Skip to main content
. 2023 Nov 2;10(11):1279. doi: 10.3390/bioengineering10111279
Algorithm 2 Fine-tuning Procedure
1: ftarget ▹ Pretrained student model
2: D ▹ Target dataset
3: Nfold ▹ Total number of folds
4: Nepoch ▹ Total number of training epochs
5: Nstop ▹ Patience number for early stopping
6: procedure Fine-tune(ftarget,D,Nfold,Nepoch,Nstop)
7:       for fold in range [1, Nfold] do
8:             Xtrain,Ytrain,Xval,Yval,Xtest,Ytest = LoadData(D,fold)
9:             for epoch in range [1, Nepoch] do
10:                 for i in range [1, |Xtrain|] do
11:                       Ltrain=Lfocal(ftarget(Xtrain(i)),Ytrain(i))
12:                       Backpropagate(Ltrain,ftarget)
13:                 LVal=1|Xval|)j=1|Xval|Lfocal(ftarget(Xval(j),Yval(j))
14:                 CheckForEarlyStopping(Lval,Nstop)
15:           Atest=1|Xtest|k=1|Xtest|Accuracy(ftarget(Xtest(k)),Ytest(k))
16:      Aaverage = 1Nfoldfold=1NfoldAtest(fold)
17:      return Aaverage
* In this study, Nfold=5Nepoch=200, and Nstop=20.