Algorithm 2: IDE in MOEA/D-HH Framework |
Input:. |
Step 1: Sorting and Partitioning: |
Step 1.1: using fitness value of scalarising function. Step 1.2:. Step 2: |
. |
Step 3: |
denotes the trial vector, denotes the crossover probability. |
Step 4:. |
Output: . |
Algorithm 2: IDE in MOEA/D-HH Framework |
Input:. |
Step 1: Sorting and Partitioning: |
Step 1.1: using fitness value of scalarising function. Step 1.2:. Step 2: |
. |
Step 3: |
denotes the trial vector, denotes the crossover probability. |
Step 4:. |
Output: . |