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Abstract

Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first 

interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We 

measure the concentration and composition of lung fluid proteins adsorbed on the surface 

of titanium dioxide (TiO2) nanoparticles. Using proteomics, we find that lung fluid results 

in a unique protein corona on the surface of the TiO2 nanoparticles. We then measure the 

expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and 

macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the 

corona formed from lung fluid leads to elevated expression of these cytokines in comparison to 

bare TiO2 nanoparticles or coronas formed from serum or albumin. These experiments show 

that understanding the concentration and composition of the protein corona is essential for 

understanding the pulmonary response associated with human exposure to nanoparticles.
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Introduction

Nanoparticles (NPs) are increasingly used on a large scale in industrial materials and 

agriculture.1–7 These applications pose the risk of environmental exposure, either directly, 

as in agriculture, or during the subsequent degradation of nano-containing materials. 8–11 

A major concern is inhalation of NPs, especially titanium dioxide (TiO2) NPs,12–16 which 

are used at very large scale. TiO2 NPs are widely used in the paint, plastics, rubber, 

adhesives, coatings, and paper industries, and are also a common food coloring.12, 17, 18 

The Department of the Interior reported U.S. production of TiO2 at 1.1 million metric tons, 

valued at $3.2 billion, in 2022.19

In any biological system, proteins adsorb on the surface of NPs forming a protein 

“corona.”8, 20–26 The specific proteins that adsorb on the NP surface determine the 

subsequent interactions of the NP with cells and organs including cellular internalization, 

immune response, biodistribution, and circulation time.22, 24, 25, 27–29 The majority of 

research on the protein corona, including our own,30–32 has focused on blood serum proteins 

relevant to nanomedicines. In comparison, inhalation of NPs brings the NPs into contact 

with the more complex environment of lung lining fluid. The lung has a thin layer of 

fluid that lines the airspaces. This fluid is a mixture of proteins, lipids, and mucins. The 

proteins present in lung fluid include those designed for antimicrobial and oxidant defense. 

Therefore, this lung fluid has important functions in the innate defense mechanisms of the 

lung.33–35

Our goal was to characterize the concentration and composition of the protein corona 

formed by bronchoalveolar lung fluid (BALF) and then determine the cellular response to 

the lung fluid proteins adsorbed on TiO2 NPs. In comparison, previous work has examined 

a single lung fluid protein, lung surfactant protein A (SPA), isolated from BALF,36, 37 

surfactant separated from BALF,38 or BALF from a patient with a pulmonary disease, 

pulmonary alveolar proteinosis,39 that results in elevated lipids and surfactant proteins in 

BALF. Our goal was to examine the full BALF mixture obtained from healthy animals. 

The concentration of the protein corona was measured with a colorimetric assay and the 

protein composition was determined by gel electrophoresis and proteomics. We found that 

incubating TiO2 NPs with BALF resulted in a protein corona dominated by albumin, the 
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most abundant protein present in BALF. The production of cytokines (interleukin 6 (IL-6), 

tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) by 

macrophage cells has been associated with lung inflammation.40–42 These cytokines were 

used as measures of the inflammatory response to the BALF-TiO2 NPs. Coronas formed 

from bovine serum albumin (BSA) and fetal bovine serum (FBS) were used for comparison. 

We observed that the BALF corona led to an increased production of pro-inflammatory 

cytokines in comparison to bare TiO2 NPs and the other protein coronas. We hope our work 

will help address underlying mechanisms of the observed lung toxicity and inflammation 

associated with inhalation of TiO2 NPs.43, 44

Materials and Methods

Nanoparticles (NPs) and characterization

TiO2 NPs (#718467, Sigma-Aldrich, Burlington, MA) were used for all experiments. 

Hydrodynamic diameter, polydispersity index, and zeta potential of the NPs (100 μg/mL 

in phosphate buffered saline (PBS) diluted 1:100 in ultrapure water) were measured 

using dynamic light scattering (DLS; Zetasizer, Malvern Instruments, Worcestershire, 

England). Measurements were carried out in triplicate with three distinct samples. Average 

and standard deviation are reported for all measurements. Electrophoretic mobility was 

converted to zeta potential using the Smoluchowski approximation.

Rodent bronchoalveolar lavage (BAL)

C57BL/6 male mice (8–10 weeks) were purchased from Jackson Laboratories (Bar Harbor, 

ME). All procedures were approved by the Duke University Institutional Animal Care 

and Use Committee (IACUC) and were performed under an IACUC approved animal 

protocol (A053–21-03). BAL was performed following a published protocol.45 Prior to 

BAL, mice were deeply anesthetized with an intraperitoneal injection of ketamine (100 

mg/kg), xylazine (100 mg/kg), and saline (0.9%), dosed by weight (350–500 μL). The chest 

and trachea were dissected to expose the lungs and trachea. Following a nick in the trachea, 

PE-60 tubing (#9565S30, Thomas Scientific, Swedesboro, NJ) was inserted into the trachea 

and attached to a 12-inch infusion set (#SV-25BLK, Terumo, Tokyo, Japan), which was 

connected to a 10 mL syringe held on a ring stand. Lungs were passively filled to 20 cm 

H2O with PBS to reach total lung capacity. The BALF was then passively drained. The 

BALF was placed on ice for further processing and for use in NP incubation experiments. 

BALF used for protein corona formation was pooled from 10–20 mice to reduce mouse-to-

mouse variation.

Protein corona formation and quantification

TiO2 NPs (1 mg/mL) were first suspended in PBS and sonicated (5 min, room temperature 

(RT); #Q700, Qsonica, Newton, CT). A protein corona was then formed by incubating 

the TiO2 NPs (1 mg/mL) in 10% solutions of FBS (#10437028, Thermo Fisher Scientific, 

Waltham, MA), BSA (#A2153, Sigma-Aldrich) or BALF diluted in PBS. 10% solutions of 

FBS, BSA, and BALF correspond to 6, 1.6, and 0.017 mg/mL, respectively. The incubations 

were performed at RT on an orbital shaker for 30 minutes. The corona formed under these 

conditions is independent of time (30 min −120 min) and temperature (RT and 37 °C; Fig. 
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S1). To remove unbound proteins, the protein-NP complexes were “washed” with PBS (x3). 

Each wash step consisted of centrifugation (18,000 rcf, 15 mins), removal of the supernatant, 

and then resuspension in an equal volume of PBS.

Protein concentration of both the protein corona and unbound protein was measured with 

a bicinchoninic acid assay (BCA assay; #2260, Thermo Fisher Scientific) according to 

the manufacturer’s instructions. Washed protein-NP complexes were resuspended in 50 

μL of PBS and sonicated (5 min, RT) to aid resuspension. The BCA assay was carried 

out with proteins present on the NPs (30 min, 37 °C). The protein-NP complexes were 

then centrifuged (15 min, 18,000 rcf, 4 °C) to separate protein-NPs complexes from the 

BCA reagent prior to measuring BCA absorption at 562 nm (SpectraMax, iD3, Molecular 

Devices, San Jose, CA). The TiO2 NP concentration was measured by absorption at 440 

nm and comparison with a calibration curve of known concentrations (Fig. S2). Protein 

concentration is reported as protein relative to NP concentration (μg protein/mg NPs). 

Removal of free protein was monitored by BCA (Fig. S3), which showed no significant 

decrease in free protein in the supernatant following additional wash steps. The hard corona 

is defined as the protein that remains bound to the NPs at this point.

Gel electrophoresis

Gel electrophoresis was used to visualize individual proteins present in the corona of 

the NPs, as previously described.30 The protein coronas were removed from the NPs by 

suspending the NPs in loading buffer (Laemmli, #BP-110R; Boston BioProducts, Ashland, 

MA), incubating for at least 5 min at 95°C, and then loaded onto a gel (tris-glycine sodium 

dodecyl sulfate (SDS) gel, #4561093, Bio-Rad, Hercules, CA) for SDS-polyacrylamide 

gel electrophoresis (PAGE; 230 V, 35 min). A 10 to 250 kDa molecular weight marker 

(Precision Plus Protein Dual Color Standards, #1610374, Bio-Rad) was included. Gels were 

rinsed by microwaving in deionized water (1 min heat, 1 min rocking at RT, replace water, 

x3), stained (SimplyBlue Safe Stain, #LC6060, Thermo Fisher) by microwaving until near 

boiling (1 min), and then rocked for 5 min. Gels were destained in deionized water (10 min, 

rocking) and NaCl solution (20% w/v, >5 minutes, rocking) and then imaged (PhotoDoc-It, 

Analytik Jena, Jena, Germany).

Proteomic analysis

Prior to proteomic analysis, samples were digested using a modified S-Trap micro column 

(Protifi, Farmingdale, NY) protocol, as previously described.30 Proteins were removed from 

the NP surface by resuspending in 5% SDS buffer, sonicating to reduce aggregates followed 

by incubating at 95 °C for 15 minutes. Protein concentration was measured with the Pierce 

660 nm Protein Assay Reagent (#2260, Thermo Fisher Scientific) with the addition of 

Ionic Detergent Compatibility Reagent (#22663, Thermo Fisher Scientific) according to the 

manufacturer’s instructions. A minimum of 5 μg of protein was loaded on each S-Trap. Two 

modifications were made to the S-trap protocol: dithiothreitol (DTT; #R0861, Thermo Fisher 

Scientific) and iodoacetamide (IAM; #I1149, Sigma-Aldrich) were used as the reducer (20 

mM) and alkylator (40 mM), respectively. DTT and IAM are commonly used for proteomics 

and are recommended substitutions. Following the completion of the S-trap protocol, the 

resulting digested proteins were lyophilized and stored at −20 °C until proteomic analysis.

Poulsen et al. Page 4

Environ Sci Nano. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteomic analysis was carried out in the Proteomics and Metabolomics Core Facility, 

part of the Duke Center for Genomics and Computational Biology, as previously 

described.30, 31 In brief, digested samples were analyzed using LC-MS/MS with ≤ 500 ng 

of digested protein injected. NanoFlow LC was performed with an ultra-performance liquid 

chromatography (UPLC, 75 μm × 250 mm, nanoAcquity, Waters Corporation; 400 nL/min) 

column and a 60 minute total elution time. The column was run with an acetonitrile gradient 

(5–40%) with 0.1% formic acid. Peptide fragments were analyzed using in-line tandem mass 

spectrometry (Orbitrap Fusion Lumos, Thermo Fisher).

We analyzed the LC-MS/MS data using MaxQuant (v2.1.0, Max Plank Institute, 

Munich, Germany), an open-source software designed to analyze mass spectrometry data 

qualitatively and quantitatively.46, 47 The raw LC-MS/MS spectra were searched, using 

their integrated Andromeda search engine, against the Swiss-Prot murine canonical protein 

database from UniProt, accessed on June 6th, 2022. A custom contaminants file was 

used while searching, which contained a relevant subset of the Common Repository 

of Adventitious Proteins (cRAP) database.48 For protein and peptide quantification and 

identification, default MaxQuant parameters were used including a 0.01 false discovery 

rate, a minimum peptide length of 7 amino acids, a maximum peptide length of 25 amino 

acids, oxidation and acetyl groups as variable modifications, and carbamidomethyl as a fixed 

modification. The proteins were quantified by their summed intensity.

Proteomic data was analyzed and filtered in Perseus (v2.0.3.1, Max Plank Institute).49 

Proteins were excluded if they were considered contaminants, quality control standards, 

or were not observed in at least 2 samples. After filtering in Perseus, 112 proteins were 

observed across the samples. To correct for any change in performance or differences in 

protein loading, each sample was normalized to itself by dividing by the mean of the interior 

80% of the protein intensities. Each sample was scaled to have the same average. We report 

these values as percent normalized abundance. Fold change for each protein was calculated 

by taking the log base 2 of the normalized abundance of samples divided by BALF.

The complete lists of proteins are included in the Electronic Supplementary Information 

(ESI; Table ESI1). In addition, the mass spectrometry proteomics data have been deposited 

to the ProteomeXchange Consortium via the Proteomics Identification Database (PRIDE) 

partner repository with the dataset identifier PXD041036 and 10.6019/PXD041036.50

Cell culture, TiO2 NP incubations, and cytokine assays

RAW 264.7 mouse macrophage cells (TIB-71, ATCC, Manassas, VA) were cultured 

in Dulbecco’s Modified Eagle Medium (DMEM, #12100046, Thermo Fisher Scientific) 

supplemented with 10% FBS (#F4135, Sigma-Aldrich) at 37 °C and 5% CO2. Cells were 

passaged by scraping (#08100240, Thermo Fisher Scientific) every 4–5 days. Cells were 

seeded at 250,000 cells/mL in 6-well plates (#353046, Corning, Corning, NY) for gene 

expression experiments. Cells were seeded and grown overnight in DMEM with 10% FBS, 

and this media was removed and replaced with DMEM without FBS immediately prior to 

addition of NPs. Cells were incubated with TiO2 NPs (250 μg/mL) or a PBS vehicle control 

in serum-free media for 24 h.
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Following NP or PBS exposure, cells were processed to extract RNA using the RNeasy 

Plus Micro Kit (#74034, Qiagen, Hilden Germany). After RNA extraction, RNA content 

was quantified by Nano Drop (Thermo Fisher Scientific). cDNA H Minus Synthesis 

Master Mix (#M1681, Thermo Fisher Scientific) was used to generate cDNA. Power Up 

SYBR Green Master Mix (#A25743, Thermo Fisher Scientific) was used for RT-PCR 

and reactions were run in QuantStudio 6 (Applied Biosystems, Waltham, MA). The 

following primer sequences were used: IL-6 Forward TTGGTCCTTAGCCACTCCTTC, 

IL-6 Reverse TAGTCCTTCCTACCCCAATTTCC; TNF-α Forward 

CTATGTCTCAGCCTCTTCTC, TNF-α Reverse CATTTGGGAACTTCTCATCC; 

Cxcl2(MIP-2) Forward GGGTTGACTTCAAGAACATC, CXCL2(MIP-2) Reverse 

CCTTGCCTTTGTTCAGTATC; 18s Forward TTGACGGAAGGGCACCACCAG, 18s 

Reverse GCACCACCACCCACGGAATCG. Data collected by QuantStudio 6 was analyzed 

in Prism (v. 9.5.1, GraphPad Software, San Diego, CA). Cycle threshold (CT) values were 

normalized to housekeeping gene (18S). Data was expressed as a fold change compared to 

the control treated groups.

Results and Discussion

NP characterization

The TiO2 NPs used in this study have a primary diameter of ~21 nm, but are observed 

as fused aggregates by electron microscopy and DLS (Fig. S4).51, 52 The hydrodynamic 

diameter and zeta potential were measured without sonication (Table 1), to avoid possible 

disruption of the protein corona.

BALF forms a protein corona on the surface of TiO2 NPs

Protein coronas were formed by incubating TiO2 NPs for 30 minutes at RT with three 

different protein sources: FBS (6 mg/mL, equivalent to a 10% v/v FBS solution), BSA (1.6 

mg/mL), and BALF (0.017 mg/mL). FBS (10%) is a common nutrient source for cell lines, 

making it relevant to in vitro studies. Murine BALF obtained from mice by lavage was used 

to model the protein corona formed following inhalation. Albumin is the most abundant 

protein in both FBS and BALF. The concentration of BSA was chosen to be comparable to 

the amount of BSA that is found in FBS.30, 53 Unbound proteins were removed from the 

protein-TiO2 NP suspensions by centrifugation (18,000 rcf, 15 minutes) and resuspension 

(3x), as described previously (Fig. S3).51, 52, 54, 55

Hydrodynamic diameter and zeta potential of the protein-TiO2 NP complexes were 

measured using DLS (Table 1). There was no significant change in the diameter of the NPs 

with the addition of the corona. Previous work examined the coronas formed from porcine 

BALF on 8 different metal oxide NPs and found that BALF did not lead to a disruption of 

the TiO2 NP aggregates.36 The zeta potential increased significantly from the bare NPs (−35 

± 3 mV) to the NPs with FBS corona (−23 ± 2 mV; p < 0.05), in agreement with previous 

studies by our lab in which a FBS corona on TiO2 NPs was observed to have a zeta potential 

of (−24 ± 2).51, 54 In comparison, there was no significant change in zeta potential with 

the formation of a BSA (−32 ± 2 mV) or BALF (−38 ± 2 mV) corona. The differences in 

zeta potential are correlated with the protein corona concentration, as shown using BSA as 
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a representative protein (Fig. S5). In addition, previous work has shown the change in zeta 

potential is related to the initial charge of the NP and the specific proteins that form the 

corona.56

The concentration of protein present in the corona is measured by BCA analysis and 

reported as protein (μg)/NPs (mg), as described in the Materials and Methods (Fig. 1A). The 

differences in protein corona concentrations (FBS = 53 ± 1.3 μg/mg NP; BSA = 20 ± 1 

μg/mg NP, BALF = 1.9 ± 0.3 μg/mg NP) is, at least in part, due to the concentration of the 

initial protein solution. Using BSA as a representative protein, we found that concentration 

of the protein corona scaled with the initial concentration of protein used to form the corona 

(Fig. S6), in agreement with previous work that showed a positive correlation between 

protein corona concentration and initial protein concentration.30, 57–59 While this may seem 

intuitive, there are exceptions. For example, a direct comparison of silica NPs (200 nm) 

and polystyrene NPs (200 nm) incubated with 3%−80% human plasma (1 hr incubation) 

showed an increasing corona on the polystyrene NPs and a decreasing corona on the silica 

NPs at increasing plasma concentrations. 57 Previous work with porcine BALF showed 

relatively low corona concentrations on similar TiO2 NPs following incubation with BALF 

(7.4 mg/mL, 1 hr, RT).36

Composition of the BALF corona

The composition of each protein corona was analyzed using gel electrophoresis (Fig. 1B) 

and proteomics (Table 1). Gel electrophoresis was in agreement with the protein corona 

concentration assay (Fig. 1A), with less protein present in the BSA and BALF coronas 

compared to FBS (Fig. 1B). The gel also shows that the most abundant protein in each 

of the coronas is albumin (66 kDa). Bands in the BALF corona at ~13 kDa and ~8 

kDa were tentatively assigned to uteroglobin (10 kDa) and the monomer of pulmonary 

surfactant-associated protein B (SPB; 8.7 kDa) based on molecular weight.60

Proteomic analysis of the BALF corona is shown as the relative amount of protein detected 

(normalized abundance; Table 2) and the amount of protein in the corona relative to the 

amount in BALF (enrichment, Fig. 2). In general, the normalized abundance shows that 

the top 15 proteins in a solution of BALF are also present in the corona formed from 

BALF. For example, albumin is the most abundant protein in the corona formed from BALF 

(78 ± 2.6%) and in BALF (88.4 ± 4.8%). In comparison, the abundance of uteroglobin 

in the corona suggests selective adsorption on the TiO2 NP surface. Uteroglobin is the 

8th most abundant protein in the corona (0.6 ± 0.3%), while it is the 24th most abundant 

protein in BALF (0.04 ± 0.07%). Uteroglobin, also known as blastokinin and club-cell 

secretory protein (CCSP), is an immunomodulatory, anti-inflammatory, and anti-chemotaxis 

secretoglobin expressed by epithelial cells that interact with external environments. 61

Enrichment and depletion of a protein in the corona compared to the solution used to form 

the corona can be visualized in an enrichment plot (Fig. 2). In the enrichment plot, the fold 

change from serum to corona is displayed as log2 so that an enrichment of 0 is no change, 

while an enrichment of 1 is a 2-fold enrichment on the corona. Likewise, an enrichment 

of −1 is a 2-fold depletion in abundance on the corona. This type of plot can be used to 
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determine which proteins are outliers, suggesting they are enriched or depleted in the protein 

corona. For example, albumin is slightly depleted (−0.18 ± 0.05) in the corona relative to 

BALF. Of the top 25 most abundant proteins in the protein corona, only SPB is an outlier, 

as determined by the robust regression and outlier removal (ROUT) method (Q = 0.1%). 

SPB is the most enriched protein within the top 25 proteins suggesting that it has high 

affinity for the TiO2 NP surface relative to other proteins in BALF. Previous proteomics 

experiments with TiO2 NPs (14 nm) incubated with BALF obtained from a human with 

pulmonary alveolar proteinosis showed binding of SPA, B, and D.39 SPB is a hydrophobic 

apolipoprotein that is essential for lung function.62 The observed enrichment of SPB is 

interesting considering molecular dynamics studies that showed anionic NPs were selective 

for SPB, compared to the similar lung surfactant protein C (SPC) due to a combination of 

hydrophobics and electrostatics. 63 Although not an outlier, the next most highly enriched 

protein is uteroglobin (3.8 ± 0.8, corona abundance rank 8). Overall, this enrichment and 

depletion profile (Fig. 2) shows that there is a selection of specific proteins in the NP 

corona. Several of these proteins (serotransferrin, uteroglobin, haptoglobin, hemopexin, and 

chitinase-like protein 3) have immunoregulatory properties suggesting that these proteins 

adsorbed on the surface of the TiO2 NPs could regulate the inflammation associated with 

TiO2 lung toxicity in vivo.64–67

BALF corona leads to increased expression of inflammatory cytokines in macrophage 
cells

To first determine if bare TiO2 NPs elicit an inflammatory response in macrophage cells, 

cells were incubated with TiO2 NPs for 24 hours. To prevent the formation of a protein 

corona in situ, serum-free media was used for the incubation. Following the incubation 

with TiO2 NPs, pro-inflammatory cytokine gene expression (IL-6, TNF-α, and MIP-2) was 

measured by real time PCR. We observed that bare TiO2 NPs significantly increased the 

expression of these pro-inflammatory cytokines (Fig. 3). This observation is in agreement 

with previous work showing TiO2 NPs increased pro-inflammatory cytokines associated 

with lung inflammation.14, 68, 69

To determine if a BALF corona altered the cellular response to the TiO2 NPs, cells were 

incubated with BALF-TiO2 NPs and cytokine expression was compared to the response 

to bare TiO2 NPs (Fig. 3). FBS and BSA coronas were used for comparison as the 

predominant protein in BALF is albumin. The formation of the protein coronas is described 

in Materials and Methods. We observed that exposure of macrophage cells with BALF-TiO2 

NPs increased the expression of pro-inflammatory cytokines (IL-6, TNF-α and MIP-2; Fig. 

4). In comparison, coronas formed from FBS and BSA did not alter the expression of 

pro-inflammatory cytokines when compared to bare TiO2 NPs. These results suggest that a 

BALF corona is unique in increasing macrophage expression of pro-inflammatory cytokines 

and that proteins enriched in the BALF corona (Table 2 and Fig. 2) may drive the enhanced 

toxicity of these NPs.
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Conclusion

Our studies describe the interaction of TiO2 NPs with BALF and the subsequent response 

of macrophage cells. We propose that these interactions are critical initial steps in the 

pulmonary response following the inhalation of these NPs. We find that the proteins present 

in BALF form a corona on the surface of the TiO2 NPs (Fig. 1). The composition of this 

corona (Table 1 and Fig. 2) results in a distinct protein-TiO2 NP complex that is associated 

with an elevated cytokine response in macrophage cells. The incubation of macrophage 

cells with bare TiO2 NPs leads to increased expression of pro-inflammatory genes, IL-6, 

TNF-α, and MIP-2 (Fig. 3). A BALF corona further enhances this pro-inflammatory 

response (Fig. 4). In comparison to FBS and BSA coronas, the BALF corona leads to a 

much greater response for all three cytokines. It is possible that BALF-specific proteins, 

other than albumin, are responsible for this increase in cytokine expression either through 

protein-dependent responses, an increased uptake of NPs, or a combination of both. For 

example, previous work has measured the uptake of polystyrene NPs (50 nm and 100 nm) 

by human alveolar lung cells (Type I and II).70 Pre-incubation of these polystyrene NPs 

with BALF led to increased cellular uptake by Type I cells. Type II cells did not internalize 

the polystyrene NPs. SPA and surfactant protein D (SPD) were identified on the surface of 

these polystyrene NPs by western blot. It is not known if SPB was probed. Similarly, work 

with magnetite NPs (110 nm - 180 nm) showed that adsorption of SPA on the surface of 

the NPs led to increased uptake by alveolar macrophage cells. 71 Other surfactant proteins 

were not examined. In comparison, BSA led to decreased uptake. In addition, previous work 

with polystyrene NPs (100 nm) showed that isolated SPA on the surface of the NPs led to 

increased uptake of the NPs by macrophage cells,37 suggesting differences in NP uptake 

could be responsible for the observed difference in cytokine response.

It is important to note the limitations associated with this study. One potential limitation 

of our studies is that our current work has not addressed the lipid corona that is expected 

to form following incubation of TiO2 NPs with BALF.72–75 Previous molecular dynamics 

simulations showed that adsorption of specific proteins (SPA, B, and C) on silver and 

polystyrene NPs (5 nm and 15 nm, anionic) was determined by the hydrophobicity of the 

NPs. The lipid composition was insensitive to the type of NP.76 Proteomics experiments 

with porcine surfactants were in agreement with these simulations (PEG-, PLGA-, and 

lipid-NPs (~200 nm)).38 We hope future work will probe the lipid composition on these 

TiO2 NPs. In addition, our experiments use protein coronas formed in situ (RT, 30 min) 

from isolated BALF. While FBS coronas are insensitive to time (30 min-120 min) and 

temperature (RT and 37 °C; Fig. S1), it is possible that the BALF corona formed in vivo 
would result in enrichment of different proteins. Previous experiments using polystyrene 

NPs with BALF obtained from a human with pulmonary alveolar proteinosis showed that 

the high abundance proteins present in the corona did not change after 15 min, but the lower 

abundance proteins varied over a 2 hr period.39 Future studies should address the role of 

these lower abundance proteins in the cellular response.

In addition to characterizing the BALF corona formed on TiO2 NPs and the resulting 

cytokine response, we hope these experiments will provide a starting point for future in 
vivo studies examining the mechanism of the toxicity associated with the inhalation of TiO2 
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NPs.77, 78 For example, if this enrichment of SPB on the surface of the TiO2 NPs leads to 

a corresponding depletion of free SPB in the lung there could be a reduced surface tension 

in the lungs associated with respiratory distress. 79 It is also possible that protein coronas 

could sequester specific lung lining fluid proteins required for normal host-defense and 

maintenance of lung homeostasis or the interaction of proteins with the NP surface could 

activate proteins to make them more pro-inflammatory. These questions will need to be 

addressed in future studies to define specific effects of the protein corona on the functions 

of these proteins. Beyond TiO2 NPs, previous work has examined changes in macrophage 

uptake and cytokine response for diesel exhaust NPs (132 nm) and carbon black NPs (154 

nm) with BALF coronas and observed an increase in IL-8 release, suggesting that a BALF 

corona may be important for a wide range of environmental inhalation exposures.80

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Environmental significance

Nanoparticles are used on increasingly large scales in industrial materials and 

agriculture. These applications pose the risk of environmental exposures either directly, 

as in agriculture, during manufacturing, or following the degradation of nanoparticle-

containing materials. Following this environmental release, humans are exposed to 

nanoparticles through inhalation. Our studies provide a detailed characterization of the 

interaction of titanium dioxide (TiO2) nanoparticles with bronchoalveolar lung fluid and 

the subsequent response of macrophage cells. We propose that the initial interaction of 

nanoparticles with lung fluid proteins is the critical first step that shapes the pulmonary 

response to nanoparticles. We hope this research will enable future work reducing the 

toxicity of nanoparticle exposures.
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Fig. 1. 
Concentration and composition of proteins adsorbed on TiO2 NPs incubated with FBS, 

BSA, and BALF. (A) Protein concentration per NP (μg/mg) when (FBS 6 mg/mL; BSA 

1.6 mg/mL; BALF 0.017 mg/mL; n=3). The mean protein per NP (μg/mg) is reported with 

error bars showing standard deviation. Significance was calculated using an ANOVA with a 

post-hoc Tukey test. ****p<0.0001. (B) Gel electrophoresis of each protein corona.
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Fig. 2. 
Enrichment (positive fold change) and depletion (negative fold change) of the 25 most 

abundant proteins present in the BALF protein corona present on TiO2 NPs relative to their 

abundance in BALF. Fold change, log base 2, with error bars showing standard deviation 

is plotted for each protein (n=3, n=2 for lysozyme C-2 and peroxiredoxin-6 with outliers 

removed). Proteins are listed in order of their relative abundance (Table 2).
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Fig. 3. 
Expression of the pro-inflammatory genes IL-6, TNF-α, and MIP-2 increased in response to 

bare TiO2 NPs compared to untreated control cells (n=6). Expression change was found to 

be significant for each gene using unpaired t-tests. **** p<0.0001.
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Fig. 4. 
(A) IL-6, (B) TNF-α, and (C) MIP-2 showed elevated expression levels in response to 

BALF-TiO2 NP compared to FBS- and BSA-TiO2 NPs (n=6). Cytokine expression is 

reported as fold change relative to bare TiO2 NPs. Significance was determined using a 

one-way ANOVA with a post hoc Tukey test. Comparisons to the PBS control were also 

performed (Fig. S7). *p<0.05, ****p<0.0001.
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Table 1

TiO2 NP hydrodynamic diameter (dh), polydispersity index (PDI), and zeta potential (ZP) in the absence and 

presence of a protein corona.

NP and corona dh (nm) PDI ZP (mV) ΔZP

TiO 2 900 ± 410 0.40 ± 0.14 −43 ± 4 -

FBS-TiO 2 900 ± 120 0.41 ± 0.01 −23 ± 2 +20

BSA-TiO 2 800 ± 40 0.50 ± 0.06 −32 ± 2 +11

BALF-TiO 2 1200 ± 150 0.26 ± 0.08 −38 ± 3 +5
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Table 2

Normalized abundance (%) of the top 15 most abundant corona proteins (n=3). For comparison, the rank order 

of proteins present in BALF is shown in parentheses. Mean and standard deviation are reported.

Protein Protein Corona (%) BALF (%)

Albumin 78 ± 2.6 88.4 ± 4.8 (1)

Serotransferrin 6 ± 3.2 3.4 ± 1.8 (2)

Hemoglobin subunit beta-1 4.2 ± 0.7 2.2 ± 1.7 (3)

Alpha-1-antitrypsin 1–1 2 ± 1.2 0.9 ± 0.5 (5)

Hemoglobin subunit alpha 2 ± 1.2 0.4 ± 0.6 (8)

Serine protease inhibitor A3K 1.0 ± 0.6 1.1 ± 0.6 (4)

Lysozyme C-2 0.7 ± 0.6 0.7 ± 0.4 (7)

Uteroglobin 0.6 ± 0.3 0.04 ± 0.07 (24)

Haptoglobin 0.6 ± 0.3 0.1 ± 0.1 (12)

Transthyretin 0.6 ± 0.2 0.08 ± 0.09 (14)

Alpha-1-antitrypsin 1–5 0.5 ± 0.8 0.4 ± 0.2 (10)

Hemopexin 0.5 ± 0.1 0.2 ± 0.1 (11)

Chitinase-like protein 3 0.47 ± 0.05 0.7 ± 0.6 (6)

Alpha-1-antitrypsin 1–4 0.4 ± 0.1 0.4 ± 0.2 (9)

Peroxiredoxin-6 0.2 ± 0.2 0.1 ± 0.1 (15)
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