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Abstract: Background: Subarachnoid hemorrhage resulting from cerebral aneurysm rupture is
a significant cause of morbidity and mortality. Early identification of aneurysms on Computed
Tomography Angiography (CTA), a frequently used modality for this purpose, is crucial, and artificial
intelligence (AI)-based algorithms can improve the detection rate and minimize the intra- and inter-
rater variability. Thus, a systematic review and meta-analysis were conducted to assess the diagnostic
accuracy of deep-learning-based AI algorithms in detecting cerebral aneurysms using CTA. Methods:
PubMed (MEDLINE), Embase, and the Cochrane Library were searched from January 2015 to July
2023. Eligibility criteria involved studies using fully automated and semi-automatic deep-learning
algorithms for detecting cerebral aneurysms on the CTA modality. Eligible studies were assessed
using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guide-
lines and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A diagnostic
accuracy meta-analysis was conducted to estimate pooled lesion-level sensitivity, size-dependent
lesion-level sensitivity, patient-level specificity, and the number of false positives per image. An en-
hanced FROC curve was utilized to facilitate comparisons between the studies. Results: Fifteen eligible
studies were assessed. The findings indicated that the methods exhibited high pooled sensitivity (0.87,
95% confidence interval: 0.835 to 0.91) in detecting intracranial aneurysms at the lesion level. Patient-
level sensitivity was not reported due to the lack of a unified patient-level sensitivity definition. Only
five studies involved a control group (healthy subjects), whereas two provided information on detec-
tion specificity. Moreover, the analysis of size-dependent sensitivity reported in eight studies revealed
that the average sensitivity for small aneurysms (<3 mm) was rather low (0.56). Conclusions: The
studies included in the analysis exhibited a high level of accuracy in detecting intracranial aneurysms
larger than 3 mm in size. Nonetheless, there is a notable gap that necessitates increased attention
and research focus on the detection of smaller aneurysms, the use of a common test dataset, and an
evaluation of a consistent set of performance metrics.

Keywords: computed tomography angiography; CTA; aneurysm detection; meta-analysis; PRISMA;
QUADAS-2; sensitivity; specificity; false positives per image; healthy controls; evaluation guidelines

1. Introduction

Most IAs are small, and it is estimated that 50–80% do not rupture during a person’s
lifetime. Nevertheless, rupture of IA is one of the most common causes of subarachnoid
hemorrhage (SAH) [1], a condition with approximately 50% mortality rate [2]. The global
annual risk of IA rupture is estimated at 0.95–2.0%, while the risk of complications during or
due to treatment is estimated at 5.3% and 6.3% for endovascular coiling and neurosurgical
clipping, respectively. The decision on how to treat SAH is determined by considering
treatment risk and other relevant factors [3], concurrently with the emergence of new
medicines offering promising avenues for improved SAH treatment [4]. The risk of rupture
for newly discovered small IAs with a diameter up to 5 mm is less than 1%, and progressively
increases with age and possible IA growth, whereas for newly discovered larger IAs, the
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rupture risk is much higher. Early detection of IAs is required to open a window of
opportunity to mitigate rupture risk by determining the optimal time and type of treatment.

The screening for IAs in clinical practice is performed mostly by CTA and MRA imaging.
The IAs are detected via visual assessment of the scans, which is a cumbersome task subject
to human error. Even skilled radiologists achieve a rather low sensitivity for small IAs, for
instance, from 64 to 74.1% for CTAs (IA diameter ≤ 3 mm) [5] and from 70 to 92.8% (IA
diameter ≤ 5 mm) [6], which seems could be achieved or even improved using computer-
assisted deep learning and artificial intelligence-based approaches [7]. For instance, in
a recent study, Yang et al. [8] used such a computer-aided aneurysm detection tool and
found that 8 out of 649 aneurysms (1.2%) had been overlooked in the initial radiologic
reports. Recent research also suggests that using deep-learning models (DLMs) to assist
radiologists in detecting secondary intracranial aneurysms can improve their detection
sensitivity [9].

The computer-assisted IA detection system also seems to be a solution to the relative
shortage of experienced radiologists compared with the increasing demand for imaging
studies [10]. The earliest automated computerized scheme of IA detection was reported
in 2004, which achieved high accuracy in a small sample [11]. Recently, on account of
progress in deep-learning technology, the volume of research on DLMs for detecting IAs has
increased substantially. According to a meta-analysis [12], the diagnostic performance of
DLMs was demonstrated to be equivalent to that of healthcare professionals in classifying
diseases using medical imaging.

However, even though DLMs were proven to be useful, there are only a few studies on
automatic detection of IAs from CTA scans, despite its widespread use, which is likely due
to the severity of the problem. Among the reasons is that CTA depicts poor case-to-case and
spatially varying vessel-to-background contrast, bony structures with similar intensity as
the vessels, and vessel-like streak artifacts, to name a few. As a result, most of the existing
research has concentrated on detecting IA aneurysms using MRA and DSA modalities.
In a recent review paper [7], the authors included 19 studies involving MRA, 11 studies
involving DSA, and merely 4 studies that incorporated CTA as the imaging modality.

Recent two review studies [7,13] focused on all three commonly used modalities (MRA,
CTA, and DSA) for IA detection, but have not provided a comprehensive review and
analysis of methods utilizing the CTA modality in corresponding test datasets. Specifically,
Din et al. [7] reviewed 3, and Gu et al. [13] reviewed 6 research papers, while our review of
the field identified 15 eligible research papers, thus indicating recent rapid progress in the
field since the aforementioned two studies were published. To enhance the understanding of
state of the art in IA detection using CTA, we have therefore performed a systematic review
and meta-analysis, using established methodologies. We specifically focus on the structure
and size of test datasets employed in the reviewed studies, as well as the consistency and
validity of the reported evaluation metrics. By examining a larger pool of studies, our
analysis aims to elucidate the current state of developments in the field, offering crucial
guidance for shaping future research endeavors and, ultimately, influencing evidence-based
clinical practices.

2. Materials and Methods

This review was performed in adherence with the guidelines of Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis (PRISMA) [14], with insights from
Cochrane review methodology for establishing study inclusion criteria [15], conducting the
study search, and assessing study quality [16].

2.1. Literature Search

A comprehensive yet sensitive search was conducted, utilizing subject headings with
exploded terms and without imposing any language restrictions [14]. The search terms
were applied across various databases, including Embase, MEDLINE, Web of Science,
and the Cochrane Register, aiming to extract original research articles (the detailed search



Biomedicines 2023, 11, 2921 3 of 14

strategy is available in Appendix A). In addition to the database search, the bibliography of
all relevant authors was meticulously screened to identify any potentially missed articles.
To ensure the reliability and validity of the findings, non-peer-reviewed journal articles
were excluded from the analysis. Furthermore, the introduction of deep-learning methods
to medical imaging applications has progressively increased since 2015 [17]. Therefore,
studies published from January 2015 to July 2023 were included in the review process.

2.2. Selection Criteria

Our study employed specific inclusion and exclusion criteria to ensure the selection
of relevant research. Inclusion criteria were established as follows: (i) the study had to
include patients with confirmed one or more IAs through standard-of-care diagnosis or
expert consensus; (ii) the study utilized a DLM for the detection of IAs; (iii) the study had
to incorporate the CTA modality in their test image dataset.

Conversely, certain exclusion criteria were applied to eliminate studies that did not
meet our research objectives. These criteria included studies written in languages other
than English, studies that did not involve human subjects, pilot studies, conference papers,
abstract-only publications, and letters.

Finally, an eligibility assessment was performed to guarantee the inclusion of ap-
propriate studies. For this purpose, two researchers conducted independent reviews of
the titles and abstracts of the selected studies. In instances of disagreements, a senior
researcher served as an arbitrator, making the final decision. Additionally, when the same
deep-learning model was evaluated in different studies and on different test datasets,
each publication was treated as a distinct research instance and included in our study.
This approach ensured a comprehensive coverage of relevant and up-to-date findings in
our analysis.

2.3. Data Extraction and Quality Assessment

Data extraction for analyses involved two individual researchers and subsequent
verification by a senior researcher. The collected data encompassed the following variables:
publication year, data source (multi or single center), modality used (whether authors
employed other modalities besides CTA), study design (retrospective or prospective), used
deep-learning model, quantity of CTA images, number of aneurysms in the training and
test sets, average size of the aneurysms or any reported related measurement, performance
based on aneurysm size if reported by the authors, inclusion of healthy subjects in the test
set, and performance by collecting evaluation metric values, such as patient-level sensitivity
and lesion-level sensitivity, patient-level specificity, and number of false positives per image.

The evaluation of study quality involved the implementation of the QUADAS-2 (Qual-
ity Assessment of Diagnostic Accuracy Studies) tool, a widely acknowledged framework
for assessing methodological rigor and bias in diagnostic accuracy studies [18]. Two profi-
cient researchers conducted the assessment independently, meticulously examining aspects
like patient selection, index tests, reference standards, and study flow and timing. In cases
of disagreements, the senior author acted as an arbitrator, contributing to a comprehensive
and objective quality assessment process.

2.4. Data Synthesis and Statistical Analysis

The main emphasis of this review study was on the primary outcome measures,
which centered around the diagnostic test accuracy metrics of deep-learning methods for
detecting IAs on CTA scans. To analyze the data effectively, we employed two units of
analysis: (i) patient-level and (ii) lesion-level analysis. Using the published study data, we
constructed 2 × 2 confusion matrices for hold-out test datasets. From these matrices, we
calculated the primary diagnostic accuracy measures of patient- and lesion-level sensitivity
(recall) and patient-level specificity.

Patient-level sensitivity was defined as the number of true positive (TP) scans, where
all IAs were correctly identified, divided by the total number of scans, including IAs.
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Lesion-level sensitivity, on the other hand, was defined as the number of true positive IAs
divided by the total number of IAs.

In studies where both internal and external test performance measures were reported,
we prioritized the use of external test data to assess performance accuracy. These external
test datasets had to be obtained from a distinct institution, typically located in a different
geographic region compared to where the training datasets were sourced. Conversely,
internal test datasets were considered those obtained from the same institution as the one
providing the training datasets.

Deriving specificity required per-patient data, as the number of true negatives
cannot be determined on a per-lesion basis. Additionally, we extracted the number of
false positives per image (FPs/image), indicating the instances of incorrectly identified
IAs within each image.

To facilitate our meta-analysis, we initially assessed the eligible studies based on
lesion-level sensitivity and the number of FPs/image, which are among the most commonly
reported performance metrics. Additionally, we endeavored to analyze the papers based
on patient-level sensitivity and specificity. Considering the observed varying sensitivities
in detecting smaller IAs (size < 3 mm), we thoroughly examined all papers that reported
lesion-level sensitivity in relation to the size of the IAs.

3. Results
3.1. Characteristics of Included Studies

Figure 1 provides an overview of the study’s overall flow. Initially, 608 studies that
met the search criteria were identified, and from these, 163 full-text articles were assessed
for potential eligibility. Eventually, 15 studies published between June 2019 and April
2023 were included in the analysis [8,9,19–31]. The collective training and testing data
encompassed 11,210 subjects, which featured a total of 13,086 IAs. Of these, 9012 cases were
utilized for training, while 4074 cases were allocated for validation purposes, both internally
(3039 cases) and externally (765 cases). For comprehensive insights, Tables 1 and 2 present
detailed characteristics of the studies, divided into two groups: (i) automatic methods
(13/15, 87%) [8,9,19–28,31], and (ii) semi-automatic methods (2/15, 13%) [29,30]. All studies
were retrospective in nature. Among the 15 studies, 13 (13/15, 87%) exclusively employed
CTA as the imaging modality. The study by Timmins et al. [29] used MRA for training
and CTA for separate evaluation, while another study by Shi et al. [26] utilized DSA and
CTA as training modalities. Of the included studies, 7 (7/15, 47%) datasets were acquired
from multiple centers, while 8 (8/15, 53%) were obtained from a single center. Out of
the 15 studies, 5 (5/15, 33%) included healthy subjects; however, only 2 studies reported
patient-level specificity. Notably, only the study by Bo et al. [24] made their data publicly
available, whereas, in four studies (4/15, 27%), the authors mentioned the possibility of
data sharing upon request; however, in four, to date, none have responded to our email
request sent to the corresponding author of each study. Moreover, eight studies (8/15,
53%) reported their results with respect to aneurysm size, while two studies (2/15, 13%)
presented results with respect to IA volume.

In the examined studies, 5 (5/15, 33%) studies made use of either the original ResNet
model or a modified variant thereof [32,33], and 3 (3/15, 20%) adopted the Deep Medic
model [34]. Meanwhile, various other models, such as 3D-UNet, GLIA-NET, 3D DLN-OR,
and HeadXNet were each employed only once. Notably, two authors did not specify the
deep-learning model they used.
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Table 1. Summary of included studies. Most studies used automated detection approaches, except
those in bottom two rows, which used a semi-automated approach.

Study Publication
Year Modalities Data

Source
Deep Learning
Model

Control
Group

Data
Availability

Wang et al. [19] 2023 CTA multicenter DAResUNet yes no
Liu et al. [20] 2023 CTA multicenter Deep Medic no U.R.
You et al. [21] 2022 CTA multicenter 3D-UNet no U.R.
Wu et al. [22] 2022 CTA multicenter Dual-channel ResNet no U.R.
Wei et al. [23] 2022 CTA single center ResUNet no no
Bo et al. [24] 2021 CTA multicenter GLIA-NET yes yes
Pennig et al. [9] 2021 CTA single center Deep Medic no U.R.
Meng et al. [31] 2021 CTA single center N.R. no no
Yang et al. [8] 2021 CTA multicenter 3D DLN-OR yes no
Shahzad et al. [25] 2020 CTA single center Deep Medic no no
Shi et al. [26] 2020 DSA, CTA multicenter DAResUNet yes no
Dai et al. [27] 2020 CTA single center ResNet no no
Park et al. [28] 2019 CTA single center HeadXNet yes no
Timmins et al. [29] 2023 CTA, MRA single center MESH CNN no no
Heit et al. [30] 2022 CTA multicenter N.R. no no

N.R. = Not Reported; U.R. = Upon request.

Table 2. Detection performance summary, using data extracted from each study. Most studies used au-
tomated detection approaches, except those in bottom two rows, which used a semi-automated approach.

Study No. of CTA
Scans

No. of IA
(Train/Test)

Lesion-Level
Sensitivity

Patient-Level
Specificity

FPs
per Image

Average
Size

Size
Split

Wang et al. [19] 1547 2037 (1667/175 + 195 ⋆) 0.944 N.R. 0.6 N.R. yes
Liu et al. [20] 90 112 (98/13) 0.923 N.R. 1.7 7.9 yes
You et al. [21] 2272 2938 (2492/446) 0.964 N.R. 2.01 3.6 yes
Wu et al. [22] 1508 1710 (1370/340) 0.900 N.R. 1 6.0 no
Wei et al. [23] 212 224 (/224) 0.77 N.R. 0.165 5.4 yes
Bo et al. [24] 1476 1590 (1363/126 + 101⋆) 0.821 N.R. 4.38 5.0 yes
Pennig et al. [9] 172 205 (79/126) 0.857 N.R. 0.84 R.V. no
Meng et al. [31] 100 N.R. N.R. N.R. N.R. N.R. no
Yang et al. [8] 1068 1543 (688/649 + 206⋆) 0.975 N.R. 13.8 5.2 yes
Shahzad et al. [25] 253 294 (79/215) 0.72 N.R. 0.21 R.V. no
Shi et al. [26] 1313 1676 (1099/314 + 263⋆) 0.84 0.71 0.26 4.3 no
Dai et al. [27] 311 344 (222/122) 0.918 N.R. 8.6 5.4 yes
Park et al. [28] 818 328 (269/59) 0.627 0.06 0.16 no no

Timmins et al. [29] 20 25 (†/25) 0.483 N.R. 1.05 5.1 yes
Heit et al. [30] 51 60 (0/60) 0.95 N.R. N.R. 5.4 no

N.R. = Not Reported; R.V. = Reporting Volume; ⋆ = external dataset; † = Trained on MRA.

3.2. Test Dataset Characteristics

According to Table 2, six studies (6/15, 40%) used an external test dataset (scanner/site
not seen during training). Twelve studies (12/15, 80%) used an internal hold-out test dataset.
Cross-validation (CV) was not performed in any of the studies. One study [31] did not
explicitly describe its test dataset and evaluation protocol.

3.3. Sensitivity Analysis

Three studies reported patient-level sensitivity; however, an explicit definition of
patient-level sensitivity was not given. To avoid the interpretation of inconsistent metric
values, we do not report patient-level sensitivity.

The forest plot depicted in Figure 2 displays the lesion-level sensitivity results for
14 of 15 studies (93%), whereas the study by Meng et al. [31] did not report the correspond-
ing value. The lesion-level sensitivities are reported based on the performance of the test
dataset; if there were multiple test datasets in a study, we reported the lesion-level sensitiv-
ity on an external dataset. Notably, the lesion-level sensitivity values varied considerably
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across the studies, ranging from 0.483 to 0.975. Please note that these values were pooled
across IAs of all sizes included in each study’s test dataset and may be over-optimistic
regarding the detection of small IAs.
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Figure 1. Flow diagram for systematic review and meta-analysis of cerebral aneurysm detection
using artificial intelligence.

Wang et al. 2023
Liu et al. 2023
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Wu et al. 2022
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Figure 2. Forest plot of pooled lesion-level IA detection sensitivity from papers [8,9,19–30]. The 95%
confidence intervals (CIs) are given in square brackets. If CIs were not given in the original study, we
reported herein the point estimates of the pooled lesion-level sensitivity.
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Among the included studies, twelve (12/15, 80%) provided information on the average
size of IAs, which varied in range from 3.6 to 7.9 mm. Interestingly, two studies reported
the volume of IAs but did not include data on IA size. The IA size statistic is generally
not sufficient to judge the lesion-level sensitivity of small IAs. Hence, we performed
a lesion-level specificity analysis with respect to IA size.

Eight (8/15, 53%) studies reported sufficient data to reliably determine lesion-level
sensitivity based on the size of IA [8,19–21,23,24,27,29]. It is important to note that while
all authors defined small IAs as those with a diameter less than 3 mm, the definitions for
medium and large IAs varied across the studies. For a clearer understanding, a graphical
presentation illustrating the IA size categories used for IA size groups and the correspond-
ing achieved lesion-level sensitivities and associated IA counts can be found in Figure 3.

0 - 3 mm 3 - 5 mm 5 - 7 mm 7 -10 mm >10 mm

Wang et al.

Dai et al.

Timmins et al.

0.0 [0/2] 0.879 [79/90] 0.980 [50/51] 1.0 [32/32]

0.667 [2/3] 1.0 [7/7] 1.0 [3/3]

0.894 [84/94] 0.983 [238/242] 0.982 [108/110]

0.548 [23/42] 0.758 [72/95] 0.897 [78/87]

0.703 [21/30] 0.823 [70/85] 0.906 [10/11]

0.926 [125/135] 0.981 [258/263] 0.995 [201/202] 1.00 [49/49]

0.767 [23/30] 0.955 [42/44] 1.0 [21/21] 0.963 [26/27] 

0.0 [0/2] 0.61 [11/18] 0.60 [3/5]

Bo et al.*‡

Liu et al.

You et al.

Wei et al.

Yang et al.‡

Figure 3. Lesion-level sensitivity with respect to the IA size category (noted on top) [8,17,20,21,23,24,
27,29]. * means no exact number of cases per size reported; approximations derived from Figure 3 in
Bo et al. paper [24]. ‡ means authors used external validation but reported size-based performance
on internal dataset.

The lesion-level sensitivity for the small IAs (<3 mm) varied substantially, i.e., from
zero to 0.926. The lesion-level sensitivity is generally higher for the IAs larger than 3 mm
in diameter. Most notably, the counts of small IAs used in the studies are rather small,
and the small IAs generally represent the minority class with respect to the medium and
large IA classes. Hence, the size-pooled lesion-level sensitivities may indeed be biased and
over-optimistic for the small aneurysms.

The most important observation is that all studies (except Wang et al. [19]) reported
size-based lesion-level sensitivity on internal rather than on the external validation dataset.
Therefore, the observed lesion-level sensitivity may be biased and over-optimistic, espe-
cially for the small IAs. This is supported by the results of Wang et al. [19], who achieved
a rather high overall lesion-level sensitivity of 0.94 (cf. Figure 2), but a corresponding zero
value for small IAs.

3.4. Specificity Analysis

In 13 studies that reported the number of FPs/image the range spanned from 0.16 to
13.8 (Table 2). On the other hand, the patient-level specificity was reported only in
2/15 (13%) studies that included healthy subject controls. Specifically, Shi et al. [26]
achieved a specificity of 0.71, while Park et al. [28] attained quite a low specificity of
0.06. These figures indicate rather poor performance of the respective methods in accu-
rately identifying true negatives and, therefore, necessitate the inclusion of healthy subject
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control scans and the evaluation of patient-level specificity in future detection method
evaluation protocols.

3.5. Enhanced FROC Curve

The standard approach for reporting the performance of DLMs in detecting IAs is
using the Free-Response Receiver Operating Characteristic (FROC) curve, which plots
lesion-level sensitivity with respect to the average number of FPs per image.

For a more general comparison of multiple studies, we enhanced the FROC curve by
incorporating two additional pieces of information: (i) the number of IAs in the test dataset
(encoded as color) and (ii) the average size of the IAs (encoded as the size of the data point).
For studies that reported the IA volume [9,25], we performed an approximate conversion
from IA volume to IA size, relying on the conversion introduced by Shahzad et al. [25].

The enhanced FROC curve is depicted in Figure 4. In an ideal scenario, a perfect
model would exhibit 0 FPs/image, a lesion-level sensitivity of 1.0, and be represented by
a small (=low average IA size) and bright yellow (=high CTA count) data point. The FROC
shows that studies by Wang et al. [19] and Wu et al. [22] achieved a good balance between
lesion-level sensitivity and FPs/image. The FROC also shows that the higher the lesion-level
sensitivity, the more FPs/image.
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Wu et al. 

Pennig et al. 
Shi et al.

Wei et al.

Shahzad et al. 

Park et al. 

Timmins et al. 

Figure 4. Enhanced FROC with lesion-level sensitivity on the vertical axis versus the number of
False Positives (FPs) per image on the horizontal axis. Each data point represents the result from
one study [8,9,19–29], whereas its color represents the number of test images, and size indicates the
average IA size.

4. Discussion
4.1. Summary of Findings

Numerous studies in recent years have applied DLMs for the detection of IAs on CTA
images. Despite the inherent challenges associated with IA detection in CTA, such as the
presence of bone structures and image artifacts, researchers have continuously reported
high lesion-level sensitivity and progressively lower number of false positives per image.
However, the diagnostic accuracy of these studies is somewhat limited due to a high risk of
bias and concerns regarding the data used. For instance, approximately half of the studies
included in this review did not report lesion-level sensitivity with respect to the IA size, and
those that did exhibit important limitations such as limited count of small IAs in the test
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dataset [19,20,29], a small test dataset [19,20,28,30], internal instead of external dataset (all
except [19]), poor sensitivity to small IAs [19,20,23,29], or a high number of false positives
per image [8,24,27].

Despite the potential of DLMs, many studies lack a comprehensive reporting of evalu-
ation metrics. To enable meaningful comparisons among future research endeavors, it is
imperative to establish standardized reporting guidelines for IA detection studies. With
this aim in mind, we present the essential performance metrics that should be reported
in a comprehensive study of IA detection in later Section 4.6. By adhering to these guide-
lines, researchers can ensure consistency and facilitate a more objective evaluation and
comparison of IA detection methodologies.

4.2. Limitations of Reviewed Studies

All studies included in the analysis utilized a retrospective and case-control design.
However, it is important to note that the eligibility criteria employed varied across these
studies. Some studies excluded IAs smaller than 3 mm, while others excluded patients
with specific types or location of IAs. Additionally, it is worth mentioning that not all the
methods employed in these studies were fully automatic.

Furthermore, a significant proportion of the studies (10/15, 67%) did not include
a control group (healthy subjects) in their analysis to perform patient-level specificity
analysis. Among the five studies that did include a control group, only two reported
patient-level specificity [26,28]. This lack of reporting and inclusion of healthy subjects
(i.e., CTA brain scans without IAs) can introduce spectrum bias and potentially limit the
generalizability of the results to real clinical environments. As the results of the two studies
show, the attained patient-level specificity was rather low, thus indicating a high chance of
false findings using the DLMs.

Although multiple different deep-learning models were tested across studies, to the
best of our knowledge, there is no comparative study focused on the variability of the
results with respect to the model architecture. The most commonly used model architecture
was ResNet or its modifications (5/15 studies), while DeepMedic was used in three studies.

An attempt was made to extract and report patient-level sensitivity. However, among
the included studies, only three incorporated information regarding patient-level sensitivity.
Regrettably, none of these studies provided a clear and explicit definition of patient-level
sensitivity. Consequently, due to the lack of comprehensive and standardized data in this
regard, it was not possible to report on patient-level sensitivity within this review.

This and other inconsistencies regarding evaluation metrics were noticed. For instance,
most papers accurately reported lesion-level specificity and the number of FPs/image.
However, there were inconsistencies in reporting patient-level sensitivity and specificity.
To address this issue, we have proposed evaluation metrics and dataset characteristics that
should be included in future studies to ensure consistent and comparable reporting of IA
detection performance (see Section 4.6).

One significant limitation of all the reviewed studies is that each study validated their
DLM exclusively on their private datasets. This is mainly because, until recently, there were
no publicly available CTA datasets of IAs. Since the authors may not release their code
and datasets for various reasons, for instance, due to patient privacy policies and other
regulatory limitations, it is, therefore, impossible to independently verify the effectiveness
of their methods and assess the variability of results with respect to the employed deep-
learning model architecture. There is one notable exception, namely Bo et al. [24], who
publicly released their dataset, complete with a train-test split and relevant external dataset.
However, in the present version of the dataset, the IA size information was not given.
Thus, size-based lesion-level sensitivity cannot be performed. Nevertheless, this dataset
represents a crucial step forward in the objective evaluation of IA detection methods on
CTA scans. We highly recommended that all authors employ the dataset provided by
Bo et al. [24] (and any other future public datasets) as an external validation dataset to
facilitate comparisons between different IA detection methods. By utilizing this dataset
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and future public datasets, researchers can ensure an objective, reliable, and comprehensive
evaluation of their approaches.

4.3. Bias and Applicability Assessment

An analysis of the risk of bias and concerns regarding applicability was performed for
each study using the QUADAS-2 tool, which is given in supplemental Appendices B and C.
Notably, there was a high risk of bias related to patient selection in 66% (10/15) of studies,
while in the remaining five, the risk was unclear. Regarding concerns of study applicability,
these were high or unclear in 53% (8/15) of studies for patient selection. Six studies (5/15,
33%) did not explicitly mention their inclusion or exclusion criteria, and 3/15 (20%) studies
excluded patients based on factors that could increase selection bias, such as IA size, type,
location, or presence of comorbidities.

4.4. Current State of the Art Performance

Among the 15 studies analyzed, 6 studies (40%) demonstrated a seemingly favor-
able trade-off between lesion-level sensitivity (greater than 0.8) and the number of false
positives per image (less than 2) [9,12,19,21,22,26]. According to the FROC in Figure 4,
Wang et al. [19] achieved the best trade-off between the lesion-level sensitivity and false
positives per image, with respective values being 0.944 and 0.6. However, the authors did
not explicitly provide information on the average size of the utilized IAs (in Figure 4, we
used a weighted estimate based on IA size categorization and associated counts as weights),
and their test dataset included only 2 aneurysms smaller than 3 mm, none of which were
detected by their method.

4.5. Size-Based Lesion-Level Sensitivity

A positive trend has been observed in reporting sensitivity based on the size of IAs.
Eight (8/15, 53%) studies reported sensitivity based on the IA size categorization, and two
studies reported sensitivity based on volume [9,25]. Although volume-based reporting may
offer greater accuracy, it is not widely reported, and the IA volume is not used in clinical
guidelines for IAs, likely due to the need to use advanced tools to enable its assessment.

Although there is a consensus among different authors regarding the threshold for
small IAs (diameter <3 mm), there is no agreement for medium and large IA. Among
the studies that reported IA size categorization, 5 out of 8 (5/8, 62%) studies used three
categories, while the other 3 studies (3/8, 38%) defined four categories. All definitions with
associated size thresholds can be found in Figure 3.

The most commonly used categories were <3 mm for small, 3–7 mm for medium,
and >7 mm for large IAs, and we recommend reporting sensitivity for each of these three
categories in any future studies. By adopting these proposed group sizes, future studies
can achieve a higher level of consistency and comparability when reporting lesion-level
sensitivity based on IA size.

In the detection of small IAs, the highest lesion-level sensitivity (0.926) was reported
by Yang et al. [8]. However, their method also exhibited the highest FPs/image (13.8)
among all studies. In contrast, Wei et al. [23] achieved a low FPs/image of 0.165 while
attaining overall lesion-level sensitivity of 0.77, but a lower lesion-level sensitivity of 0.548
for small IAs. This finding further underscores the inherent trade-off between the number of
FPs/image and sensitivity, particularly in the context of detecting small IAs. Furthermore,
all mentioned results may be over-optimistic due to the use of internal test datasets, as
opposed to external ones that generally involve site, scanner, or imaging protocol bias that
adversely affects the detection performance.

4.6. Guidelines on Evaluation Metrics

To ensure consistent reporting of the performance in future studies involving IA
detection, we have compiled a set of required metrics:

Lesion-Level Sensitivity: This metric measures the number of correctly detected IAs
divided by the total number of aneurysms in the dataset. The authors should report the
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overall lesion-level sensitivity and further split it into three groups: small (<3 mm), medium
(>3 mm and <7 mm), and large (>7 mm). Such split is recommended for consistent reporting
purposes (refer to Figure 3). Furthermore, the methods and tools of IA size measurement
should be described, along with the qualification and years of experience of the rater.

Patient-Level Sensitivity: This metric evaluates the number of correctly segmented
scans, where all IAs on the scan are detected, divided by the total number of scans that
include IAs. When the model fails to detect one or more IAs in a scan, such scan is labeled
as a false negative. Conversely, if the model successfully detects all IAs in the scan, such
scan is labeled as a true positive.

Patient-Level Specificity: This metric assesses the number of correctly labeled scans
from healthy subjects divided by the total number of scans that do not depict IAs. Each
study needs to include healthy subjects to evaluate the model’s ability to accurately identify
cases without IAs. Correctly labeled scans of healthy subjects are defined as scans without
any false positive findings.

Number of False Positives (FPs) per Image: This metric quantifies the number of
false positive IAs detected in the entire dataset, divided by the total number of scans
depicting the IAs. It provides valuable information regarding the rate of false positive
detections. The same metric can be assessed and reported on healthy subject scans and
reported in conjunction with patient-level specificity.

By consistently reporting these metrics, researchers can facilitate comparisons between
different studies and, therefore, enhance the understanding of IA detection performance.

5. Conclusions

In summary, our analysis highlights the need for standardized reporting guidelines in
studies involving the detection of IA using Computed Tomography Angiography (CTA).
The existing literature demonstrates promising results in IA detection using CTA, but
limitations such as high risk of bias, inconsistent reporting of evaluation metrics, and
lack of healthy subject control group need to be addressed. Moving forward, it is crucial
to establish uniform reporting guidelines to facilitate meaningful comparisons among
future studies. We provided guidelines on metrics for IA detection, including lesion-
level sensitivity, patient-level sensitivity, patient-level specificity, and the number of false
positives per case. By consistently reporting these metrics, researchers can improve the
reproducibility and comparability of IA detection studies.

The use of a common evaluation dataset is a further step toward objective and com-
parative evaluation of IA detection performance. We highly recommended that all authors
employ the dataset provided by Bo et al. [24] (and any other future public datasets) as an
external validation dataset to facilitate comparisons between different IA detection methods.

Additionally, our findings underscore the importance of including healthy subjects
in IA detection studies to mitigate spectrum bias and enhance the generalizability of the
results. Specifically, standardized reporting of performance should include per-subject
specificity on the control group to highlight the rate of false findings. To the best of our
knowledge, a public dataset of healthy subject CTAs is not yet available, and its collection
remains in the domain of the authors of future studies.

Overall, standardizing reporting guidelines and addressing the limitations identified
in this analysis will contribute to the advancement of IA detection on CTA, and possibly on
other modalities, and provide more robust evidence for possible adoption of IA detection
methods in computer-assisted diagnosis, triage, and decision-making systems.
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Appendix A

Applied search keywords were: ((artificial intelligence) OR(deep learning) OR (ma-
chine learning) OR (neural network) OR (vector machine) OR (automatic) OR (computer-
assisted) OR (AI algorithm)) AND ((intracranial aneurysm) OR (cranial aneurysm) OR
(cerebral aneurysm) OR (brain aneurysm) OR (head aneurysm)) AND ((CTA) OR (com-
puted tomography)).

Appendix B
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Figure A1. Graphical results QUADAS-2 analysis.
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Appendix C

Table A1. Tabular results of QUADAS-2 analysis.

Risk of Bias Applicability Concerns
Studies Patient

Selection
Index
Test

Reference
standard

Flow and
Timing

Patient
Selection

Index
Test

Reference
Standard

Wang et al. [19] / , , , , ? ,

Liu et al. [20] / , , , ? , ,

You et al. [21] / , , , / , ,

Wu et al. [22] ? , , , ? , ,

Wei et al. [23] ? , , , ? , ,

Bo et al. [24] ? , , , , , ,

Pennig et al. [9] / , , , ? , ,

Meng et al. [31] / / / / / / /

Yang et al. [8] / , , , , , ,

Shahzad et al. [25] / , , , ? , ,

Shi et al. [26] / , , , , , ,

Dai et al. [27] ? , , , , ? ,

Park et al. [28] / , , , , ? ,

Timmins et al. [29] ? , , , , ? ,

Heit et al. [30] / , , , / ? ,

, Low Risk; ? Unclear Risk; / High Risk.
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