Skip to main content
. 2023 Nov 2;8(7):521. doi: 10.3390/biomimetics8070521
Algorithm 1: CMA-ES in MOEA/D-HH Framework
Input: Setting solution to X=B(i)gA(i)g.
Step 1: Sorting X using the fitness value of the scalarising function.
Step 2:Updating distribution parameters using sorted X.
Step 3: Generating new solutions:
 New solutions set Y=Ø. For i=0,1,,Ucount×λ, do:
YYyi=m+σCz||z||, where z~N(0,I).
Step 4: Repairing: if an element of yiY is out of the boundary, its element value is reset to the boundary.
Step 5: Storing: A(i)g+1A(i)gY
Output: ybest, which is the individual with best fitness value in set Y.