screening examination

Cut points for the eight-category new breast density are the same as those used in Table 2

95% CIs from Wald tests

ΔLR-χ2 represents the additional information in the likelihood-ratio statistic when including breast density

BI-RADS  Breast Imaging Reporting and Data System, BMI body mass index, df degrees of freedom, 95% CI 95% confidence interval

*Units of longitudinal density are non-standard—interpretation may be facilitated by Fig. 1

Model Density measure Adjusted hazard ratio 
(95% CI)
(time-varying breast density 
covariate)

Adjusted hazard 
ratio (95% CI)
(breast density at/to 
third mammogram)

1 BI-RADS density

 Fatty 0.52 (0.42–0.65) 0.52 (0.40–0.67)

 Scattered 1 [Reference] 1 [Reference]

 Heterogeneous 1.58 (1.43–1.74) 1.57 (1.42–1.74)

 Extremely dense 1.82 (1.55–2.14) 2.06 (1.77–2.40)

ΔLR-χ2 (df = 3) = 186.7 ΔLR-χ2 (df = 3) = 175.9

2 Continuous longitudinal density

 Linear (per unit*) 5.62 (3.25–9.72) 4.99 (2.81–8.84)

 Quadratic (per unit2*) 0.82 (0.74–0.90) 0.84 (0.76–0.94)

ΔLR-χ2 (df = 2) = 251.2 ΔLR-χ2 (df = 2) = 252.0

3 Categorical longitudinal density

 Category 1: ‘Fatty’ I (< 1.5) 0.47 (0.35–0.63) 0.45 (0.32–0.62)

 Category 2: ‘Fatty’ II (1.5 to < 2.0) 0.73 (0.60–0.89) 0.79 (0.63–0.98)

 Category 3: ‘Scattered’ I (2.0 to < 2.2) 1 [Reference] 1 [Reference]

 Category 4: ‘Scattered’ II (2.2 to < 2.6) 1.24 (1.06–1.45) 1.34 (1.15–1.56)

 Category 5: ‘Heterogeneous’ I (2.6 to < 2.9) 1.58 (1.36–1.84) 1.73 (1.49–2.01)

 Category 6: ‘Heterogeneous’ II (2.9 to < 3.2) 1.98 (1.70–2.32) 2.09 (1.79–2.44)

 Category 7: ‘Extremely dense’ I (3.2 to < 3.6) 2.25 (1.84–2.75) 2.31 (1.89–2.82)

 Category 8: ‘Extremely dense’ II (≥ 3.6) 2.27 (1.81–2.86) 2.92 (2.36–3.62)

ΔLR-χ2 (df = 7) = 246.3 ΔLR-χ2 (df = 7) = 242.2
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individual slope. Whilst this finding indicates a high 
level of density tracking (which is consistent with earlier 
work [42, 43]), it differs from the results of a recent study 
which reported a better model fit when using both cur-
rent mammographic density and individual slope com-
pared with current mammographic density alone [44]. 
A possible explanation for the contrasting findings with 
our study is that different density measures were used. 
[BI-RADS density was used in our study, and STRATUS 
(an automated area-based measure of absolute density) 
was used in Illipse et al.] It would be worthwhile investi-
gating the longitudinal breast density method using dif-
ferent measures of mammographic density such as the 
aforementioned. Another consideration of the longitu-
dinal breast density measure is that, whilst the method 
is clearly most useful when a woman has more than one 
density measure, it may also improve reliability of breast 
density measurements even with just a single density 
score. This is because it borrows strength from other 
women of the same age and body mass index, and shrinks 
the estimates accordingly. For example, one might expect 

a 40-yr-old woman with healthy weight and BI-RADS 
density D to have truly denser breasts than a 70-yr-old 
woman with obesity and BI-RADS density D; and this 
would be reflected in the proposed algorithm.

The major strength of this study is the use of a large 
cohort with repeated measures of breast density through 
time, and the development and predictive evaluation of 
a new method to assess serial density, particularly using 
more than two measures arbitrarily spaced through time. 
This might make longitudinal density a particularly useful 
tool for clinical practice where women can have several 
mammograms taken at any point in time. We addition-
ally observed improvements when assessing women 
with at least three prior mammograms, which demon-
strates an increasing value of the method with more 
data. Therefore, the benefit of using longitudinal density 
to assess breast cancer risk in terms of reducing meas-
urement error and preventing fluctuations in the classi-
fication of women into different risk categories through 
time may be improved further by updating the measure 
at each screening examination to provide more density 

Fig. 3  Cumulative distribution functions for relative risk of breast density (BI-RADS/longitudinal) from second to third mammogram. 
n = 76,313 (subgroup of women with at least 3 mammograms). Relative risks were calculated using the hazard ratios for density taken 
from the proportional-hazards Cox model fitted to the complete cohort for BI-RADS density (time-varying) or the new longitudinal breast 
density measure (time-varying; continuous; including a quadratic term), age at baseline (continuous) and BMI (time-varying; continuous). 
Corresponding observed values for BI-RADS density or the new longitudinal breast density measure were from the second and third mammograms 
in the subgroup of women with at least 3 mammograms. Relative risks from second to third mammogram were normalised so that mean = 1. 
‘Time-varying’ means that a woman’s values for breast density and BMI are updated through time, i.e. at each screening examination. Orange 
line represents the cumulative distribution function for BI-RADS density. Blue line represents the cumulative distribution function for longitudinal 
density. X-axis on a log scale. BI-RADS Breast Imaging Reporting and Data System, BMI body mass index
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values. Another advantage of using longitudinal breast 
density is that it would help to identify women with 
persistently dense breasts who may be eligible for sup-
plemental screening. This is an important piece of infor-
mation that cannot be discerned from a single BI-RADS 
density measure. In addition, the beneficial consequence 
of having greater stability when using longitudinal breast 
density compared with BI-RADS density is likely to have 
implications for breast cancer screening programmes 
which employ a risk-based approach. For instance, 
according to the UK’s National Institute for Health and 
Care Excellence guidelines and previous studies assess-
ing the application of these guidelines to population 
risk assessment, breast cancer risk thresholds of ≥ 8% 
and 5–8% absolute 10-year risk may be used to classify 
women into high- and moderate-risk groups, respectively 
[3, 45, 46]. Therefore, in the UK context, if a group of 
high-risk women with an 8–10% absolute 10-year risk of 
breast cancer (based on an established risk model) were 
to experience a 20% reduction in relative risk (i.e. relative 
risk = 4/5), then 17% of these women would be reclassi-
fied as moderate risk if using BI-RADS density, compared 
with only 6% if using longitudinal breast density (under 
the assumption that the distribution in Fig.  3 holds for 
comprehensive risk assessment within this group). Such a 
large difference in reclassification would have important 
ramifications for women who are truly at a high risk of 
breast cancer and may benefit from enhanced screening, 
but would be ineligible for it due to omission of informa-
tion from previous mammograms. Furthermore, in view 
of the recent U.S. Food and Drug Administration regula-
tion updates requiring patient mammography reports to 
indicate whether they have ‘dense’ or ‘non-dense’ breast 
tissue [47], and given that longitudinal density is more 
stable over time than a single density measure, the use of 
the longitudinal density measure could help to mitigate 
confusion amongst patients if their density values were to 
vary between screening visits. (This is especially relevant 
for women whose BI-RADS density oscillates between B 
and C.)

Limitations of the study include the statistical mod-
els used. In particular, BI-RADS density categories 
were modelled as quantitative integer values to crudely 
approximate a linear association between density and 
age and BMI in the linear mixed model. There is some 
justification for this because the relative hazard associ-
ated with BI-RADS density adjusted for age and BMI is 
approximately 1, 2, 3, 4 (cf. comparing relative differences 
in Table  2). However, alternative models, such as joint 
models, might better fit the data and improve predictive 
ability [48]. Furthermore, the linear mixed model used 
to develop longitudinal density was adjusted for age and 
BMI only. Adjusting longitudinal density for additional 

confounders such as hormone therapy use, benign breast 
disease or reproductive factors might improve its approx-
imation; although we note that these adjusting factors 
may be more relevant when predicting breast cancer 
risk than breast density. Moreover, in a recent associa-
tion study examining the relationship between change 
in volumetric percentage density and subsequent breast 
cancer risk, each breast was considered independently 
in the statistical model [49]. It is possible that model-
ling each breast independently could provide additional 
aetiological information. This approach was not possi-
ble in our analysis, however, because the density values 
at each time point were measured as a combined assess-
ment of the four breast view combinations available to 
the interpreting radiologist at the screening examination. 
Another limitation is that the algorithm for calculat-
ing longitudinal density is not straightforward to imple-
ment using a simple rule. However, it is less complicated 
to implement in computer systems than fully automated 
measures of breast density, and the algorithm to evalu-
ate this new measure is fully available in Supplementary 
Methods, Additional file 1. Finally, since the focus of this 
study was on evaluating the predictive performance of 
longitudinal breast density above that of age and BMI, 
rather than in the context of established risk models, we 
did not adjust for additional breast cancer risk factors. 
Future work will aim to validate the longitudinal breast 
density method in independent datasets, as well as assess 
the value of incorporating the measure into established 
breast cancer risk models such as the IBIS/Tyrer–Cuzick 
algorithm [50]. Ultimately, by adapting such risk models 
to include a woman’s historical information, dynamic risk 
prediction could be made possible. Patient data could be 
updated regularly, and accurate and reliable estimates of 
breast cancer risk (that take into account all of the wom-
an’s longitudinal information) could be provided at each 
new screening visit.

Conclusions
We conclude that estimating mammographic density 
using a woman’s history of breast density is likely to 
be more reliable than using the most recent observa-
tion only, which may lead to more reliable and accurate 
estimates of individual breast cancer risk. Longitudi-
nal breast density has the potential to improve personal 
breast cancer risk estimation in women attending mam-
mography screening.
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