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Abstract

Biological processes unfold across broad spatial and temporal domains, and measurement of 

the underlying molecular world is essential to their understanding. Interdisciplinary efforts 

advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the 

molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In 

this review, we offer vignettes of milestones in technology innovations that ushered sample 

collection and processing, chemical separation, ionization, and mass analysis to progressively 

finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and 

subcellular organelles. Also highlighted are methodologies that empowered the acquisition and 

analysis of multi-dimensional MS datasets to reveal proteomes, peptidomes, and metabolomes in 

ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge 

of biological processes, we discuss efforts pioneering the integration of orthogonal approaches 

from molecular and functional studies, both within and beyond MS. With established and 

emerging community-wide efforts ensuring scientific rigor, reproducibility, and outreach to diverse 

stakeholders, spatiotemporal MS raises an exciting and powerful resource to address scientific 

questions at present and to ask new ones leading us to the future, to benefit society at large.
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I. INTRODUCTION

Interdisciplinary efforts sculpted mass spectrometry (MS) into an indispensable tool in the 

molecular study of life processes (Fig. 1). Virtually all levels of the molecular architecture—
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from genes to transcripts to proteins to peptides to metabolites—can now be measured using 

this technology, some in exquisite detail. MS detection and quantification of proteomes, 

peptidomes, and metabolomes (‘omes) expanded the analytical toolbox of biology across the 

taxa, helping to generate and test new hypotheses. Over the last decades, technological 

advances broke down classical limitations in detection limits (sensitivity), speed, and 

scalability to enable analysis of limited amounts of materials. This review offers examples 

of innovations that extended MS-based ‘omics to study the spatiotemporal organization of 

diverse biological systems at the realms of the organism, organ, tissue, cell, and organelle.

MS Meets Research Needs.

Life processes respond to intrinsic and extrinsic events with complex and dynamic molecular 

changes across broad spatial and temporal dimensions, and measuring these perturbations 

is key to their understanding. Systems biology promotes holistic understanding, in part, 

by characterizing all types of molecules and their potential interactions from organismal 

to subcellular scales. Vast signal amplification via polymerase chain reaction (PCR) 

facilitated next-generation sequencing of minute amounts of transcripts and genes, thus 

leading single-cell sequencing to become quasi-routine. Subcellular RNA-seq, for example, 

recently uncovered transcriptomic differences between the cell body (soma) and dendrites 

in individual GABAergic and glutaminergic neurons during biological functions (Perez 

et al., 2021), raising the question of subcellular heterogeneity for functional molecules 

downstream of transcription. Without technologies capable of amplifying whole proteomes 

to metabolomes, information from sequencing is often used as a proxy for the proteome.

However, the relationship between mRNA expression, protein production, and metabolism 

is complex in dynamic systems (Liu et al., 2016). Post-transcriptional and -translational 

regulation as well as protein turnover rates contribute to widely variable correlation between 

transcription and translation. This relationship is further complicated by processes occurring 

heterogeneously in space and time, as was recently found during cell culturing (Vogel 

et al., 2012), signal transduction between cells and neurons, differentiation of stem cells 

and developing organisms (Lombard-Banek et al., 2016,Peshkin et al., 2015), cancer 

invasion and metastasis (Saadatpour et al., 2015), and responses to drug treatments (Tian 

et al., 2004). Similarly, bioactive peptides and metabolites, which also carry out important 

physiological functions, are the results of interconnected molecular pathways, complicating 

their predictions from information upstream. Elucidating these molecular relationships over 

space-time is important for understanding states of health and disease, but this goal requires 

direct detection of proteins, peptides, and metabolites.

MS, especially high-resolution MS (HRMS), emerged as the technology of choice to bridge 

this knowledge gap. It integrates exceptional molecular specificity with a capability for 

quantification, typically without the need for functional probes. Readers interested in the 

fundamentals of MS and HRMS, ranging from ion generation to mass analysis, are referred 

to recent reviews (Feng et al., 2008). From tissues and cell cultures, hundreds to tens 

of thousands of biomolecules are routinely assessed in discovery studies with temporal 

resolution, with near-complete coverage of proteomes (Geiger et al., 2012,Hebert et al., 

2014). For example, HRMS on two- (2-D) and three-dimensional (3-D) tissue cultures of 
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human embryonic stem cells (hESCs) and induced pluripotent stem cells helped delineate 

molecular pathways critical for cell differentiation, cellular repair, and degeneration (Arnold 

et al., 2022,Cervenka et al., 2021,Sperber et al., 2015). Quantitative HRMS on proliferating 

neuronal stem cells revealed proteomic alterations between cellular and secreted proteomes 

in response to the microenvironment that would be complicated to predict from the 

transcriptome (Cervenka et al., 2021). HRMS quantified ~2,800 proteins and their temporal 

expression profiles at progressive stages of differentiation, offering a glimpse into molecular 

mechanisms toward developing next-generational cell-based therapies such as cell grafting 

(Cervenka et al., 2021). Similarly, metabolic profiling of naïve and primed hESCs revealed 

alterations on epigenetic dynamics underpinning cell fate determination (Sperber et al., 

2015).

The advent of high-sensitive HRMS propelled ‘omics to dynamic and microscale biological 

systems. This group of technologies integrated existing approaches and invented new 

ones to accomplish trace-level sensitivity, sufficient to probe molecules at physiological 

concentrations. In doing so, they also allowed for scaling the spatial and temporal 

resolution of analysis to the specific biological systems and questions at focus. Figure 1 

conceptualizes broad spatio-temporal domains that contemporary HRMS is able to address. 

With sample collection capable of spatiotemporal scalability, high-sensitivity HRMS opened 

even more investigative possibilities. Rapid sampling enabled HRMS to assist studies on 

fast biochemical processes, including those underpinning cellular processes. For example, 

methods of sampling with duty cycles lasting minutes to seconds can collect cellular 

materials even within a ~15–45 min cell cycle in cleavage-stage embryos, as shown from 

the South African clawed frog (Xenopus laevis) in Figure 1. Sampling over minutes to hours 

brought molecular studies to important physiological processes, including the maintenance 

of circadian cycles, feeding, and response to stress (see examples later). Additionally, 

scalability in physical dimensions raised the possibility of capturing spatial information 

on the distribution of molecules in specimens on the order of millimeter to microns. Mass 

spectrometry imaging (MSI) played an important role by enabling the mapping of proteins, 

peptides, and metabolites across biological tissues, supporting studies on exploring their 

functional roles and aiding drug discovery. Profiling and imaging HRMS were recently 

adapted to subcellular structures. Chemical labeling enhanced spatial resolution to the 

domain of interacting molecules, thus vastly enhancing knowledge of the biochemistry 

underlying biology, such as signaling between neurons in the brain.

These various advancements expanded spatiotemporal HRMS to further support basic and 

translational studies. Next-generation separations, enhanced analyzers, and intelligent data 

acquisition strategies facilitated molecular identifications and quantification from minute 

amounts of materials. Thousands of proteins and metabolites can now be measured, even 

from single cells. For targeted proteins, heavy-element tagged antibodies extended HRMS to 

MSI and single-cell resolution. Novel mathematical algorithms helped processing complex 

primary data in depth. User-friendly software packages and community-wide efforts to 

freely share them aided adoptability across laboratories needing sensitive ‘omics, raising an 

opportunity to support application in basic biological and translational studies. Molecular 

information from these measurements holds answers to existing questions and support 

new questions and hypotheses, which in turn require further advances in all aspects of 
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technology and method development. Efforts in pursuit of sensitivity, scalability, and ‘omic 

coverage progressively expand our technological toolbox, thus accelerating the scientific 

cycle of exploration and discovery. This review highlights technological and methodological 

milestones in the development of HRMS enabling spatiotemporal ‘omics.

II. SENSITIVE HRMS FOR SPATIO-TEMPORAL ‘OMICS

Spatiotemporal HRMS builds on the general workflow of MS-based ‘omics. The use 

of MS in systems biology was recently reviewed elsewhere (Feng et al., 2008). For 

spatiotemporal analysis, the interconnected steps of the analytical pipeline are presented 

in Figure 2. During sampling, specimens, such as tissues and cells, are collected and lysed 

to release their contents by a variety of methods and technologies, with each tailoring to 

specific benefits. The lysate is typically enriched for the biomolecules of interest, such 

as proteins or metabolites, then subjected to various sample clean-up/purification steps to 

render compatibility for instrumental analysis. Various technologies are used for separation 

in solution, such as liquid chromatography (LC) and capillary electrophoresis (CE) or the 

gas phase, such as ion mobility spectrometry (IMS). The biomolecules are next ionized, 

detected, identified, and quantified by HRMS. An array of fragmentation (tandem/multistage 

MS) and analyzer-detector systems provide complementary speed and spectral resolution, 

ranging from quadrupoles to time-of-flight (TOF), orbitrap, and Fourier-transform ion 

cyclotron resonance (FTICR). The primary data from these measurements are processed 

and analyzed, usually with specialized MS bioinformatics software packages supporting 

identifications of proteins, peptides, metabolites, and their posttranslational modifications 

as well as relative or absolute quantification. Statistical and multivariate models from 

chemometrics allow for systematic evaluations of the observed effects between different 

experimental conditions under study. The results are interpreted in relation to canonical 

knowledge and the biological context. In successful investigations, the specifics of each step 

of the workflow are matched to the goals of the study, usually according to the following 

considerations (recall Fig. 2). Following sections focus on technologies that advanced 

spatiotemporal analysis in different biological specimens.

A. Sample Collection

The type of question and biological system at hand de facto determines the method of 

sampling. In tissues displaying heterogeneous biochemistry, such as brains and kidney, 

local sampling with accuracy ensures contamination-free analysis from neighboring cell 

populations, thus aiding the interpretation of results. Likewise, sample collection with 

single-cell resolution unmasks differences between single cells (cell heterogeneity) within 

the same tissue, which are otherwise obscured due to signal averaging during cell pooling. 

As exemplified in Figure 3, various strategies were developed to collect and purify tissue 

biopsies, small populations of cells, single cells, or subcellular fractions of interest with 

different speeds and operational conditions.

i. From Biopsies to Single Cells—Manual dissection is simple and can have high 

accuracy. Surgical tools, ranging from sharp forceps to tungsten needles to eyebrow knives, 

are readily adaptable to excising distinct regions of tissues. With sufficient finesse, this 
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approach also enables isolation of limited cell populations and individual cells from broad 

types of biological models. Dissection techniques, for example, enabled isolation of spatially 

distinct colon tumor biopsies from humans (Arnadottir et al., 2020), brain tissues from the 

mouse (Zhou et al., 2019), large single cells (Onjiko et al., 2015,Zhang et al., 2022) and 

small cell populations (Baxi et al., 2018) from developing X. laevis embryos, neurons from 

A. californica (Hanson et al., 2009), and distinct regions of nervous tissue from Callinectes 
sapidus (Hu et al., 2021). Needle-based biopsies, such as core needle (Satpathy et al., 2020) 

or fine needle (Piga et al., 2021) aspiration, were also used to collect small tissues or 

cells from humans. Labeling with dyes or fluorescent reporters enhances the accuracy of 

dissections under a microscope. Figure 3 demonstrates one such example, where identified 

cholinergic neurons from A. californica were dissected, permitting transcriptomic analysis to 

study aging (Moroz et al., 2013).

Spatially resolved sampling reveals information on the whereabouts of the biomolecules. 

With narrow focusing and adjustable power (fluence), lasers naturally became a method of 

choice in this research field. As illustrated in Figure 3, laser capture microdissection (LCM) 

concentrates infrared or ultraviolet light to lift off small tissue areas to groups of cells to 

single cells (e.g., 3–5 μm in size), with a capability for resolutions down to micrometers 

(Simone et al., 1998). LCM-based HRMS facilitated biological studies on genes, proteins, 

and metabolites in broad contexts including cancer biopsies (Shen et al., 2021) and recently 

single-cell proteomics (Zhu et al., 2018). The technology was recently reviewed elsewhere 

(von Eggeling et al., 2020). Because the dimensions of laser ablation are scalable, LCM can 

access subcellular structures. Representative examples include analysis of growth cones of a 

retinal ganglion cell (Zivraj et al., 2010), soma and dendrites of single neurons (Perez et al., 

2021), and invadosomes coordinating motility of normal and cancer cells (Ezzoukhry et al., 

2018). Dissection by LCM enables accurate isolation of tissue areas that is scalable to even 

smaller regions. For example, LCM with LC-MS profiled lipids between cell bodies and 

synapses of Drosophila neurons (Hebbar et al., 2014). Likewise, HRMS of optic tectum 

and telencephalon regions in the zebrafish brain identified over 400 proteoforms with 

heterogeneous distribution, including many with important activities for visual and motor 

functions and neuropeptide signaling (Lubeckyj et al., 2022). These approaches provide an 

effective snapshot of the ‘omic state of the specimen at a given time.

For smaller cell populations or dispersed cells, alternative strategies enhance the fidelity 

of sampling. Flow cytometry-based techniques, such as fluorescence-activated cell sorting 

(FACS), were employed in several studies to purify heterogenous cell populations (Chappell 

et al., 2016,Chen et al., 2020,Sergent-Tanguy et al., 2003). As illustrated in Figure 3, FACS 

enables accurate and high-throughput purification of cell populations to single cells based on 

fluorescent markers. Although specialized cytometers are able to sort particles ranging from 

0.2 μm–150 μm in diameter, commercial FACS instruments usually have a low-pass limit 

of ~20 μm cell diameter (Davey et al., 1996). Required expertise, expense, and technical 

limitations for larger cells culminated into alternative methods. In magnetic-activated cell 

sorting, for example, antibody-conjugated magnetic beads of several nanometers in diameter 

can be used to recognize surface markers before pulling down specific types of cells and 

subcellular organelles (Miltenyi et al., 1990). Microfluidics renders added benefits in sample 

collection with minimal manual intervention. Cell sorting in microfluidic chips employs 
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orthogonal mechanisms for isolation, ranging from acoustic waves to radiation forces to 

hydrodynamic flow to microfiltration and cellular immobilization. These and other emerging 

technologies were recently reviewed elsewhere (Zhang et al., 2021). It follows that these 

approaches can be extended to collecting single cells. However, due to mixing during 

processing, information on the spatial origin of the cells is lost, which may be important in 

the context of biology.

ii. Subcellular Organization—For targeted subcellular analysis, distinct organelles 

may be isolated using various approaches. Sequential lysis of cellular compartments and 

density-based centrifugation are well-established for cells and cell types from multiple 

biological models. Organelles such as nuclei, mitochondria, peroxisomes, lysosomes, and 

the Golgi apparatus can be separated based on their size, shapes, and surface charges 

(Tharkeshwar et al., 2018). Similar centrifugation-based strategies allow for the isolation of 

exosomes from myeloid-derived suppressor cells involved in cancer tumor signaling (Burke 

et al., 2014) and from Bacillus subtilis at different developmental stages (Kim et al., 2016). 

Organelles with similar densities, however, may pose challenges for high-purity isolation.

Biochemical approaches and bioinformatics provide alternatives for subcellular analyses. 

Subcellular labeling HRMS was the topic of a previous review (Lee et al., 2010). Isotope 

tagging (LOPIT) and hyperLOPIT precluded the need for absolute organelle purification 

by taking a multipronged approach, in which organelles were partially separated into 

multiple fractions using multistep density centrifugation for multiplexed quantification via 

LC-HRMS, followed by deep machine learning to extract information on the subcellular 

localization of detected proteins (Geladaki et al., 2019). The accuracy of organelle 

fractionation is improved in MS-compatible buffers by reducing chemical interferences. 

For example, radio-immunoprecipitation assay (RIPA) buffer with ethylene glycol and phase 

transfer surfactants aided isolation of cytoplasmic, nuclear, and organelle fractions from 

small populations of cells without the need for traditional proteomic cleanup steps (Masuda 

et al., 2020).

Integration of orthogonal methods of isolation enhances capacity, and so molecular 

specificity and accuracy. In fluorescence-activated organelle sorting (FAOS), subcellular 

targets are fluorescently labeled, e.g., using antibodies for two-step purification via 

ultracentrifugation and FACS. This strategy enabled purification of synaptosomes without 

neuronal and glial contaminants, identifying novel proteins released in glutaminergic 

synapses (Biesemann et al., 2014). Magnetic isolation using differentially coated 

superparamagnetic iron oxide nanoparticles (SPIONs) helped purify endosomes during the 

study of Niemann-Pick disease, a lysosomal storage disorder, by pulling down endosomes 

enriched with dimercaptosuccinic acid-coated SPIONs and plasma membranes adhering to 

aminolipid-coated SPIONs (Tharkeshwar et al., 2017).

MSI techniques such as micro- and nano-probe HRMS with bioinformatics emerged for 

precision organelle analysis, precluding the need for physically isolating microscopic 

organelles. By tightly focusing beams of projectiles, from ions to photons (recall Fig. 2), 

spatial ‘omics recently opened the door to subcellular ‘omics, as was the focus of a recent 

review (Seydel 2021). High-definition multiplex ion beam imaging (HD-MIBI) secondary 
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ion MS (SIMS) offered a 30-nm resolution, sufficient to localize cisplatin enrichment 

in nuclear speckles with exclusion from chromatin regions, providing new information 

on subcellular microenvironments for next-generation drug development (Rovira-Clave et 

al., 2021). Spatial single nuclear metabolomics (SEAM) integrated TOF-SIMS with novel 

computational data analysis modules (Fig. 3) to identify and localize single nuclei with 

variable metabolic patterns in healthy and fibrotic liver tissue (Yuan et al., 2021). In the 

3D OrbiSIMS, the coupling of TOF-SIMS with an ultra-high-resolution orbitrap empowered 

high-speed 3D molecular imaging, providing information on the subcellular localization of 

lipids and neurotransmitters in the hippocampus and single macrophages (Passarelli et al., 

2017). Similarly, using image-guided matrix-assisted laser desorption ionization (MALDI) 

coupled to an ultra-high-resolution mass analyzer, neuropeptides and lipids were identified 

from 0.5–2 μm vesicles in A. californica to reveal distinct metabolic subpopulations within 

these organelles (Castro et al., 2021). These and other advancements enabling subcellular 

and single-organelle spatial ‘omics analyses will continue to inform us of molecular profiles 

among cells and within their components and in turn help uncover ‘omic mechanism 

underlying health and disease states.

In situ sampling can take a molecular snapshot of the tissues or cells under innate conditions 

with minimal external perturbations during collection. As illustrated in Figure 3, fast 

photochemical oxidation of proteins (FPOP) method utilizes laser-induced photolysis of 

hydrogen peroxide to irreversibly label proteins in their native state within a cell, thus 

enabling studies on protein structure and folding and protein-protein interactions (Espino 

et al., 2019). Pioneering a new approach in epitope mapping, oxidative labeling was 

successfully used to map antibody-binding regions of the protein serine protease thrombin 

(Jones et al., 2011). Such information is essential to develop monoclonal antibody-based 

therapeutics that target specific proteins.

iii. In Situ/Vivo—Chemical labeling enables isolation of molecular partners in 

interactions. A plethora of labeling techniques allow for tracing biomolecules in subcellular 

compartments, some in vivo. Bioorthogonal reactions, for example, use a wide array of 

click chemistry to anchor specific biomolecules without disturbing the intracellular native 

environment. Such molecular handles were used to label proteins, lipids, glycans, nucleic 

acids, and enzymes, and for targeted delivery of small molecules, reviewed in (Bird et 

al., 2021). Bioorthogonal noncanonical amino acid tagging (BONCAT), Figure 3, enabled 

tracing of newly synthesized proteins by incorporating biotin-tagged noncanonical amino 

acids in the nascent proteins with follow-up affinity purification or imaging by fluorescence 

microscopy (Landgraf et al., 2015). The approach recently allowed for tracing tumor cell 

proteome in ductal adenocarcinoma in the mouse (Azizian et al., 2021). BONCAT was 

recently used to find local translation for 42 proteins in the axoplasm during regeneration 

of the sciatic nerve following injury in rats (Di Paolo et al., 2021). Alternatively, proximity 

labeling using ascorbate peroxidase, APEX or APEX2 (Lam et al., 2015), or biotin ligase, 

BioID (Roux et al., 2012), localized enzymatic activity to map their proteomic environment 

in organelles enabling proteomic studies of synaptic clefts of excitatory and inhibitory 

neurons (Loh et al., 2016). Isotope tracing adds a dynamic component to these studies via 

spatial fluxomics. Glutamine metabolism was monitored in mitochondria and the cytosol 
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of cancers to elucidate metabolome remodeling (Lee et al., 2019). Alternatively, subcellular 

fractionation with activity-based protein profiling (ABPP) monitored proteomic changes in 

secretory pathways in the endoplasmic reticulum in response to cellular stress (Bechtel et al., 

2020).

Sampling in vivo extends HRMS ‘omics to assess the molecular dynamics underlying 

physiological states. Figure 3 shows examples of in vivo probes capable of minimally 

invasive sampling. Microdialysis has a long history in the research of neuropeptides, 

neurotransmitters, and metabolites with ca. millimeter resolution in live biological models. 

This strategy was used to access molecular information on physiologically relevant 

timescales (e.g., from minutes to hours) in functional, behavioral, and clinical studies. 

Representative examples helped decipher the roles and spatiotemporal dynamics of 

neuropeptides and their role in feeding using crabs (Schmerberg et al., 2013,Schmerberg 

et al., 2015), decision-making and drug response in rats (Zestos et al., 2017), and the tumor-

promoting impact of radiation in glioblastoma using human xenografts in mice (Gupta et 

al., 2020), as well as clinically for cerebral metabolic analysis of human patients with 

aneurysmal subarachnoid hemorrhage among others (Helbok et al., 2017).

Real-time biopsies with rapid chemical analysis opened exciting new capabilities for health 

research (Fig. 3). Liquid biopsies enabled the sampling of circulating cancer cells for 

diagnosis (Abouleila et al., 2019) or the assessment of effectiveness during therapy (Bensen 

et al., 2021). In the clinical setting, desorption electrospray ionization (DESI) and MasSpec 

Pen (Fig. 3) gained recognition for its ability to downscale microextraction into < 10 μL of 

water droplet on tissue regions of interest, even in morphologically complex samples (Brown 

et al., 2018,Zhang et al., 2017). With fast sample transfer and HRMS detection, the approach 

aided cancer diagnoses of ovarian, lung, thyroid, and breast biopsies ex vivo, and recently 

also in vivo, thus empowering surgical applications with a new tool.

Microsampling confined to capillaries and nanochannels downscales sampling to the 

realm of cells and organelles. Whole cells, portions of a cell, or subcellular contents 

may be aspirated using precision-fabricated capillaries, usually with assistance from a 

translation stages and microscopy. The introduction of ambient ionization and ultra-sensitive 

HRMS technologies ushered the extension of capillary microsampling to endogenous 

and exogenous metabolites in broad types of single cells, as was recently reviewed 

elsewhere (Yang et al., 2017,Zhang et al., 2018,Zhu et al., 2021). Early on, for single 

cells, live-video MS with direct ESI detected metabolites from single adherent embryonic 

fibroblasts (mouse) and plant cells (Fujii et al., 2015,Tsuyama et al., 2008), T-probe (Fig. 

3) profiled metabolic perturbations in HeLa cells on anticancer treatment (Liu et al., 

2018), and laser ablation electrospray ionization (LAESI) surveyed secondary metabolites 

in Allium cepa cells under guidance by optical microscopy (Taylor et al., 2021). The 

live cell analysis device (LCAD) exchanged capillaries to nanofabricated channels, where 

localized electroporation facilitated tyrosine phosphatase extraction from cells during 

proliferation and hydrogen peroxide treatment in human triple-negative breast cancer cells 

with protein detection enabled by self-assembled monolayers for matrix-assisted laser 

desorption/ionization (SAMDI) MS (Mukherjee et al., 2020).
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To detect deeper into single-cell ‘omes, microsampling can be combined with high-

efficiency separations prior to in situ/vivo HRMS. By aspirating of <5% of the total cell 

volume using a pulled borosilicate capillary, proteomic and metabolomic cell heterogeneity 

was found in embryos of X. laevis and zebrafish (Lombard-Banek et al., 2019,Onjiko 

et al., 2017,Portero et al., 2019,Saha-Shah et al., 2019). Capillary microsampling 

facilitated integration of HRMS ‘omics with functional biology. Patch-seq has a history of 

leveraging this strategy for sequencing mRNAs from neurons after their electrophysiological 

characterization (Cadwell et al., 2016), as was recently reviewed elsewhere (Lipovsek 

et al., 2021). Likewise, after eavesdropping on electrical activity using a patch pipette, 

neurotransmitters in the mouse (Aerts et al., 2014) and the American cockroach (Neupert 

et al., 2018), and recently also proteins in the mouse (Choi et al., 2022) were measured 

in identified single neurons in the central nervous systems of these model organisms. Multi-

step capillary microaspiration also enabled in vivo analysis of dynamic reorganization in 

the metabolome and proteome of single identified blastomeres in the live X. laevis embryo, 

which successfully developed to a functioning tadpole with indistinguishable behavior from 

wild-type siblings in a background color preference assay (Lombard-Banek et al., 2021). 

Accessing such information on molecular interactions in space-time offers an important 

piece of the puzzle towards the holistic understanding of molecular mechanisms underlying 

biological functions and disease states.

B. Sample Preparation

Sample preparation can make or break studies requiring trace detection, and those 

addressing spatiotemporal processes are no exception. Specimens encompassing few cells, 

single cells, or subcellular organelles provide only micro- to picogram quantities of starting 

materials (Ctortecka et al., 2021,Zhang et al., 2018). Processing such limited amounts poses 

nontrivial challenges in handling of miniscule volumes without solvent evaporation and 

with minimal-to-no losses for proteins, peptides, and metabolites due to surface adsorption 

(Yang et al., 2021). Advances in small-scale sample preparation was the topic of several 

reviews (Hu et al., 2021,Kelly 2020,Matula et al., 2020,Qin et al., 2022,Taylor et al., 

2021,Yang et al., 2021). The following section highlights developments that ushered HRMS 

to spatiotemporal ‘omics from small tissue biopsies down to the single-cell and subcellular 

level.

i. Proteomics—HRMS provides critical information on proteomes during states of 

health and disease. Methods and technologies enabling bottom-up, middle-down, and 

top-down proteomics are able to identify and quantify broad types of proteins, assess 

their structure, gauge their interactions, and determine modifications during biological 

processes in space and time. Deep proteome coverage is an enabling feature of bottom-up 

proteomics, which is the most widely used of the three workflows. In this approach, proteins 

are enzymatically digested to peptides, which can be efficiently ionized and sequenced 

to pinpoint their source proteins using advanced bioinformatics. Thousands of different 

proteins can be identified at once using this approach, even from limited sample amounts. 

Complex spatiotemporal processes were studied using this approach at the organismal 

to subcellular levels in development (Baxi et al., 2021,Yang et al., 2020), neuroscience 

(Hobson et al., 2022,Velasquez et al., 2019), and various disease states (Vo et al., 2007,Waas 
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et al., 2020). The information from these measurements provides the foundation for 

hypothesis-driven and functional studies.

HRMS-based proteomics executes multiple analytical steps with each able to affect 

sensitivity. Lysis, extraction, reduction, alkylation (of disulfide bonds), enzymatic digestion, 

and desalting are routine stages of sample processing requiring care for limited samples. 

Simplification of the workflow was recently found to improve performance. For single-cell 

measurements, for instance, MS-compatible detergents and mechanical lysis methods (i.e., 

freezing/thawing or laser pulses) and exclusion of reduction and alkylation eliminated 

the need for downstream clean-up, reduced nonspecific adsorptive losses, and dilution 

(Lombard-Banek et al., 2019,Schoof et al., 2021). Select strategies enabling high-fidelity 

proteomics are presented in Figure 4 and discussed further.

“One-pot” strategies confined the analytical steps to a single location. For amount-limited 

samples, immobilization of molecular processing and reduction or elimination of sample 

transfers proved particularly beneficial. For example, gel-aided sample preparation (GASP) 

(Fischer et al., 2015), suspension trapping filter (S-Trap) (HaileMariam et al., 2018), 

and filter-aided sample preparation (FASP) (Wisniewski et al., 2009) used gels and filter 

membranes, respectively, to reduce sample transfer steps and improve coverage from 

hundreds of micrograms of protein. By miniaturizing and confining sample processing 

using a multi-well plate, micro-FASP was able to identify ~3,400 proteins from ~200 

ng of yolk-free proteome from single blastomeres that were isolated from early-stage X. 
laevis embryos (Zhang et al., 2020). Single-pot solid-phase-enhanced sample preparation 

(SP3) demonstrated similar capabilities for comparable protein amounts from 1,000 HeLa 

cells and Drosophila embryos by immobilizing proteins and peptides on carboxylate-coated 

paramagnetic beads throughout sample preparation (Hughes et al., 2014).

Microsampling in situ provided a potential to streamline the analytical workflow and explore 

potentials toward their automation. As illustrated in Figure 4, single-cell proteomics by 

MS (SCoPE-MS) limited sample processing to one pot, allowing for multiplexed protein 

quantification among single cells (Budnik et al., 2018). Capillary-based systems may serve 

as alternative substrates for single-cell sampling and processing. As shown in Figure 4, The 

integrated proteome analysis device (iPAD) directly supplied a suspension of living cells 

(iPAD-100) for online cell lysis, protein digestion, and peptide desalting and trapping to a 

10-port valve-based system on a commercial nanoLC, identifying ~600–650 proteins from a 

single injection of 100 cells (~10 ng protein) using nanoLC-HRMS (Chen et al., 2015). In 

pursuit of cell heterogeneity, iPAD-1 (Fig. 4) used an ultranarrow-bore analytical column to 

identify ~270 proteins from a single HeLa cell (220 pg proteome) in 1 h of analysis with 

nanoLC-HRMS (Shao et al., 2018). These and other simplified devices make it easier for 

other laboratories to adopt these technologies.

Microfabricated devices present a natural setting for “one-pot” workflows toward sensitivity 

and advanced measurement throughput. ProteoCHIP used polytetrafluoroethylene (PTFE)-

based microfluidics to automate single-cell isolation and small-volume handling, enabling 

the processing of up to 192 samples simultaneously for LC-MS (Ctortecka et al., 2022). 

As shown in Figure 4, nanodroplet processing in one pot for trace samples (nanoPOTS) 
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miniaturized the processing of 100 cells to a single mammalian cell onto nano-wells on 

microfabricated glass chips using nanoliters of reagents for deep proteomics (Zhu et al., 

2018,Zhu et al., 2018). Using LCM to dissect ~100 μm squares from mouse tissues, the 

approach helped uncover spatial differences between uterine cell types during pregnancy in 

preparation for blastocyst implantation (Piehowski et al., 2020). NanoPOTS also enabled 

proteomics on single sensory hair cells measuring ~0.6–1 pL in volume, facilitating the 

study of cell differentiation in chicken embryos (Zhu et al., 2019). Nested nanoPOTS (N2) 

arrayed multiple wells to enhance measurement throughout for multiplexed quantification 

using nanoLC-HRMS (Woo et al., 2021). Recent efforts sought to further refine one-pot 

sample preparation strategies to make the setups cost effective and allow scalable sample 

preparation, as was recently reviewed in (Slavov 2022). Automated preparation in one pot 

for trace samples (autoPOTS), the latest upgrade of nanoPOTS, now allows automated 

processing of 1–500 cells using only commercially available instrumentation for sample 

processing, making it widely adaptable (Liang et al., 2021).

Similar strategies also emerged for top-down proteomics. Detection of intact proteins 

provides insights into proteoforms and PTMs (Catherman et al., 2014). Fewer analytical 

steps than its bottom-up sibling, miniaturized formats for detergent removal and desalting 

(Nickerson et al., 2021,Yu et al., 2021), and “one-pot” sample preparation approaches 

(Dagley et al., 2019,Zhou et al., 2020) extended top-down proteomics to limited sample 

amounts as low as hundreds to tens of nanograms. As mentioned earlier, analyte recovery 

can be enhanced by eliminating the routines of sample handling and desalting. Freeze-thaw 

lysis and non-ionic surfactant-based extraction from ~200 brain cells enabled spatial top-

down proteomics for ~400 proteoforms between the optic tectum and telencephalon regions 

of the zebrafish brain (Lubeckyj et al., 2022). Further advancements in technology raise 

exciting potentials to leverage proteoforms as biomarkers of diseases (Smith et al., 2021).

ii. Peptidomics—While analyzing enzymatically digested peptides (i.e., bottom-up 

proteomics) provides information about the proteomic content of a cell or biological 

sample, endogenous peptides, such as neuropeptides, can provide additional insight into key 

biological processes, particularly related to the nervous and neuroendocrine systems. These 

peptides are synthesized from larger proteins via enzymatic cleavage, and their biological 

activity is often distinct from the preprohormone or precursor-related peptides (Hook et al., 

2018). Many neuropeptides contain similar sequences that may vary by only one or a few 

amino acids, but their biological functions could be identical or largely different (DeLaney et 

al., 2018). Furthermore, neuropeptides are thought to be the most diverse class of signaling 

molecules, are present in low abundances in vivo, and prone to rapid degradation. As 

such, analyzing endogenous peptides in space and time presents unique challenges and 

requires a rapid, sensitive workflow with specificity capable of differentiating between 

similar isoforms. MS emerged as the gold standard for profiling neuropeptides, as it is 

capable of rapidly detecting neuropeptides at sub-attomole levels and can identify peptides 

without prior knowledge (Phetsanthad et al., 2021).

Peptidomics consists of peptide extraction, purification via molecular weight cutoff 

filtration, and desalting prior to MS analysis. A critical aspect of this process is deactivation 

of proteolytic enzymes to prevent peptide degradation and achieve highly sensitive 
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peptidomics analyses, which can be accomplished by flash-freezing the tissue immediately 

after dissection, heat stabilization, or acidification. Acidification is particularly effective 

for deactivating proteases when the acid is in an organic solvent (e.g., acidified methanol 

or acidified acetonitrile), as while proteases are deactivated by the low pH, large proteins 

are precipitated from the solution. For example, acidified methanol was recently used to 

successfully extract neuropeptides from single mollusk neurons, enabling sequencing of 

peptides in the cytoplasm and nucleus of the neurons and identification of differences in 

peptide abundances based on subcellular location (Zhang et al., 2018). In MALDI-MS 

workflows, 2,5-dihydroxybenzoic acid (DHB) was found ideal for peptide extraction, as it 

served as both the extraction buffer and the matrix (Romanova et al., 2008,Wang et al., 

2009). Though other stabilizing agents such as EDTA and protease inhibitor cocktails can 

also be added to the extraction buffer to improve peptide stability (Chen et al., 2009,Kwok et 

al., 2006,Onorato et al., 2019), MS compatibility is important to consider, particularly with 

limited samples, so as to reduce additional cleanup steps and sample losses.

Peptidomics from limited samples may also benefit from enrichment methods. Affinity-

enhanced magnetic beads offered one such approach to improve detection for low-

abundance peptides (Schmerberg et al., 2013,Vocat et al., 2020). The incorporation of 

magnetic beads coated with NPY02 antibodies during sample preparation led to femtomolar 

sensitivity and quantitation of neuropeptide Y in human plasma (Vocat et al., 2020). 

Considerations of sample recovery for the desalting step are similar as in bottom-up 

proteomics workflows. Additionally, solid-phase extraction (Bardsen et al., 2019) and on-

plate droplet desalting for MALDI-MS (Wang et al., 2017,Yoon et al., 2018) improved 

the sensitivity of neuropeptide analyses. Solid-phase extraction was also brought online to 

seamlessly clean up neuropeptide samples prior to LC-MS (Axel et al., 2017).

Alternatively, MSI strategies are popular for direct measurement and spatial localization 

of bioactive peptides, particularly in limited samples; sampling with a focused laser 

beam requires minimal sample preparation yet yields a sufficient amount of analytes for 

ionization and detection. Development of validated protocols made sample preparation 

for MSI straightforward and robust (Chatterji et al., 2013,DeLaney et al., 2022,Reyzer 

et al., 2013). They predominantly involve sectioning of frozen or embedded tissues or 

dissection of cells; however, careful steps need to be undertaken to maintain sample 

integrity and reproducibility within measurements. To remove interfering contaminants and 

reduce signal suppression, washing or desalting steps are common prior to freezing. By 

stretching the tissue, the spatial resolution of MSI was improved to enable localization of 

neuropeptides in individual neurons of A. californica (Zimmerman et al., 2011). Similarly, 

electroblotting through trypsin containing membrane was found to enhance tryptic digestion 

directly in tissues to improve protein identification without compromising their spatial 

location (Andrews et al., 2021). Employing a secondary step of ionization on the expanding 

MALDI plume improved ion yields, boosting the sensitivity of spatial imaging of the tryptic 

peptides(McMillen et al., 2021).

iii. Metabolomics—High-sensitivity MS-based metabolomics can be streamlined to 

deliver high reproducibility facilitating both absolute and relative quantification of 

metabolites. Common sample preparation protocols in metabolomics include quenching 
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of enzymatic activity, analyte extraction, purification, and desalting, and/or chemical 

derivatization prior to separation. To so deepen metabolite coverage, detection sensitivity 

can be improved by tailoring the chemical composition, pH, and temperature of the 

extraction solvent to match the chemical properties of the compound classes of interest 

(e.g., amino acids, lipids, nucleotides). For example, a discovery study in E. coli culture 

reported that polar solvents (e.g., water, ethanol) in combination with high temperature 

effectively extracted hydrophobic and hydrophilic metabolites as compared to less polar 

solvents (e.g., acetone) (Yanes et al., 2011). Several advances for cellular and subcellular 

sample preparation were developed, including optimized extraction solvent mixtures (Onjiko 

et al., 2016), on-column preconcentration or sample stacking (Kawai et al., 2019,Liao et al., 

2020,Liu et al., 2014), and microfluidic devices (Wu et al., 2004). Recent technologies in 

droplet microfluidics were reviewed elsewhere (Matula et al., 2020).

Detection sensitivity benefits from sample cleanup. These strategies aim to reduce ion 

suppression while minimizing the risk of concentration dilution to help distinguish analyte 

signals from chemical interference. Recently, six targeted metabolites were detected in 

MCF-7 cells without lipid interference using simplified microextraction, which used the 

same pulled glass capillary to dispense a droplet of solvent onto the targeted cell for 

selective extraction and sampling by aspiration (Zhang et al., 2016). Alternatively, an on-

probe derivatization step was reported to selectively enhance the signal of target metabolites, 

thus reducing ion suppression (Cao et al., 2020). Simplified extraction methods can also 

be employed to broaden the types of metabolites detectable in single cells and subcellular 

organelles, as was accomplished for polar and non-polar metabolites in single cells using 

analyte partitioning within a microcapillary (Hamilton et al., 2017). The single-step method 

successfully decreased ion suppression during lipidomics by MALDI-MS.

As with other ‘omic areas, droplet-based microfluidic chips allow limited sample handling 

by confining single cells in low-volume droplets to preserve the intact cell. These 

approaches were the focus of several comprehensive reviews (Feng et al., 2015,Gao et al., 

2013,Joensson et al., 2012,Liu et al., 2019,Matula et al., 2020,Shang et al., 2017). A major 

advantage of microfluidic methods is the resulting high throughput that enables the rapid 

interrogation of hundreds of cells in a single experiment (Cahill et al., 2019,Zhang et al., 

2016). For example, by combining single-cell printer (SCP) technology with liquid-vortex 

capture (LVC)-MS (Fig. 4), a recent study demonstrated direct analysis of metabolites in 

single cells at a rate of ~30 cells/s (Cahill et al., 2019). LVC-MS has also been combined 

with LCM to enable matrix-free spatially resolved direct analysis of metabolites from 20–

40 μm tissue sections (Cahill et al., 2016). An important aspect to consider when using 

microfluidics for cell isolation is the possible perturbation to the cell’s native metabolome 

due to external factors, such as mechanical forces.

Techniques enabling in situ or minimally intrusive cellular or subcellular isolation can 

assist in these challenges. Recent methods using, for example, sharpened or dual-barrel 

capillaries, reproducibly targeted and aspirated picoliter-to-nanoliter sample volumes from 

neurons (Aerts et al., 2014,Choi et al., 2022), Allium cepa cells (Huang et al., 2021,Saha-

Shah et al., 2016), and X. laevis embryonic cells (Lombard-Banek et al., 2021,Onjiko et 

al., 2017,Saha-Shah et al., 2019). Likewise, a single-lysosome mass spectrometry (SLMS) 
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platform was recently reported which combines patch-clamp recording and induced nanoESI 

(InESI)-MS to enable electrophysiological profiling followed by direct metabolic analysis of 

individual enlarged lysosomes within ~80 s (Zhu et al., 2021). The same glass micropipette 

used as a recording electrode served as the electrospray emitter for subsequent ESI-MS 

analysis. Further advances aiming to extract and measure mitochondrial, cytosolic, and 

nuclear metabolites can open new avenues for investigating metabolic regulation within 

these subcellular compartments. Overall, the fast sampling afforded by these and other 

capillary probes help minimize metabolic changes and stress arising from endogenous 

metabolism, transitions in cell cycle, or metabolic degradation, thus providing a more 

precise view of the cell’s metabolic state (Onjiko et al., 2017).

Integration of HRMS with light microscopy, fluorescent labeling, and MSI opened the 

possibility of high-throughput single-cell and -organelle metabolomics. SpaceM, an open-

source method for in situ single-cell metabolomics, demonstrated the detection of ~100 

metabolites from more than 1,000 individual cells per hour to classify cell types with high 

accuracy (~91%) (Rappez et al., 2021). Microscopy-guided MALDI allowed for profiling 

over 30,000 individual rat cerebellar cells, revealing cellular heterogeneity (Neumann et 

al., 2019). Image-guided MALDI HRMS employing a FTICR mass spectrometer enabling 

surveying lipid and peptide heterogeneity between 0.5- to 2-μm-diameter dense-core and 

lucent vesicles in A. californica cells (Castro et al., 2021). As shown in Figure 4, a liquid 

microjunction (LMJ) probe further enabled coupling optically guided MALDI with CE MS 

to extend the metabolic coverage from single pancreatic islet cells (Comi et al., 2017).

Minimization or elimination of chemical matrix for the purpose of sampling or ionization 

facilitated measurement throughput and reduced chemical interferences. In the vacuum, 

nano laser probe-based LDI achieved a resolution of 300 nm and was able to capture the 

localization of anticancer drugs within organelles of a HeLa cell (Meng et al., 2020). NIMS 

(Woo et al., 2008) and silicon NAPA (Korte et al., 2019) used specialized substrates to 

promote desorption and ionization for high-resolution spatial imaging of tissues, cells, and 

organelles. SIMS has a demonstrated history of imaging small biomolecules with ~650 

yoctomole sensitivity (Greving et al., 2011) with resolutions on the order of a few tens of 

nanometer, as was reviewed recently (Massonnet et al., 2019). Early on, for example, the 

technology found changes in lipid domains in mating Tetrahymena thermophila (Kurczy et 

al., 2010). NAPA imaged triglycerides from tissues, which are otherwise difficult to ionize 

(Fincher et al., 2020). To facilitate chemical identifications, a TOF instrument equipped with 

dual C60–SIMS and MALDI increased the impact area of molecular-ion projectiles (Lanni et 

al., 2014), while matrix-enhanced SIMS used a matrix as energy sink, allowing for profiling 

metabolites and neuropeptides in tissues (Potocnik et al., 2017) and single cells with a high 6 

s/cell measurement throughput (Do et al., 2017). These and other developments in SIMS and 

MALDI were the focus of recent reviews (Lanni et al., 2012,Zhu et al., 2022).

Ambient MS brought spatial and temporal imaging to the ordinary environment. Live 

single-cell video-MS (Mizuno et al., 2008), DESI, and LAESI MS provided convenient 

detection of primary and secondary metabolites in scalable resolution from tissues to cells, 

as was reviewed (Nemes et al., 2010,Wiseman et al., 2006,Zhang et al., 2018). LAESI 

MS pioneered spatial interrogations of tissues from plants and mouse brain sections in 2 
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(Nemes et al., 2010,Stopka et al., 2019) and 3 dimensions (Nemes et al., 2009). Sequential 

tissue sectioning with ambient MSI on each section allowed DESI (Eberlin et al., 2010) and 

nanoDESI (Lanekoff et al., 2015) to reconstruct the 3-D distribution of metabolites in the 

mouse brain. The ability to spatially resolve metabolic signatures in tissues to cells promises 

to drive new biological discoveries and applications, for example, in the study of cancer cell 

populations and their microenvironment. Moreover, the development of methods to measure 

subcellular metabolic signatures offers an avenue for new biological insights.

iv. Multi-‘Omics—While individual ‘omics analyses can provide insight into specific 

types of biomolecules in various samples, simultaneously characterizing multiple classes 

of biomolecules in the same samples can provide a deeper and more complete picture of 

biological pathways. Furthermore, measuring the levels of multiple biomolecules across 

space and time is necessary to better understand dynamic biological processes, such as 

development, which would not be captured by a single-time snapshot (Lopes et al., 2020). 

Protein, peptide, and metabolite levels also change as a result of intrinsic and extrinsic 

factors (i.e., conditions of sample collection), such that simultaneous collection of multiple 

biomolecules from the same samples is favorable to enhance the fidelity, robustness, and 

reproducibility of analyses, particularly on limited samples.

Several methods were developed to enable sample processing for multi-omic studies on the 

same sample. Representative examples range from simple molecular weight cutoff filtration 

for proteomics and peptidomics (Zougman et al., 2008) to multi-phase partitioning via 

simultaneous metabolite, protein, lipid extraction (SIMPLEX) (Coman et al., 2016). A 

more recent tip-based extraction, simultaneous trapping (SiTrap), was developed to allow 

proteomics and metabolomics on tens of micrograms of proteins from the same cell or tissue 

(Zougman et al., 2020). With further miniaturization, this method could be advantageous 

for multi-‘omic analysis of limited samples, as fewer transfer steps help to minimize 

sample handling and reduce analyte loss compared to phase-based extractions. Although 

recent efforts introduced methods to collect samples from the same tissue or cell for dual 

proteomics and metabolomics(Lombard-Banek et al., 2021,Pace et al., 2021), simultaneous 

extraction techniques for multiple biomolecules to enable multi-‘omics from limited samples 

have yet to be developed. Continued advancements in this area are necessary to facilitate 

spatiotemporal multi-‘omics of small populations of cells, single cells, and subcellular 

components, which will make new biological discoveries possible.

C. Separation

To facilitate molecular detection in the collected specimens, chemical separation usually 

precedes HRMS measurement. Separation provides another layer of compound-dependent 

information, the time of separation, to aid molecular identifications. It also helps minimize 

or eliminate chemical interferences during ionization and detection, thus improving 

sensitivity and the confidence of molecular identifications. Further, by spreading the 

chemical complexity of the sample over time, separation enhances the efficiency of duty 

cycle utilization during tandem and multi-stage MS, which in turn deepens the detectable 

and quantifiable portion of the ‘omes. This section highlights approaches, shown in Figure 5, 
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that facilitate spatiotemporal studies on limited specimens, ranging from cell populations to 

single cells to organelles, using some form of separation.

i. Liquid Chromatography—As a result of extensive research in stationary phase 

chemistries and engineered systems capable of withstanding high pressures, automation, and 

commercialization, LC became the mainstream separation technology for HRMS. Virtually 

all types of proteins, peptides, metabolites, lipids, and drug molecules can be separated 

using high-performance LC, or HPLC (Aydogan et al., 2020,Broeckhoven et al., 2021). 

Reversed-phase liquid chromatography (RPLC) employing packed-bed stationary phases 

with C18 chemistries (Fig. 5) is efficient in resolving peptides and hydrophobic metabolites 

including lipids, whereas C4 or C8 chemistries were found to work well for intact proteins 

(Catherman et al., 2014). The development of hydrophilic-interaction LC (HILIC) extended 

analyses to small and polar molecules, including neuropeptides, amino acids, and glycans 

(Aydogan et al., 2020,Mihailova et al., 2008).

Combining orthogonal mechanisms of separation enhances trace-sensitive analyses. Higher 

theoretical plate numbers resulting from the hyphenation of multiple dimensions of 

separation deepens the molecular depth of detection. The multidimensional protein 

identification technology (MudPIT) recognized these fundamental advantages for bottom-up 

proteomics early on by supplementing strong cation exchange (SCX) with reversed-phase 

chromatography (Schirmer et al., 2003). To reduce salt load from SCX, a modification of 

the approach used RPLC chemistries in both dimensions, first to fractionate at high pH (e.g., 

pH 8–10), then to separate each fraction at the conventional low pH (e.g., pH 2–3). High pH 

fractionation doubled the overall depth of the detectable phosphoproteome from mouse cell 

lines compared to SCX, identifying over 30,000 phosphopeptides (Batth et al., 2014). For 

limited cell populations, for example, this approach recently yielded 70% improvement in 

the coverage of the measurable proteome, allowing for the molecular characterization of the 

developing neural ectoderm during embryogenesis (Baxi et al., 2018). Fractionation using 

stage tips (Kim et al., 2019) or nano-liter volumes (Reubsaet et al., 2020) further aided in 

reducing sample loss for deeper molecular coverage.

Recent advances in high performance LC (HPLC) extended HRMS to ever-decreasing 

amounts of materials (Fig. 5). To reduce analytical requirements to few micrograms 

to nanograms of proteomes, new-generational columns enhanced the peak capacity of 

partition chromatography by packing narrow-bore columns (inner diameters < 50 μm) 

with small silica particles (< 5 μm). These columns operate at nanoflow rates (< 50 

nL/min), thus concurrently reducing sample dilution and increasing ionization efficiency 

towards ultrasensitive detection. Recently, 362–874 protein groups became identifiable 

from a single HeLa cell (< 150 pg) using flow rates of ~20 nL/min through an in-house-

packed nanoLC column with 20 μm inner diameter (Cong et al., 2020). With 10–100-fold 

improvement in sensitivity over narrow-bore packed columns (~15–30 μm inner diameter), 

these continuous developments in HPLC were recently adopted to microfluidic systems 

capable of automating lossless sample preparation, such as nanoPOTS (Williams et al., 

2020), to address the challenge of protein loss. Similarly, metabolomic coverage also 

benefited from reducing the flow rate from the analytical (0.5 mL/min) to the microflow 

(8 μL/min) regime, especially for sample-limited studies (Geller et al., 2022).
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New-generation LC columns overcame challenges associated with packing narrow columns 

with robust performance. As illustrated in Figure 5, open tubular, monolithic, and micro 

pillar array columns (μPAC) reduced band broadening and increased peak capacities using 

flow rates decreased to nanoliters to subnanoliters per minute (Desmet et al., 2020). The 

resulting enhancements in separation improved sensitivity and reproducibility for trace-level 

proteomics and peptidomics (Aydogan et al., 2020,Broeckhoven et al., 2021,Yi et al., 2017) 

as well as metabolomics (Maes et al., 2014,Turiak et al., 2018,Zemenova et al., 2017). 

Capillary monolithic columns with 12 nL/min flow rate enabled identification of over 

2,300 proteins from 1 ng of HeLa digest (Gregus et al., 2020). Flows on the order of 

picoliters per minute through narrow open tubular columns with ~2 μm inner diameter 

recently elevated identifications to ~1,000 proteins from 75 pg of Shewanella oneidensis 
tryptic digest, which was equivalent to half the amount obtained from a single HeLa 

cell (Xiang et al., 2020). Monolithic capillary columns were used to spatially profile the 

proteome and phosphoproteome of the plasma and the vacuolar membrane in Oryza sativa 
(Whiteman et al., 2008). Alternatively, fabricated monolithic capillaries were used for solid 

phase extraction and concentration to peptides released from spatially distinct regions of A. 
californica brain tissue followed by MALDI analysis (Iannacone et al., 2009).

Improvements in LC-ESI interfaces played an equally important role in advancing the 

sensitivity of analyses. In the conventional ESI interfaces, the LC eluent is fed through 

a metal emitter or pulled glass capillary, and sufficient potential difference is established 

between the spray tip and the mass spectrometer to form a stable electrospray. Electrosprays, 

however, can operate in different ways (Nemes et al., 2007), and transitions between these 

modalities can impact performance and the higher-order structure of molecules (Nemes et 

al., 2008). Figure 5 shows the impact the onset of different spraying regimes has on spray 

dynamic and MS ion signal when the ESI potential was adjusted. The relative ion signals, 

stability, and chemical composition of the electrospray are all impacted by alterations in the 

spraying regime. As illustrated, the cone-jet regime generates small droplets continuously, 

thus maximizing ionization efficiency (Nemes et al., 2007). The interface called UniSpray 

(Fig. 5) places an impactor rod of high voltage between the grounded capillary tip and 

inlet of the MS to facilitate electrospray ionization of the primary electrosprayed droplets, 

thus boosting S/N for neuropeptides (Bongaerts et al., 2020). Following the scaling laws 

of ESI, emitter tips with submicron-diameters (e.g., ~0.6 μm) were recently demonstrated 

to improve protein and oligonucleotide sensitivity by efficiently reducing their formation of 

clusters and adducts (Kenderdine et al., 2018).

ii. Capillary Electrophoresis—While LC is a powerful separation method for complex 

biological samples, separation with CE can offer distinct advantages. Unlike HPLC, CE 

separates charged compounds in solution based on differences in their electrophoretic 

mobilities. With typical sample consumption on the order of a few nanoliters, this 

technology is a natural fit for volume- and mass-limited samples. Several methods allow for 

efficient pre-concentration of analytes via in-column sample stacking (Osbourn et al., 2000). 

Field-amplified sample stacking (FASS) and exquisite separation power permit efficient 

differentiation of trace amounts of proteins, peptides, and metabolites, as was recently 

reviewed in multiple studies (DeLaney et al., 2019,Drouin et al., 2021,Lombard-Banek et 
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al., 2019,Zhao et al., 2012). With large-volume sample stacking (LVSS) using a dynamic 

pH junction, a 10-fold enhancement in sensitivity (Fig. 5) enabled the detection of 5,700 

proteoforms in the Escherichia coli proteome (McCool et al., 2018) and peptides from the 

renin-angiotensin system in the paraventricular nucleus of the mouse central nervous system 

(DeLaney et al., 2022). An international study found CE robust and reproducible among 

13 different laboratories (Drouin et al., 2020), projecting this technology to complement 

chromatography-based HRMS for spatiotemporal ‘omics.

Ultrasensitive measurements also benefited from the innovation of specialized CE ion 

sources for HRMS. The development of low sheath-flow and sheathless interfaces supported 

the coupling of CE with electrospray ionization (ESI) HRMS, reviewed elsewhere (Gomes 

et al., 2019,Lindenburg et al., 2015). Figure 5 highlights representative CE-ESI interfaces 

that enabled stable and sensitive CE-ESI operation using blunt-tip and tapered-tip metal as 

well as microfabricated borosilicate and fused silica emitters. These custom-built CE-HRMS 

instruments extended these measurements to attomole to zeptomole to yoctomole levels 

of metabolites and peptides from limited samples and broad types of biological models 

(Bonvin et al., 2012,Choi et al., 2017,DeLaney et al., 2022,Hirayama et al., 2018,Moini 

2007,Peuchen et al., 2017,Vermeire et al., 2020).

Microsampling and custom-built CE-HRMS platforms enabled spatiotemporal profiling of 

important biomolecules. Using micropunch sampling, the technology recently permitted 

characterization of nearly all the angiotensin peptides of the renin-angiotensin system in 

the subfornical organ and paraventricular nucleus of the mouse brain with a 30 zmol 

(~16,000 copies) of limit of detection, raising a potential to facilitate future studies 

on thirst and water homeostasis and regulation of the neuroendocrine system to stress 

(DeLaney et al., 2022,Lombard-Banek et al., 2019). Further, microdissection and capillary 

microsampling extended ultrasensitive CE-HRMS to hundreds of different metabolites 

(Aerts et al., 2014,Onjiko et al., 2015) and up to ~2,000 different proteins in single neurons 

in the central nervous system of the mouse (Choi et al., 2022) as well as blastomeres 

in X. laevis and zebrafish embryos (Lombard-Banek et al., 2021,Lombard-Banek et al., 

2019,Lombard-Banek et al., 2016). Results from these studies revealed previously unknown 

molecular differences between identified embryonic cells and reorganization of the single-

cell proteome and metabolome during formation of cell lineages (Lombard-Banek et al., 

2019,Onjiko et al., 2017). Microdialysis combined with CE has enabled in vivo study of 

cerebral metabolism of peptide E in rodent brain (Behrens et al., 2010).

Information from these studies supported the generation of hypotheses and led to biological 

discoveries. CE-HRMS metabolomics on dissected identified neurons revealed distinct 

metabolomes in A. californica neurons and their regional composition (Lapainis et al., 

2009,Nemes et al., 2013). CE-HRMS was key in the discovery of noncanonical cell fate-

altering molecules and mechanisms of embryonic patterning (Onjiko et al., 2015). Most 

recently, the technology enabled the characterization of ~700 proteins and ~150 metabolites 

from ~10 nL aspirates from single identified blastomeres in cleavage-stage X. laevis 
embryos, enabling in vivo proteomics in live embryos (Lombard-Banek et al., 2021). Using 

top-down HRMS, the technology also enabled detection of ~400 different proteoforms 

in distinct regions of the zebrafish brain, containing ~250 cells (Lubeckyj et al., 2022). 
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CE-HRMS aided temporal studies on the expression of N- glycans and N-glycosylated 

peptides during vertebrate embryonic development, revealing extensive reorganization of the 

N-glycome expression during neurulation indicating their importance in neural development 

(Qu et al., 2020).

Integration of CE with orthogonal HRMS technologies opened exciting new directions in 

basic research. CE-HRMS with CE modes (Xu et al., 2012) and LC fractionation (Yang 

et al., 2019) deepened detection of proteomes. Coupling high pH fractionation followed by 

CE analysis enabled identification of 6,500 proteins from 500 ng of protein from a human 

cell line. When coupled with ion mobility detection, optical isomers became distinguishable 

in single-cell bodies isolated from A. californica pleurin neurons (Mast et al., 2021). With 

MALDI-MS, CE enabled rapid fingerprinting of individual pancreatic islet cells with single-

cell resolution, enabling comparison of deep metabolic profiles between the different cell 

types (Comi et al., 2017).

Further automation and miniaturization through microfluidic chips raised the possibility 

of ultrasensitive measurements. Microfluidic CE systems further expand HRMS to 

ultrasensitive analysis by performing critical steps of the analytical workflow, from sample 

lysis to separation, in a single platform with minimal intervention and, in turn, reducing 

sample loss. For example, an integrated microfluidic device enabled the analysis of α and 

β subunits of hemoglobin in 12 human erythrocytes per minute (Mellors et al., 2010). High 

throughput provided by this platform was used to analyze intracellular levels of metabolites 

in a large number of neuronal cells under different physiological conditions (Li et al., 

2016). Such automated systems complement fast separation permitted by CE to enable high 

throughput analysis of large single cell populations, as was reviewed elsewhere (Abraham et 

al., 2019).

iii. Ion Mobility Spectrometry—Gas-phase ion separation provides speed and added 

resolution to aid molecular detection. With ion mobility separations taking less than 100 

milliseconds, ion mobility can be nested into most liquid-phase separations prior to HRMS 

detection. Most IMS techniques yield information to enable the calculation of collision 

cross sections (CCS), which serves as a compound-dependent information to aid molecular 

identifications. This approach enabled the elucidation of compound classes with large 

molecular diversity, including D- and L-amino acid containing peptides (Fouque et al., 

2017) and neuropeptides of the renin-angiotensin system in the paraventricular nucleus of 

the mouse central nervous system (DeLaney et al., 2022). IMS facilitated a broad range 

of investigations, ranging from proteins to small metabolites to lipids to glycans, as was 

reviewed elsewhere (Burnum-Johnson et al., 2019).

IMS techniques combined with other separation techniques, such as HPLC, to help 

distinguish isomers, isobars, and conformers. As a dual separation device and charge-state 

filter, field asymmetric waveform IMS FAIMS increased unique peptide identifications 

by ~30% and doubled the number of quantifiable peptides over non-IMS experiment 

from HEK293 cells due to a 10-fold enhancement in ion signal abundance and improved 

utilization of MS/MS duty cycles (Pfammatter et al., 2018). FAIMS was employed to 

filter out singly charged ions and improve detection of peptides from single HeLa cells 
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processed using nanoPOTS, providing over two-fold improvement compared to without 

FAIMS (Cong et al., 2020). Trapped IMS (TIMS) enabled regio-specific profiling of novel 

D-amino acid-containing peptides in the A. californica central nervous system (Mast et 

al., 2020). IMS also aids deepening molecular coverage from complex biological samples 

by providing an additional dimension of separation, the collision cross section (CCS), 

and reducing chemical noise and isobaric interferences. HPLC with TIMS-MS provided 

orthogonal separation to facilitate speciation for over ~1,400 lipids and capture their spatial 

distribution in mouse brain tissues (Chen et al., 2022). HPLC with traveling wave IMS 

(TWIMS) was used to identify metabolic changes during colorectal cancer progression 

(Williams et al., 2015). Distinct metabolic profiles were captured to differentiate colorectal 

cancer from non-malignant tissues, and across different stages of cancer progression.

IMS provides separation in cases when classical solution-based separations are restrictive 

or not feasible. Such is the case in most ambient ionization experiments, where LC- or 

CE-based separation would hinder analytical throughput and complicate sample processing. 

For example, capillary microsampling coupled with TWIMS-MS enabled neuropeptide 

measurements from cytoplasmic and nuclear components of single neurons from Lymnaea 
stagnalis, yielding previously unavailable data for functional biological experiments on their 

roles (Zhang et al., 2018). Similarly, dual-probe microsampling with drift-tube IMS-MS 

reported 73 lipids and 79 metabolites from live mammalian microglial cells (Domenick et 

al., 2020). Further, IMS boosts the reproducibility and confidence of identifications and 

quantification in MSI (Sans et al., 2018). LAESI with IMS imaged the distribution of 

isobaric primary and secondary metabolites, such as flavonoids, in plant species and lipids 

and metabolites in mouse brain sections (Li et al., 2015). MALDI with TIMS MS enabled 

spatial mapping of isobaric and isomeric lipids in crustacean tissues (Fu et al., 2020). 

Recently, ambient ionization using liquid extraction surface analysis with TWIMS allowed 

imaging of intact proteins from mouse kidney tissue (Hale et al., 2020).

D. Mass Analysis and Detection

Spatial HRMS ‘omics profits from a still-expanding array of technological innovations. 

Development of specialized ion optics enabling efficient ion collection and transfer (e.g., 

ion funnel) as well as systems integrating new-generation mass analyzers, digitizers, and ion 

detectors (e.g., TOF, orbitrap, FTICR, SIMS) ushered in a new era of sensitivity (detection 

limit), speed, and spectral resolution for limited specimens. A subset of developments is 

shown in Figure 6. High-repetition lasers and fast electronics enabled record 50 pixels/s 

data acquisition rates in MALDI-TOF, sufficiently high to enable fast 2- and even 3-D 

imaging. In a recent example, 3D-MALDI-TOF MS (Fig. 6) revealed differences between 

the lipid architecture of metastatic and non-metastatic medulloblastoma tumors, yielding 

new information on disease progression (Paine et al., 2019). Customized nano-flow ESI 

(nanoESI) ion sources on tims-TOF MS (Fig. 6) quadrupled the detectable ion signal, 

deepening proteome coverage to > 3,900 proteins in 1 ng of protein from single HeLa cells 

(Brunner et al., 2022).

Higher spectral resolution from orbitrap and FTICR instruments supported molecular 

identifications and coverage. Late-generation orbitrap tribrid mass spectrometers increased 
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the detectable proteome from a single HeLa cell by ~36% and ~20% at the protein 

and peptide level, respectively, compared to the earlier orbitrap designs (Cong et al., 

2020). Additionally, transferring identification based on FAIMS filtering (TIFF) permitted 

identification of ~1,700 proteins from single HeLa cells using varying compensation 

voltages along with retention time and accurate mass (Woo et al., 2022). A 3D SIMS 

instrument equipped with an orbitrap analyzer (Fig. 6) permitted high-resolution spatial 

imaging with high-accuracy spectral information, revealing lipid dysregulation during 

macrophage differentiation (Suvannapruk et al., 2022). Microscopy-guided MALDI with 

FTICR MS (Fig. 6) enabled profiling ca. 500 lipids from 30,000 cells from the rat 

cerebellum, finding previously unknown molecular cell heterogeneity in the tissue in record 

time (Neumann et al., 2019). In situ microsampling by fiber-optic LAESI, or f-LAESI (Fig. 

6), with 21 T FTICR MS tracked metabolite responses in single plant cells upon bacterial 

infection (Samarah et al., 2020). These and other advancements continue to expand the 

capabilities of spatial measurements down to the building block of life, the cell.

Spatiotemporal ‘omics naturally benefited from advances in tandem MS with increasing 

throughput, sensitivity, and specificity. An intelligent DDA method monitored the elution 

order of peptides based on prior discovery measurements to target tandem MS events, 

resulting in 80% more protein identifications than the standard (Bailey et al., 2014). BoxCar 

DDA leveraged multiple narrow mass-to-charge (m/z) windows to improve ion accumulation 

during MS scans, realizing an order of magnitude improvement in quantification (Meier et 

al., 2018). A DDA ladder employed a nested exclusion series of abundant peptide ions to 

reduce MS/MS redundancy, allowing identification of 35% more proteins and quantification 

of 415 proteins from ~5 ng of protein digest (approx. 10 neurons) from the mouse nervous 

system (Choi et al., 2021). In parallel, instruments with multiple fragmentation cells opened 

the door to using structurally diagnostic fragment ions to trigger sequential or multiplexed 

dissociation toward deeper sequence coverage. For example, electron transfer dissociation 

and higher-energy collisional dissociation (EThcD) discovered 4 different N-linked and 14 

distinct O-linked glycosylated neuropeptides as well as 91 novel neuropeptides in identified 

crustacean neural tissues (Cao et al., 2020). The advent of data-independent acquisition 

(DIA) remedied limited tandem MS duty cycles during DDA, approximately doubling the 

number of neuropeptides in limited neural tissues (DeLaney et al., 2019). This approach 

detected ~1,500 proteins from single cells in the developing X. laevis embryo (Saha-Shah et 

al., 2019).

Spatial HRMS provides several strategies for quantification (recall Fig. 2). Both label-free 

quantification (LFQ) and label-based quantification were adapted to limited specimens in the 

context of spatiotemporal biology. LFQ uses spectral counts, peak intensities, or peak areas 

to estimate the abundance of proteins, peptides, and metabolites without barcoding (Dupree 

et al., 2020,Lai et al., 2013). A reduction in sample processing steps aids analytics on 

trace amounts of samples, as was reviewed recently (Slavov 2021). Chemical derivatization 

helps analytical throughout and reproducibility, and when performed online, enabled low-

picomolar detection limits for peptides in microdialysates continuously collected from rat 

brains (Wilson et al., 2018). To enhance throughput, label-based quantification may integrate 

stable isotopes during sample preparation in vivo (metabolic labeling) or in vitro (chemical 

labeling) to enable multiplexing, as was reviewed elsewhere (Arul et al., 2019).
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Label-based quantification became quasi routine for high-throughput quantification across 

broad spatial and temporal processes, lately even for single cells. Reductive methylation 

(DeLaney et al., 2021) and DiLeu labeling (Sauer et al., 2021) aided neuropeptidomics. 

The carrier approach pioneered the use of tandem mass tags (Thermo Fisher Scientific) 

in abundance to boost tandem MS on isobarically tagged protein digests from single cells 

(Slavov 2022), while usage of a sacrificial protein helped reduce nonspecific protein losses 

during sample preparation (Slavov 2021). SCoPE-MS (recall Fig. 4) is one such method, 

which distinguished cancer cell types at the single-cell level and characterize cell-to-cell 

heterogeneity during embryonic stem cell differentiation (Budnik et al., 2018). The new-

generation SCoPE2 further downscaled volumes, automated sample preparation, increased 

throughput, and optimized MS data acquisition and analysis to quantify ~1,000 proteins per 

TMT experiment with only one hour of LC separation (Specht et al., 2021). Integration 

of carrier-based approaches with newer instrumentation advancements further compounded 

the demonstrated improvements in proteome coverage and quantification from single cells. 

For example, FAIMS and real-time search in both MS/MS and synchronous precursor 

selection (SPS)-MS3 methods on an orbitrap mass spectrometer recently facilitated higher 

proteome coverage and more accurate quantification in single acute myeloid leukemia 

cells by lengthening ion trap times, thus boosting sensitivity (Furtwängler et al., 2022). 

Combining small-window DIA acquisition with a TMT tagging yielded high-throughput 

multiplexing analysis of trace samples (Ctortecka et al., 2022). Additional improvements in 

efficient duty cycle utilization, sensitivity, and real-time search capabilities made possible 

by continued technological advances will further enhance performance of these carrier-based 

quantification methods for proteomics analysis of limited samples.

E. Data Analysis

Bioinformatics plays a critical and enabling role for spatiotemporal HRMS. This field 

of HRMS yields challenging data, not only in terms of complexity and size, but also 

metadata to assess in relation to space and time. In Figure 7, representative examples are 

grouped based on their abilities to access these dimensions of information. General steps 

for data analysis include raw data processing (feature extraction or identification), data 

preprocessing, statistical analysis (quantitative information), and gene ontology annotations 

(qualitative information). Data from imaging microscopy (optical to electron) and functional 

tests, including electrophysiology and behavioral assays, complement chemical data from 

MS ‘omics with information on the biological phenotype. Analysis of such complex data 

poses several challenges such as handling big datasets, integrating orthogonal information 

obtained by combining different data acquisition techniques, accuracy of identification, and 

data processing speeds. Here we highlight select examples of software packages that helped 

address these challenges.

The first step of data analysis includes processing raw files obtained from MS analysis 

to identify proteins, peptides, or metabolic features. With ever-decreasing sample amounts 

to achieve spatial resolution at cellular and subcellular level, distinguishing true signal 

from noise is a fundamental challenge. New and next-generation bioinformatics aided the 

processing of low ion signals that could be mistaken for noise (false negative) or noise 

that could be mistaken for signal (false positive). The Trace software package employed 
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machine learning on CE-HRMS datasets to create signal images from m/z and separation 

time data. These signal images effectively distinguish true signal from noise, boosting the 

surveying of molecular features to a record 95% confidence in single-cell metabolomics 

(Liu et al., 2019). NPFimg recently extended the approach to metabolomics based on gas 

chromatography-MS (Jirayupat et al., 2021). OffsampleAI employed artificial intelligence 

for spatial metabolomics to recognize background interfering ions during MSI experiments. 

A machine learning tool was trained using ~2,300 manually curated ion images to recognize 

background ions, thus improving metabolite identification from tissues (Ovchinnikova et al., 

2020).

In parallel, a series of software developments provided ever-increasing speed, accuracy, 

and depth of coverage of the analyzed ‘omes. To improve identifications from complex 

convoluted DIA datasets, newer machine learning tools, such as DeepMass (Tiwary et 

al., 2019), accurately predicted peptide fragment spectra to build spectral libraries in 
silico, essentially eliminating restrictions on laborious experimental reference libraries 

from precious, rare, or limited specimens. Similarly, PRESnovo, a de novo sequencing 

tool developed for neuropeptidomics, directly predicted peptide sequences (DeLaney et 

al., 2020), leading to the identification of 13 novel, putative neuropeptides from Carcinus 
maenas and 77 from Cancer borealis brain tissues. Most recently, several software tools 

were developed to overcome limitations in computationally intense DIA and ion mobility 

data, which were recently discussed elsewhere (Allison et al., 2020,Rosenberger et al., 

2017,Szymanska et al., 2016,Zhang et al., 2020).

As in other areas of HRMS, scientific rigor calls for stringent quality controls not just 

during measurements but also during data processing. After extracting qualitative (molecular 

identifications) and quantitative (abundance or intensities) information, data preprocessing 

uses normalization and advanced data checks to disentangle biological variations from 

artifacts (Slavov 2022). Programs such as SCPCompanion helped credential the quality of 

single-cell proteomics data (Cheung et al., 2021) and suggest optimization of instrument 

parameters based on the preliminary data. In addition, single-cell proteomics readout 

of expression (SCeptre) and NOREVA provided normalization strategies to assist with 

reducing non-biological variations in multiplexed single-cell ‘omics (Li et al., 2017,Schoof 

et al., 2021). SpectralAnalysis was adapted to multiple instruments and provides a 

framework from data preprocessing to multivariate analysis within a single software package 

(Race et al., 2016).

Chemometrics is pivotal for the interpretation of metadata from spatiotemporal HRMS 

(recall Fig. 2). This field of research offers various solutions for statistical and multivariate 

analyses. For example, volcano plots are widely used to examine molecular differences 

between spatially or temporally distinct sample types. Unsupervised and supervised 

dimensionality reduction and clustering algorithms such as principal component analysis 

(PCA), linear discriminant analysis (LDA), t-distributed stochastic neighbor embedding 

(t-SNE), hierarchical cluster analysis (HCA), heatmaps, k- and fuzzy-mean clustering are 

broadly adaptable to exploring systematic molecular differences between samples, such as 

types of tissues or cells. Figure 7 presents representative examples on spatially profiling to 

imaging proteins between sciatic nerves dissected from the rat using unsupervised HCA with 
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LC-HRMS (Di Paolo et al., 2021), neuropeptides in dense core vesicles in A. californica 
neurons using unsupervised PCA/t-SNE with 2-D MALDI MSI (Castro et al., 2021), and 

chlorophyll and secondary metabolites in areas of the variegated A. squarrosa leaves using 

light-ion image correlation with 3-D LAESI MSI (Nemes et al., 2009). Pearson correlation 

analysis and LC-HRMS permitted comparison of temporal expression between transcription 

and translation at the level of whole developing X. laevis embryos (Peshkin et al., 2015), 

single differentiating embryonic stem cells (Budnik et al., 2018). Live stereomicroscopy and 

micro-probe CE-MS used fuzzy means cluster analysis to find reorganization of the single-

cell proteome as cells formed a neural tissue-fated clone in the live X. laevis embryo (Onjiko 

et al., 2017). STRING was used to predict functional association networks on proteins that 

were quantified in single dopaminergic neurons in the mouse brain after electrophysiology 

using patch CE-MS (Choi et al., 2022). Software packages like MetaboAnalyst (Pang et al., 

2021), Perseus (Tyanova et al., 2016), Orange (Demsar et al., 2013), and IOAT (Wu et al., 

2021) provide user-friendly platforms for performing such analyses. EXIMS (Wijetunge et 

al., 2015) is another such tool developed to recognize spatial distribution patterns in MSI 

datasets.

A broadening number of software tools enable systems biology for spatiotemporal 

HRMS. Apart from classical tools from chemometrics, freeware programs, such as 

MetaboAnalyst, helped integrate transcriptomic to proteomic to metabolomic datasets, with 

added capabilities for enrichment studies and analyses of pathway networks. STATegra, 

another open-source tool, merged and identified important features from multi-‘omics data 

in a stepwise manner (Planell et al., 2021). Similarly, Mergeomics tailored to extracting 

information on key biological pathways and networks, with demonstrated utility in aiding 

the understanding of disease progression (Ding et al., 2021). These and other statistical and 

data visualization pipelines help generate and test new hypotheses at the levels of proteomes, 

peptidomes, and metabolomes in biological processes occurring in space and time.

III. CONCLUSIONS

Interdisciplinary efforts molded HRMS ‘omics into a powerful tool to advance basic and 

translational research and also understanding of biological processes occurring in space 

and time. These developments are the result of still rapidly progressing interdisciplinary 

and collaborative efforts innovating essentially all steps of biological HRMS. Inventions 

of specialized strategies, equipment, and miniaturization to collect and process samples 

with speed and high fidelity is pivotal for studies on limited and dynamic biological 

systems. Advances in chemical separations, ionization, ion transfer and accumulation, and 

HRMS detection increase detection sensitivity and measurement throughput, thus ushering 

‘omics to increasingly finer spatial and temporal resolutions. Continued developments 

in data acquisition and user-friendly software packages to handle the resulting complex 

data promise to further deepen the detectable and quantifiable portion of proteomes, 

peptidomes, and metabolomes from trace amounts of specimens. Grand challenges in the 

acquisition, integration, and distribution of complex data from spatiotemporal multi-‘omics 

pose grant challenges and exciting opportunities to move science forward toward a holistic 

understanding of life processes.
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Sustaining the scientific momentum is as important as using them to best benefit society 

at large. Collection of proven protocols, formulation of community standards and best 

practices, and deposition of primary and secondary data into public data repositories—

such as pioneering works in metabolomics (Sansone et al., 2007), proteomics (Taylor 

et al., 2008), MS informatics (Binz et al., 2008), and soon in single-cell analyses—is 

pivotal for stringent, reproducible, and rigorous science. Investigators continue to break 

down classical boundaries in bioanalyses to reach ever-deeper into the molecular world. 

In parallel, it is equally important to make these developments available and adaptable to 

broad users, including but not limited to investigators in the basic life sciences, translational 

research, pharmaceutical industry, and healthcare. Furnishing methods with versatility and 

compatibility across disciplines, automation, and cost-efficiency, are necessary and proven 

paths toward addressing pressing biological questions at present and to pose new ones to 

continue leading us to the future.
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Figure 1. 
Understanding biological processes hinges on the analysis of molecular heterogeneity that 

they orchestrate over broad spatial and temporal domains. Recent technological innovations 

and the development of specialized methodologies in sample collection and preparation, 

chemical separation, and HRMS analysis and detection provide sufficient sensitivity and 

spatiotemporal resolution for studying molecular processes at the levels of transcriptomes, 

proteomes, peptidomes, and metabolomes (‘omes) in ever-deepening information content. 

Information from these studies fuel basic and translational research forward. Representative 

examples are highlighted from whole organismal to subcellular studies. Adapted with 

permission from (Gnann et al., 2021,Lombard-Banek et al., 2021).
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Figure 2. 
General experimental workflow and representative technologies enabling spatiotemporal 

MS. Scalable sample collection and processing allows for probing biological specimens 

across broad dimensions in space and time. Separation in the liquid and/or gas phase reduces 

spectral complexity. High-resolution mass analyzers, tandem/multistage fragmentation, 

and efficient detector systems support molecular identifications in high specificity and 

quantification in high sensitivity. Development of advanced tools from bioinformatics and 

chemometrics facilitate the analysis and interpretation of MS data with spatiotemporal 

insights. Technological abbreviations are in the text.
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Figure 3. 
Representative strategies enabling scalable spatiotemporal sampling. Diverse technologies 

enabled HRMS with scalable operation to assess ‘omics in broad types of biological systems 

and investigative contexts, ranging from ex vivo to in situ to in vivo analyses from small 

populations of cells to single cells to subcellular organelles. Technological abbreviations are 

in the text. Adapted with permission from (Azizian et al., 2021,Brown et al., 2018,Choi et 

al., 2022,Espino et al., 2019,Lombard-Banek et al., 2019,Moroz et al., 2013,OuYang et al., 

2015,Simone et al., 1998,von Eggeling et al., 2020,Yuan et al., 2021).
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Figure 4. 
Scalable and high-sensitive sample processing for metabolites and proteins enabling 

spatiotemporal biological MS. One-pot sample processing (SCoPE), direct cell capture and 

processing (iPAD), and miniaturization of sample processing steps (nanoPOTS) deepen 

the detectable proteome by reducing analyte losses. Direct cell capture (SCP-LVC), multi-

solvent processing, and in situ metabolite extraction (LMJ) after MALDI imaging improve 

coverage of the single-cell metabolome. Technological abbreviations are in the text. Adapted 

with permission from (Budnik et al., 2018,Cahill et al., 2019,Comi et al., 2017,Kelly 

2020,Onjiko et al., 2016,Zhang et al., 2020).
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Figure 5. 
Advances in separation and ionization aided the chemical analysis of limited amounts of 

materials. Reducing size of packing material, diameter of LC columns, newer generation 

columns minimize dispersion of molecules for high sensitivity during chromatography. 

Diverse stacking methods boost sensitivity during capillary electrophoresis. Specialized 

technologies and methods improve ion yields during electrospray ionization by controlling 

the spraying regime, charging of droplets, and reducing analyte dilution. Technological 

abbreviations are in the text. Key: OR, orifice of mass spectrometer; Tc, Taylor cone; 
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FASS, LVS abbreviations are in the text. Adapted with permission from (Bongaerts et 

al., 2020,Choi et al., 2017,DeLaney et al., 2022,Desmet et al., 2020,Kenderdine et al., 

2018,Lombard-Banek et al., 2019,Lombard-Banek et al., 2019,Marginean et al., 2007,Moini 

2007,Nemes et al., 2007).
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Figure 6. 
High- to ultra-high resolution analyzers and instrumental configurations with enhanced 

ion transfer efficiency support spatiotemporal ‘omics. TOF analyzers are capable of fast 

operation, enabling spatial interrogation of molecular distributions in tissues and cells using 

focused laser beams (MALDI) and in situ ablation/ionization (LAESI). Increasing spectral 

resolution by orbitrap and FTICR analyzer-detector systems allow for the resolution of 

isobaric species with different spatial and temporal distributions. Abbreviations are in the 

text. Adapted with permission from (Brunner et al., 2022,Cong et al., 2020,Neumann et al., 

2019,Paine et al., 2019,Samarah et al., 2020,Suvannapruk et al., 2022)
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Figure 7. 
Chemometrics plays a key role in analyzing metadata from spatiotemporal MS. Image 

analysis by optical microscopy and functional measurements, such as electrophysiology, 

help identify tissues and cells, guiding subsequent molecular characterizations to transcripts, 

proteins, peptides, and metabolites. Statistical and multivariate data analysis and knowledge 

bases are integral to interpreting molecular processes in specific biological contexts, as 

illustrated here for dissected rat sciatic nerves (HPLC), temporally developing whole X. 
laevis embryos (HPLC), and dense core vesicles in A. californica (MALDI). Working in 
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vivo, LAESI-MSI images chlorophyll and secondary metabolites in the variegated leaves 

of A. squarrosa and CE-HRMS enabled metabolomics-proteomics in single differentiating 

cells in X. laevis and neurons in the mouse brain. Models of artificial intelligence (AI) and 

machine learning assist in extracting trace-level signals (Trace) or uncovering relationships 

in the metadata. Technological abbreviations are in the text. Adapted with permission from 

(Budnik et al., 2018,Castro et al., 2021,Di Paolo et al., 2021,Liu et al., 2019,Nemes et al., 

2009,Onjiko et al., 2017,Peshkin et al., 2015).
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