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Abstract

Background & Aims: Acetaminophen (APAP)-induced acute liver failure (ALF) remains the 

most common cause of ALF in the Western world. Conventional prognostic models, utilising 

markers of liver injury and organ failure, lack sensitivity for mortality prediction. We previously 

identified a microRNA signature that is associated with successful regeneration post-auxiliary liver 

transplant and with recovery from APAP-ALF. Herein, we aimed to use this microRNA signature 

to develop outcome prediction models for APAP-ALF.

Methods: We undertook a nested, case-control study using serum samples from 194 patients 

with APAP-ALF enrolled in the US ALF Study Group registry (1998–2014) at early (day 1–2) 

and late (day 3–5) time-points. A microRNA qPCR panel of 22 microRNAs was utilised to 

*Corresponding author. Address: Institute of Liver Studies, King’s College Hospital, Denmark Hill, London, SE5 9RS, UK; Tel.: +44 
20 3299 4017, fax: +44 20 3299 3167. varuna.aluvihare@kcl.ac.uk (V.R. Aluvihare).
†Contributed equally.
Authors’ contribution 
Study supervision and guarantor of the manuscript: VRA. Study concept: ODT, CJK, SS, MJWM and VRA. Study design: ODT, CJK, 
SS, JS, CFR, KM, AP, MAH, KA, WML, MJWM and VRA. Cohorting of patients and developing clinical data: CJK, JS, CFR and 
WML. microRNA analysis and statistical analysis: ODT, SS and MJWM. Drafting of the manuscript: ODT, CJK, SS, MJWM and 
VRA. Critical revision of the manuscript: ODT, CJK, SS, JS, CFR, KM, AP, MAH, KA, WML, MJWM and VRA.

Conflict of interest 
The authors declare no conflicts of interest that pertain to this work.
Please refer to the accompanying ICMJE disclosure forms for further details.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2021.03.013

HHS Public Access
Author manuscript
J Hepatol. Author manuscript; available in PMC 2023 November 24.

Published in final edited form as:
J Hepatol. 2021 August ; 75(2): 424–434. doi:10.1016/j.jhep.2021.03.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assess microRNA expression at both time-points. Multiple logistic regression was used to develop 

models which were compared to conventional prognostic models using the DeLong method.

Results: Individual microRNAs confer limited prognostic value when utilised in isolation. 

However, incorporating them within microRNA-based outcome prediction models increases 

their clinical utility. Our early time-point model (AUC = 0.78, 95% CI 0.71–0.84) contained 

a microRNA signature associated with liver regeneration and our late time-point model (AUC 

= 0.83, 95% CI 0.76–0.89) contained a microRNA signature associated with cell-death. Both 

models were enhanced when combined with model for end-stage liver disease (MELD) score and 

vasopressor use and both outperformed the King’s College criteria. The early time-point model 

combined with clinical parameters outperformed the ALF Study Group prognostic index and the 

MELD score.

Conclusions: Our findings demonstrate that a regeneration-linked microRNA signature 

combined with readily available clinical parameters can outperform existing prognostic models 

for ALF in identifying patients with poor prognosis who may benefit from transplantation.

Lay summary: While acute liver failure can be reversible, some patients will die without a liver 

transplant. We show that blood test markers that measure the potential for liver recovery may help 

improve identification of patients unlikely to survive acute liver failure who may benefit from a 

liver transplant.

Graphical abstract
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Introduction

Acute liver failure (ALF) remains a rare, potentially reversible, life-threatening disorder. 

The syndrome is characterised by the development of hepatic encephalopathy (HE) and 

synthetic dysfunction within 26 weeks of symptom onset.1 Acetaminophen (APAP) is the 
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most common aetiology of ALF in the Western world.2,3 Early clinical prognostication is 

vital in determining the need for life-saving emergent liver transplantation (LTx).

Several outcome prediction models aid clinicians in determining the risk of patient mortality 

without LTx including surrogate markers of liver injury and extrahepatic organ failure.4–6 

The King’s College criteria (KCC) is the most commonly used model worldwide.4 However, 

a recent meta-analysis demonstrated that the KCC lacked sensitivity in predicting mortality 

in patients with APAP-ALF.7 Whilst this may partially represent improvements in the 

standard of non-transplant care in the 30 years since the development of this model, more 

recent models also have limitations in performance.5,7 There is a need to develop novel 

biomarkers that better discriminate outcome in ALF. Furthermore, the classical biomarkers 

used in existing models focus on severity of liver injury, give little insight on mechanisms 

mediating recovery and do not elucidate potential targets for therapeutic interventions in the 

future.

MicroRNA (miRNA) have been a focus of interest as biomarkers in multiple conditions 

including ALF.8–10 However, there has been limited progress in the development of 

prognostic miRNA-based biomarkers in ALF, reflecting a lack of standardised methodology 

in quantifying miRNA expression and the lack of utility of a single miRNA in this setting. 

Defining the impact of an individual miRNA is challenging as a single miRNA may regulate 

multiple genes and a single gene may be regulated by multiple miRNAs.10 Animal models 

of ALF have demonstrated differing miRNA expression depending on time after liver injury 

which may also impact on the performance of miRNA sampled at non-standardised time-

points.11 A standardised methodological approach focusing on miRNA signatures over time 

may potentially improve the performance of miRNA as clinically tractable biomarkers.

We have previously described a distinct hepatic miRNA signature associated with successful 

native liver regeneration following auxiliary LTx. Using an in vitro model, we demonstrated 

that this miRNA signature induces proliferation.12 We have subsequently demonstrated 

that the presence of this regeneration-linked signature in serum is associated with clinical 

recovery in both ALF and chronic liver disease.13

We hypothesised that the integration of miRNA signatures within outcome prediction 

models for APAP-ALF would improve prognostication. Herein, we aimed to develop 

miRNA-based outcome prediction models with superior performance to conventional 

models for the prediction of 21-day mortality from APAP-ALF.

Patients and methods

Study design

This study was designed as a nested case-control study of prospectively collected data 

and bio-samples from 194 patients enrolled in the US ALF Study Group (USALFSG) 

registry/bio-repository. Inclusion criteria for enrolment to the registry were evidence of ALF 

defined by an international normalised ratio (INR) >1.5 and HE within 26 weeks of hepatic 

insult. Patients with pre-existing chronic liver disease or alcohol-induced liver failure were 

excluded. For this study, patients were excluded if: i) they were younger than 18 years old; 
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ii) they did not develop HE within 7 days of liver injury; iii) the aetiology of ALF was 

not felt to be APAP; or iv) they underwent LTx. The latter were excluded as selection for 

transplantation was not standardised across USALFSG sites and to mitigate the potential 

impact of patients who were transplanted who may have survived without LTx. Samples and 

clinical information were collected at 2 clinical time-points; early (day 1–2) and late (day 

3–5). The primary outcome was 21-day survival.

We identified 928 APAP-ALF patients enrolled from 16 tertiary academic centres between 

January 1998-December 2014 who fulfilled inclusion/exclusion criteria. We were able to 

access paired time-point samples for 95 survivors and 83 non-survivors. To maintain the 

power of the study, further unpaired samples at both time-points were randomly selected 

for analysis by personnel not involved with the analysis of samples or statistical analysis of 

this manuscript. Final group numbers were: 96 early time-point survivors; 97 late time-point 

survivors; 92 early time-point non-survivors; and, 87 late time-point survivors.

This study was approved by the authors’ institutional review board/health research ethics 

board (REC number 12/LO/0167) and institutional review boards of all participating 

USALFSG enrolling sites and has been conducted according to the principles expressed 

in the 1975 Declaration of Helsinki. Given patients lacked capacity to provide informed 

written consent due to the nature of ALF, written assent was obtained from the next of 

kin from each patient. All centres implemented monitoring and therapeutics according to 

institutional standards of care. Reporting of the analysis of this study complies to the 

STROBE Guidelines for reporting case-control studies.14 All authors had access to the study 

data and reviewed and approved the final manuscript.

Clinical data

Demographic, clinical, laboratory and outcome data were recorded prospectively at both 

early and late time-points simultaneous to blood sampling as part of enrolment to the 

USALFSG registry. Data assessed in this study included age, sex, laboratory data (full blood 

count, creatinine, liver function tests, INR, ammonia, lactate and arterial pH), HE grade 

(as per West Haven Criteria15) and requirement for organ support (mechanical ventilation, 

vasopressors and renal replacement therapy). Prognostic scores including the KCC,4 model 

for end-stage liver disease (MELD) score16 and ALFSG prognostic index (PI)5 were 

calculated from these data at both time-points (see Table S1).

miRNA analysis

RNA extraction—Serum samples were thawed on ice and centrifuged at 3000 x g for 

5 minutes in a 4°C microcentrifuge. An aliquot of 200 μl per sample was transferred 

to a FluidX tube and 60 μl of lysis solution Biofluids containing 1 μg carrier-RNA and 

RNA spike-in template mixture were added to each sample. Each sample was mixed 

for 1 min then incubated for 7 min at room temperature. Following this, 20 μl of 

protein precipitation solution BF was added. Total RNA was extracted from serum using 

miRCURY™ RNA isolation kit–biofluids (QIAGEN, Hilden, Germany) according to the 

manufacturer’s protocol.17 The purified total RNA was eluted to a final volume of 50 μl.
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miRNA real-time quantitative PCR—20 μl of RNA was reverse transcribed using 

the miRCURY™ LNA RT kit (Qiagen, Hilden Germany). Complementary DNA (cDNA) 

was diluted 50x and assayed in 10 μl PCRs according to the manufacturer’s protocol.17 

22 miRNAs were selected for analysis based on our previous study findings,12,13 review 

of the literature for association with regeneration and cell-death,8,9,18–20 and to allow for 

normalisation (Table S2). Also included within this panel were; RNA spike-ins (UniSp2 

and 4) to ensure RNA isolation efficiency, a cDNA control marker (UniSp6) to assess 

reverse transcription (RT) and a DNA spike-in (UniSp3) to assess PCR efficiency. Each 

miRNA was assayed once by quantitative PCR (qPCR) on the miRNA Ready-to-Use PCR 

Custom Panel (Qiagen, Hilden Germany) using the miRCURY™ LNA SYBR Green master 

mix. Negative controls excluding the template from the RT reaction were performed and 

profiled in comparison to the samples. Amplification was performed in a LightCycler® 

480 Real-Time PCR System (Roche, Basel, Switzerland) in 384 well plates. Amplification 

curves were analysed using the Roche LC software (Roche, Basel, Switzerland), both for 

determination of quantification cycle (Cq) (by the second derivative method) and melting 

curve analysis.

Methods of assessment and control of haemolysis and miRNA data analysis are described in 

the supplementary methods.

Statistical analysis

Comparisons were made between survivors and non-survivors at both time-points. 

Continuous demographic, clinical and laboratory variables were analysed for normality 

using the D’Agostino and Pearson test. Normally distributed data were analysed using t 
tests with results reported as mean (SD) and non-normally distributed data were analysed 

using Mann-Whitney U tests with results reported as median (IQR). Categorical data were 

analysed by Fisher’s exact test and results reported as number (%).

After natural logarithmic transformation for normalisation (supplementary methods), all 

miRNA were compared between survivors and non-survivors using t tests. If a p value <0.05 

were achieved, receiver-operating characteristic curve analysis was performed and reported 

as AUC (95% CI). To increase the utility of less prevalently expressed miRNA, those 

detected in less than 85% of samples were treated as categorical variables (detected(D)=1, 

not detected(ND)=0) and analysed using Fisher’s exact tests and reported as an odds ratio 

(OR) (95% CI) for 21-day mortality.

Multiple logistic regression was used to develop miRNA models to predict 21-day mortality 

at early and late time-points (supplementary methods). Complete case analysis was used, 

excluding individuals with missing data. Results were recorded as ß estimate, OR with 95% 

CI and p values. Sensitivity analyses were performed for grade of encephalopathy at the 

early time-point and time to death at both time-points.

MetaCore™ pathway analysis (GeneGo Inc, Michigan, USA) was used to identify 

biological processes associated with the miRNA signature expressed within each model 

(supplementary methods). These models were adjusted for liver injury and critical illness 

by developing further multiple logistic regression models including MELD score and 
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vasopressor use. A threshold value was determined for each model by Youden’s Index to 

predict 21-day mortality. All models (with and without threshold values) were compared 

to the KCC, MELD score and ALFSGPI using DeLong method in paired samples 

only.21 Correction for multiple comparisons was performed using the Benjamini-Hochberg 

procedure22 with a false discovery rate set at 0.05. All univariate and multivariate analyses 

were performed using Prism V8.4.2 (GraphPad, San Diego, USA) or Stata 16.0 (StataCorp, 

Texas, USA).

Results

Comparison of clinical data for survivors and non-survivors

Clinical, demographic and laboratory data at both time-points are shown in Table 1. At 

the early time-point, data were provided for 96 survivors and 92 non-survivors. At the late 

time-point data were provided for 97 survivors and 87 non-survivors.

At both time-points, non-survivors had evidence of greater liver injury (significantly elevated 

bilirubin, INR and lactate values) and multi-organ failure (significantly elevated creatinine 

values, higher rate of ventilator and vasopressor use). At the late time-point, non-survivors 

had a greater prevalence of high-grade HE. No difference was observed between groups for 

patient age, sex or whether patients were listed for transplant.

Comparison of miRNA expression in survivors and non-survivors

Outcomes of quality control and haemolysis experiments are shown in Fig. S1. Minimal 

haemolysis was observed (5/372 samples) and there was a stable expression of quality 

control markers for RNA isolation, RT and PCR efficiency; therefore, no samples were 

excluded from further analysis. Samples were then excluded if they did not express all of 

the normalising miRNA (miR-23a, −26a and −103). From the early time-point, 2 survivors 

and 3 non-survivors were excluded (survivors n = 94, non-survivors n = 89). From the late 

time-point, 1 survivor and 3 non-survivors were excluded (survivors n = 96, non-survivors n 

= 84). This left 92 survivors and 77 non-survivors with paired samples.

The top 16 miRNA with the highest SD across all samples and time-points underwent 

supervised 2-way hierarchical clustering and are shown in a heat map in Fig. 1 (SD of all 

miRNA are shown in Table S3) (Fig. S2 demonstrates unsupervised 2-way hierarchical 

clustering). Whilst this demonstrates a degree of congruence in miRNA expression 

within each clinical outcome group and time-point, it also demonstrates that expression 

of individual miRNA across outcome groups is inconsistent and time-point dependent. 

Univariate analysis of miRNA expression between outcome groups at both time-points is 

shown in Tables 2 and 3. After correction for false discovery, whilst significant differences 

were demonstrated in the expression of certain miRNA at individual time-points (early; 

miR-150, −16–2 and −29b, late; miR-122, −21, −30a and −503), the performance of these 

individual miRNAs at discriminating outcome in APAP-ALF was poor (best performing 

frequently detected miRNA at each time-point; early: miR-150 [AUC 0.64, 95% CI 0.55–

0.72], late: miR-122 [AUC 0.63, 95% CI 0.54–0.71]). Converting miRNAs less prevalently 

expressed into categorical variable identified further associations with outcome at each time-
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point (early: miR-191, −20a, and −149; late: −149, −17, −191 and −16–2). No significant 

differences were observed between survivors and non-survivors with paired samples for 

change in miRNA expression from the early to the late time-point (Table S4).

Development of miRNA-based 21-day mortality outcome prediction models

Multiple logistic regression was used to develop miRNA-based 21-day mortality outcome 

prediction models utilising miRNA with the highest predictive value expressed in greater 

than 85% of samples if utilised as continuous variables, or greater than 10% of samples if 

utilised as categorical variables. These cut-offs were used to ensure that these models were 

applicable to the majority of patients and the miRNA utilised represented true differences 

between outcome groups.

The early time-point model contained miR-150 and −27a as continuous variables and 

miR-149, −191 and −20a as categorical variables and included data from 182/183 patients 

(99.5%) (Fig. 2). All miRNA remained statistically significant within this model (Fig. 2A) 

and the model discriminated 21-day mortality with an AUC of 0.78 (95% CI 0.71–0.84) 

(Fig. 2B). The late time-point model contained miR-122 and −30a as continuous variables 

and miR-149, −191 and −16–2 as categorical variables and included data from 175/180 

patients (97.2%) (Fig. 3). These miRNAs also all remained statistically significant within 

this model (Fig. 3A) and the model discriminated 21-day mortality with an AUC of 0.83 

(95% CI 0.76–0.89) (Fig. 3B).

MetaCore™ pathway analysis, based on all miRNAs included within the early time-point 

model, is shown in Fig. 2C. This shows that miRNAs included within this model are 

implicated in processes associated with a response to cellular injury. Further analysis was 

performed splitting the miRNAs into those observed in both time-point models (miR-149 

and −191) and those not observed in the late time-point model (miR-150, −27a and −20a). 

The expression of miR-149 and −191 are associated with processes associated with response 

and mediation of cellular injury (Fig. 2D) and miR-150, −27a and −20a were associated with 

processes associated with positive regulation of cellular metabolism (Fig. 2E). MetaCore™ 

pathway analysis was then performed utilising all miRNAs included within the late time-

point model (Fig. 3C). This demonstrates that the miRNAs within this model are associated 

with processes associated with cell-death. All Z scores from these analyses were greater or 

equal to 100 confirming a strong positive association with the results.

Sensitivity analyses were undertaken to evaluate the performance of the models in patients 

at the highest risk of non-survival (Fig. S3). At the early time-point, this was performed by 

sequentially excluding patients with high- and low-grade HE. The early time-point model 

had comparable performance in patients with high-grade and low-grade HE (Fig. S3A and 

B). Non-survivors were then excluded by time to death (grouped into days 0–5 and days 

6–21) sequentially at both time-points. Whilst the early time-point model performed better 

at determining patient mortality at days 0–5 (AUC 0.84; 95% CI 0.77–0.91), it was able to 

discriminate outcome at days 6–21 (AUC 0.72; 95% CI 0.63–0.81) (Fig. S3C and D). The 

late time-point model performed comparably at days 0–5 and 6–21 (Fig. S3E and F).
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To understand the transferability of these models between time-points, the late time-point 

model was utilised at the early time-point and the early time-point model was utilised at 

the late time-point in patients with paired samples (Fig. 4A,B). The late time-point model 

was unable to discriminate 21-day mortality at the early time-point (AUC 0.54; 95% CI 

0.45–0.63). However, the early time-point model discriminated 21-day mortality at the late 

time-point (AUC 0.65; 95% CI 0.56–0.73).

Multiple logistic regression combining both models was then used at the appropriate 

time-point in patients with paired samples (Fig. 4C,D). Each model remained statistically 

significant within the combined model and an AUC of 0.87 (95% CI 0.82–0.93) was 

achieved in predicting 21-day mortality. In patients with paired samples, neither model 

outperformed the other in predicting 21-day mortality when utilised at the appropriate 

time-point (Fig. 4E).

Incorporating clinical variables

Clinical variables were incorporated as markers of liver injury and critical illness to evaluate 

whether they would improve prognostication, given their use in classical prognostic models. 

This also allowed us to adjust the models for clear differences observed in liver injury and 

critical illness between both cohorts (Table 1). We evaluated the effect of MELD score 

which utilises laboratory values found to be significantly different between outcome groups 

at both time-points. In addition, we evaluated vasopressor use which was the organ failure 

variable associated with the greatest statistically significant difference between survivors and 

non-survivors at both time-points.

Both models remained statistically significant when adjusted for MELD score and 

vasopressor use (Fig. 5A,B). Prognostic performance of each model was superior, with 

the early time-point model achieving an AUC of 0.83 (95% CI 0.78–0.89) and the late 

time-point model achieving an AUC of 0.91 (95% CI 0.86–0.96) (Fig. 5C,D).

Comparing miRNA-based outcome prediction models with conventional models for 21-day 
mortality prediction

We selected 3 currently used models for comparison to the miRNA-based outcome 

prediction models in patients with paired samples at both time-points. The MELD score 

and ALFSGPI were used as models without threshold values predicting 21-day mortality. 

The KCC and the ALFSGPI (using the threshold value from the original manuscript5) were 

used as models with threshold values for predicting 21-day mortality. Performance of these 

models are shown in Table S5.

We compared the miRNA-based models alone with conventional models and observed no 

significant differences between either time-point model and the ALFSGPI or MELD score 

in discriminating 21-day mortality (Fig. 2F, 3D and Table S6). Both models significantly 

outperformed the KCC.

Given the performance of early and late time-point models incorporating MELD score 

and vasopressor use, we compared these to the conventional models (Fig. 5E,F and 

Table S6). The early time-point model incorporating these clinical parameters significantly 
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outperformed the MELD score, ALFSGPI with and without a threshold value and the KCC 

in predicting 21-day mortality. The late time-point model with clinical variables integrated 

only outperformed the KCC and the ALFSGPI with a threshold value.

Threshold values for predicting 21-day mortality for all of the miRNA-based models were 

determined (Table S7). All models significantly outperformed the KCC in predicting 21-day 

mortality (Figs. 2F, 3D, 5E,F). The late time-point model was significantly outperformed by 

the ALFSGPI without a threshold value (Table S8B). No models outperformed the MELD 

score and ALFSGPI without a threshold value. However, the early time-point model with 

clinical variables incorporated significantly outperformed the ALFSGPI with a threshold 

value in discriminating 21-day mortality.

Discussion

To our knowledge, we have carried out the largest analysis of serum miRNA expression 

at multiple time-points in APAP-ALF. Our analysis shows that miRNA-based signatures 

can discriminate outcome in ALF and, when combined with clinical parameters, our early 

time-point model outperformed all conventional outcome prediction models in this study.

Whilst our prognostic models have substantially improved performance over present 

systems, we have demonstrated that individual miRNAs lack utility as biomarkers in 

isolation. The best performing miRNA which was detected in greater than 85% of samples 

(miR-150) achieved an AUC of 0.64 (Table 2), comparable to previous reported findings.8 

We also demonstrate that serum miRNA expression is dynamic through the clinical course 

of APAP-ALF and that similar expression may be observed in patients with differing clinical 

outcomes at different clinical time-points (Fig. 1). This likely reflects that survival from 

ALF is not determined by a singular biological process but multiple different processes, 

including regeneration and response to cell-death, which have time-dependent roles in 

recovery. A clear definition of time of sampling is vital in interpreting the prognostic 

value of a miRNA. Differing sampling time points may be amongst the reasons why there 

are conflicting data regarding the expression of certain miRNAs in clinical outcome from 

APAP toxicity.8,9 Whilst the time course expression of circulating miRNA has been explored 

in a porcine model of APAP-ALF,11 this has not previously been reported in humans. 

Further understanding the time-dependent expression of circulating miRNAs may increase 

the prognostic utility of individual miRNAs as biomarkers.

The early time-point model utilised miRNAs which we have previously observed to be 

associated with successful regeneration in auxiliary LTx and induce proliferation in an in 
vitro model.12 Furthermore, MetaCore™ pathway analysis demonstrated that the miRNAs 

present solely within the early time-point model were associated with positive regulation 

of increased cellular metabolism; a vital process to facilitate hepatocyte regeneration 

after injury.23 The late time-point model conversely was comprised of miRNAs that on 

MetaCore™ pathway analysis were associated with cell-death and have previously been 

associated with hepatocyte injury and death.9,24–27 It is reasonable therefore to conclude that 

the early time-point model represents a regeneration-linked miRNA signature and the late 

time-point model is a cell-death linked miRNA signature.
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Conventional models used to predict outcome in ALF have tended to focus on markers of 

liver injury.4–6 In this study, we not only demonstrate that our regeneration-linked miRNA 

model predicts 21-day mortality at the early time-point, we show that it can predict 21-day 

mortality at the late time point (Fig. 4B). When MELD score and vasopressor use were 

integrated within the early time-point model, this model outperformed all models within this 

study (Fig. 5E and Table S6c). When a threshold value was applied, the early time-point 

model significantly outperformed the KCC and the ALFSGPI with a threshold value (Fig. 

5E). In comparison, the late time-point model did not outperform the ALFSGPI without a 

threshold value or MELD score and, when a threshold value was applied, only outperformed 

the KCC (Fig. 5F and Table S8d). Our findings indicate that biomarkers associated with 

regeneration have the potential to enhance traditional models of liver injury and organ 

failure, thereby improving prognostication for patients with ALF.

We have corroborated some of our previous findings evaluating circulating miRNA 

expression in APAP-ALF with 2 miRNAs from our previous signature incorporated within 

the early time-point model.13 However, we also observed some differences, which may 

reflect several differences between this study and our previous work. In our previous study, 

patients had to fulfil the KCC for inclusion, whilst in this study they required an INR 

greater than 1.5 and any grade of encephalopathy. It is therefore likely that patients in 

our previous study had a more severe phenotype of ALF. In our previous studies, we also 

included patients who underwent LTx which may have impacted on the expression profiles 

we observed. Our previous study size was relatively small which allowed us to profile the 

entire miRNome in patients, but impacted on statistical robustness. Additionally, we did 

not use a threshold value to determine patient mortality with the median time to death 

in our deceased cohort being 29 days (as opposed to the 21-day mortality used in this 

study). Finally, samples were taken from patients on admission to critical care as opposed 

to days 1–2 and 3–5 after enrolment to the study. We have demonstrated in this study 

that miRNA expression is dynamic over time and that miRNA expression analysis must be 

undertaken at comparable time-points. These factors likely account for the differences in 

miRNA expression reported across outcome groups in both studies.

Limitations of this study include the retrospective nested case-control design. However, 

patients were enrolled and samples with clinical data were collected prospectively and 

therefore were not subject to recall bias. Investigators were blinded to outcome data when 

performing miRNA analysis. Given that patients may have been transferred from regional 

centres and may have required written assent from their next of kin, there is potential for 

lead time bias. For this reason, our 2 time-points are broad to account for this. Future 

prospective work should have narrower definitions of time-points. Whilst the methodology 

utilised in this study allowed us to accurately compare and evaluate the prognostic potential 

of multiple miRNAs, the practical utility of this methodology in ‘real-world’ time-critical 

ALF decision-making remains to be determined. However, the field of point-of-care miRNA 

testing is rapidly evolving28–30 and these technological innovations may improve the clinical 

utility and applicability of the miRNA signatures we describe. Patients who underwent LTx 

were excluded from this study as transplant listing decisions for APAP-ALF and organ 

availability were not consistent between study centres. Therefore, these models may predict 

patient death that may not have been prevented by LTx. However, the early time-point 
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model demonstrated similar performance in high- and low-grade HE and both models were 

able to predict mortality after day 5, suggesting that these models may have a role in 

predicting patients who may benefit from LTx (Fig. S3). There was reduced availability of 

clinical and laboratory data for patients at the late time-point which reduced the number 

of patients included in model comparison, particularly for the KCC. Formal mechanistic 

work is required to investigate the biological processes found on MetaCore™ pathway 

analysis. Finally, these models require validation in an external cohort. However, this was 

a large-scale translational study which included patients with APAP-ALF from 16 tertiary 

LTx centres across the US, the miRNA panel utilised was based on our previous study in 

APAP-ALF,13 we ensured quality control of each step of miRNA analysis, we adjusted the 

models for markers of liver injury and critical illness and we compared them to commonly 

used models for outcome prediction in APAP-ALF. We therefore believe that despite the 

limitations we highlight, our findings are robust and warrant further evaluation.

In conclusion, we have demonstrated that regeneration-linked and cell-death linked 

miRNA can be used to predict 21-day mortality in APAP-ALF. A model containing 

regeneration-linked miRNA, MELD score and vasopressor use significantly outperformed 

commonly used outcome prediction models. In developing future prognostic models in ALF, 

biomarkers associated with liver regeneration should be considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• miRNA expression is dynamic across the course of acute liver failure.

• At days 1–2, a regeneration-linked miRNA signature discriminates 21-day 

mortality.

• At days 3–5, a cell-death linked miRNA signature discriminates 21-day 

mortality.

• Integrating MELD score and vasopressor use enhances each signatures 

performance.

• The early model with clinical variables outperforms other outcome prediction 

models.
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Fig. 1. Heat map and 2-way hierarchical clustering of miRNA expression in both outcome groups 
at both time-points.
Clustering was performed on all samples and on the top 16 miRNAs with the highest SD 

using dCq values (miRNA were excluded if not detected in greater than 100 samples). dCq, 

delta quantification cycle; miR/miRNA, microRNA.
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Fig. 2. The early time-point miRNA-based model.
(A) miRNA included within the model. (B) Model performance (n = 182; AUC 0.78 

[95% CI 0.71–0.84; p <0.0001*]; pseudo r2 = 0.2213; HL statistic 12.67 [p = 0.12]). 

(C) MetaCore™ pathway analysis including all miRNA within the model. (D) MetaCore™ 

pathway analysis including miRNA within both time-point models (miR-149 and −191) 

(E) MetaCore™ pathway analysis including miRNA only within the early time-point model 

(miR-20a, −27a, −150). (E) Comparisons with other outcome prediction models with and 

without threshold values using the DeLong method. Statistical significance set as per 

Benjamini-Hochberg procedure with a false discovery rate of 0.05 (*p <0.026). ALFSGPI, 

Acute Liver Failure Study Group prognostic index; HL, Hosmer-Lemeshow; KCC, King’s 

College criteria; MELD, model for end-stage liver disease; miR/miRNA, microRNA; OR, 

odds ratio.
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Fig. 3. The late time-point miRNA-based model.
(A) miRNA included within the model. (B) Model performance (n = 175; AUC 0.83 

[95% CI 0.76–0.89; p <0.0001*]; pseudo r2 = 0.2767, HL statistic 11.54 [p = 0.17]). (C) 

MetaCore™ pathway analysis including miRNA within the model. (D) Comparisons with 

other outcome prediction models with and without threshold values using the DeLong 

method. Statistical significance set as per Benjamini-Hochberg procedure with a false 

discovery rate of 0.05 (*p <0.026). ALFSGPI, Acute Liver Failure Study Group prognostic 

index; HL, Hosmer-Lemeshow; KCC, King’s College criteria; MELD, model for end-stage 

liver disease; miR/miRNA, microRNA; OR, odds ratio.
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Fig. 4. Comparing the performances of the early and late time-point models.
(A) Performance of the late time-point model at the early time-point (n = 167; AUC 0.54; 

95% CI 0.45–0.63; p = 0.40). (B) Performance of the early time-point model at the late 

time-point (n = 165; AUC 0.65; 95% CI 0.56–0.73; p = 0.001*). (C,D) Combined model 

performance in patients with paired samples (n = 165; AUC 0.87 [95% CI 0.82–0.93; p 
<0.0001*]; pseudo r2 = 0.4153, HL statistic 14.37 [p = 0.07]). (E) Comparison of both 

models’ performances in patients with paired samples using the DeLong method. Statistical 

significance set as per Benjamini-Hochberg procedure with a false discovery rate of 0.05 (*p 
<0.026). HL, Hosmer-Lemeshow; OR, odds ratio.
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Fig. 5. Combining the models with clinical parameters.
(A) Early time-point model adjusted for MELD and vasopressor use. (B) Late time-point 

model adjusted for MELD and vasopressor use. (C) Early time-point model performance 

(n = 177; AUC 0.83 [95% CI 0.78–0.89; p <0.0001*], pseudo r2 = 0.3396, HL statistic 

6.83 [p = 0.56]). (D) Late time-point model performance (n = 149; AUC 0.91 [95% CI 0.86–

0.96; p <0.0001*), pseudo r2 = 0.5290, HL statistic = 6.74 (p = 0.57)). (E,F) Comparing 

the early (E) and late (F) time-point models with clinical parameters integrated (with and 

without threshold values) to other commonly used outcome prediction models using the 

DeLong method. Statistical significance set as per Benjamini-Hochberg procedure with 

a false discovery rate of 0.05 (*p <0.026). ALFSGPI, Acute Liver Failure Study Group 

prognostic index; HL, Hosmer-Lemeshow; KCC, King’s College criteria; MELD, model for 

end-stage liver disease; OR, odds ratio.
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