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ABSTRACr

Comparison of several lipid reconstitution methods showed that they
were not equally efficient at transferring the predominant thylakoid lipid,
m lactosyldiglyceride (MG) to the aqueous phase. We report a
reverse phase evaporation method that employs Freon 11 as a lipid
solvent and is capable of successfully hydrating MG in spinach (Spinwcia
okracea L.) at room temperature within minutes. Using this method it is
possible to force an equal weight mixture of MG and d tosyldigy-
ceride into small bilayer vesicles without the formation of inverted
micellar 'lipidic particles' in the membranes.

Our aim in this work was to establish a procedure by which
bilayer vesicles of variable and known composition could be
formed quickly and reproducibly from endogenous thylakoid
lipids. Such vesicles will be used to lipid-enrich (9, 10, 16)
thylikoid membranes so that we can (a) positively identify the
profein complexes seen on the P-face of freeze-fractured thyla-
koids, and (b) investigate the physiological effects of increasing
the lipid to protein ratio of these membranes.

Siegel et at. (16) have shown that lipid enrichment ofthylakoid
membranes using phospholipid vesicles causes extensive mem-
brane fiagmentation as well as particle aggregation. In contrast,
lipid enrichment of inner mitochondrial membranes with phos-
pholipids (9, 10) can be carried out without any structural
degradation of the membranes. The important difference be-
tween the two membrane systems probably lies in the fact that
phospholipids are the major lipid component ofinner mitochon-
drial membranes and only a minor (10-13%, Ref. 3) component
of thylakoid membranes. The predominant thylakoid lipids are
the uncharged MG2 and DG. They contribute approximately 51
and 26%, by weight, of the thylakoid lipids, respectively. Addi-
tion of lare amounts of charged phospholipids to thylakoid
membranes could be sufficient to cause the structural alterations
observed by Siegel et al. (16). Thus, we have undertaken to form
bilayer liposomes from endogenous thylakoid lipids.
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2Abbreviations: MG, monogalactosyldiglyceride; DG, digalactosyldi-
glyceride; RPEV, reverse phase evaporation.

MATERIAIS AND METHODS

Lipids were extracted from commercial spinach (Spinacia
oleracea L.) thylakoids with chloroform:methaol and sepamted
on a preparative silicic acid column (17). Thylakoid lipids (mix-
tures and individual classes) were tansferred to an aqueous
medium by (a) hydration in disfilled H20, 0.1 M Naa solution,
or buffer (50 mm Na phosphate, 0.1 M KCa, pH 7.2); (b) solubil-
ization in detergent; or (c) RPEV from Freon 11 (trichlorofluo-
romethane, bp 23°C; Matheson, East Rutherford, NJ).

Heating times in the simple hydration experiments were varied
from 5 to 10 min at 30°C to 60 min at 80°C to maximize tansfer
of lipid from the glss to the solution. Sonication was either in a
bath for 45 min (simple hydration experiments) or with a probe
for two or three 30-s bursts (Triton experiments). Lipids were
routinely used at 2, 10, and 20 mg/ml in the final aqueous
volume and all treatments were carried out in a N2 atmosphere.
The RPEV method used here was modified from the work of
Cafiso et al. (1) to accommodate larger volumes, rapid reconsti-
tution, and lower temperatures. The schemes used for reconsti-
tution are outlined in Figure 1. The ratio of Freon to water was
1:2 (v/v) in most ofthese experiments. Changingthe ratio slightly
did not affect the results as long as an emulsion could be
maintained during warming. Continuous vortexing maintained
an emulsion at all the Freon/water ratios tested. Slow warming
(5- 10 min) ofthe Freon/water emulsion was necessaryto prevent
boiling of the mixture. More rapid warming (approximately 2
min) produced such violent boiling that most ofthe lipid sample
was spattered over the inside of the tube making recovery next
to impossible.
The efficiency of transfer was assayed by TLC (chloro-

form:methanol:water [65:25:4, v/v] and/or chloroform:
methanol:ammonium hydroxide [65:35:5, v/v]) of the material
re-extrcted from the glass vessel walls after removal of the
hydrated sample.
For freeze-fracture electron microscopy, samples were either

glycerinated to 35% (v/v) and dip-frozen in liquid nitrogen-
cooled Freon 12 orjet frozen without glycerol. Pt-C replicas were
made at -l 15C in a Balzes 360M freeze-etch instrument
equipped with electron guns.

RESULTS AND DISCUSSION

MG, the predominant thylakoid lipid (3), is very difficult to
transfer quantitatively to the aqueous phase by hydration and
sonication. MG can be completely solubilized with 0.1% (v/v)
Triton X-100 but does not stay in solution during removal of
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FIG. 1. Methods for formation of lipid structures.

the detergent with Biobeads (BioRad, Richmond, CA). Instead,
the lipid forms large clumps that stick to the glas. Reverse phase
evaporation is more efficient in rehydrating MG: the lipid forms
clumps but these clumps do not stick to the glass. The clumping
is most apparent at the highest concentration of MG that we
tested (20 mg/ml). Lowering the concentration of MG to 10 or
2 mg/ml decreases the amount and size of the clumps. MG is
readily soluble in Freon 11 at 40 to 50 mg/ml, the highest
concentration we tested.

Freeze-fracture electron microscopy shows that MG trans-
ferred by RPEV is organized into extensive arrays of hexagonal
II-type tubes (periodicity: 7-9 nm) as previously reported (15) or
into large aggregates of small spheres. Both the tubes and the
spheres are covered by a smooth lipid monolayer (Fig. 2). We
favor the interpretation of the spheres as inverted lipid micelles,
analogous to the hexagonal II-type tubes, rather than as small
bilayer vesicles because of (a) their small size (approximately 7-
9 nm) and (b) the existence of the surface monolayer of lipids
protecting the hydrophobic lipid tails of the inverted micelles
from the aqueous surroundings.

In contrast, DG, the second most prevalent thylakoid lipid (3),
readily disperses into aqueous phases as bilayer liposomes. All of
the methods that we used successfully transfer all of the DG into
the aqueous phase. As expected, the diameter of the liposomes
decreases with sonication and increases after freezing and thaw-
ing. DG is also readily soluble in Freon 11 at 50 mg/ml.
The efficiency of transfer of binary mixtures of thylakoid

galactolipids to the aqueous phase varies significantly with the
method employed. The primary problem in all of the simple
hydration experiments was that MG is selectively retained on
the glass walls of the vessel. Use of Triton to solubilize the lipid
overcomes this problem completely but creates another: Bio-
beads do not appear to remove all the detergent. The presence
of any detergent is unacceptable since we plan to use these
vesicles for lipid-enriching native membranes; thus, we developed
a simple and rapid RPEV method (Fig. 1) to transfer all the lipid
to the aqueous phase efficiently and reproducibly.
A further advantage of our RPEV method is demonstrated by

"

FIG. 2. Packed lipid spheres produced when pure MG was reconsti-
tuted by RPEV at 10 mg/ml. The spheres are shown in cross-fracture
(arrows) and along the surface immediately underlying the smooth lipid
layer covering the aeFte(asterisk). Magnification: x 158,000.

freeze-fracture electron microscopy. The Biobeads incubation for
detergent removal is slow and allows formation of large lipid
clumps when the percentage of MG is high (>40% by weight),
RPEV is rapid and sufficiently vigorous that large scale aggrega-
tion of lipid does not occur until the mixture contains more than
about 66% (by weight) MG. A 50:50 (w/w) mixture ofMG and
DG prepared by detergent solubilization and removal shows
extensive arrays of hexagonal H-type tubes and packed spheres
(Fig. 3). In contrast, a mixture of the same composition (Fig. 4)
prepared by RPEV shows primarily bilayer liposomes with fusion
pores and a few small vesicles filled with aggregates of coiled
hexagonal Il-type structures. TLC of extracts of the hydrated
material and ofthe glass vessel shows that in fact no lipid remains
associated with the glass after either Triton solubilization or
RPEV of 50:50 (w/w) mixtures.

In summary, we find that the proportion of lipid in non-
bilayer configurations in binary mixtures of plant galactolipids
increases with the amount of MG in the mixture as expected
from the work of Sen et al. (11-14), Shipley et al. (15), and the
theoretical calculations of Murphy (6, 7). The first non-bilayer
structures to appear are 'lipidic particles' (2, 4) and fusion points
(5, 8) between adjacent bilayer vesicles. The MG concentration
at which we observe the transition from bilayer liposomes to
mostly non-bilayer structures (hexagonal II-type tubes and
packed inverted micellar spheres) depends on the method used
for transfer of the lipids to the aqueous phase. The commonly
used simple hydration method produces inconsistent results due
to the incomplete removal of MG from the glass. For the
detergent solubilization method, the transition to non-bilayer
structures is clearly complete in the 50:50 (w/w) mixture. For
the RPEV method, the transition only becomes significant at an
MG concentration ofabout 66%. This composition is of interest
because the ratio ofMG to DG in the native membrane is 2:1
(w/w). Thus, the RPEV method is the only one we have found
that permits the preparation of bilayer vesicles from mixtures of
the two major chloroplast lipids at concentrations that approxi-
mate the native composition. Addition of the other thylakoid
lipids (sulfolipid and small amounts of phosphatidylglycerol and
phosphatidylcholine) to 2:1 (w/w) mixtures of MG and DG
further promotes the formation of bilayer liposomes using the
RPEV technique.
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FIGS. 3 and 4. Organization of lipids observed in replicas of equal
weight mixtures of DG and MG. Samples prepared by the detergent
solubilization method (Fig. 3) contained hexagonal-II type tubes and
packed inverted micellar spheres. In contrast, samples prepared by RPEV
(Fig. 4) contained bilayer vesicles with fusion pores (arrows). Magnifica-
tions: Figure 3, x 104,000; Figure 4, x 49,000.
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