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Abstract

We investigate the use of confidence scores to evaluate the accuracy of a given AlphaFold 

(AF2) protein model for drug discovery. Prediction of accuracy is improved by not considering 

confidence scores below 80 due to the effects of disorder. On a set of recent crystal structures, 

95% are likely to have accurate folds. Conformational discordance in the training set has a much 

more significant effect on accuracy than sequence divergence. We propose criteria for models 

and residues that are possibly useful for virtual screening. Based on these criteria, AF2 provides 

models for half of understudied (dark) human proteins and two-thirds of residues in those models.
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INTRODUCTION

About half of Americans answering a 2020 survey would not get in an AI-driven taxi, and 

about three-quarters of them believed AI (artificial intelligence) cars were “not ready for 

primetime” [1]. Whether driving a vehicle or discovering new medicines, trust in AI depends 

on accumulated community experience and the consequences of errors in specific cases. 

There are over 20,000 protein-coding genes in the human genome [2-4]. Of these, 7074 have 

experimentally determined structures deposited in the Protein Data Bank (PDB) as of July 

2021 [5]. Only 670 human proteins are therapeutically targeted by medicines, comprising 

the "drugged genome" [6]. Significant areas of biology remain potentially amenable to 

drug discovery [7]. Initiatives like “Illuminating the Druggable Genome” [8], OpenTargets 

[9], and Target 2035 [10] are exploring novel therapeutic opportunities in the “druggable” 

genome.

DeepMind described [11,12] AF2 (AlphaFold version 2.0), an AI method that predicts 

overall 3D structures of proteins. More than 350,000 AF2 structural models (including 

models of nearly every human protein) are now publicly accessible [12]. DeepMind 

garnered worldwide attention with their decisive win of the Critical Assessment of 

Techniques for Protein Structure Prediction, CASP14 [13]. Currently, scientists are assessing 

the impact of AF2 on research, including how much AF2 models expand the druggable 

genome.

Winning CASP14 presents a set of challenges specific to protein folding. However, protein 

3D models do not often play a crucial role in drug discovery. The notion of trust in AF2 

models is illustrated with a histogram of atomic Root-Mean-Square Deviations (aRMSD) on 

Cα atoms for crystal structures deposited in the PDB since AF2 was trained (Fig. 2a in [11]). 

It shows that AF2 produces high-quality folds in two-thirds of cases. However, the overall 

accuracy of a given AF2 model was not discussed. Local confidence scores (predicted Local 

Distance Difference Test, pLDDT) show a 95% per-residue correlation with experimentally-

derived LDDT values [14] over the same proteins. AF2 model confidence evaluation is 

needed in the drug discovery context, given the non-local nature of aRMSD, the inherent 

selection bias of recent PDB structures, and the lack of any overall confidence-in-accuracy 

measure that can be calculated for individual models. Here, we discuss the issue of trust in 

AF2 models by addressing disorder, divergence, discordance, and druggability.

Disorder dominates confidence scores below 80

More than 30% of eukaryotic proteins contain one or more intrinsically disordered regions, 

IDRs [15-21]. Disorder is reflected in confidence scores as regions with low pLDDT [12]. 

Figure 1 displays the distributions of the pLDDT scores reported by AF2 for resolved/

ordered and unresolved/disordered regions of crystal structures deposited in the PDB since 

AF2 was trained (the “post-AF2 test set”, see Supplemental Information). On this set of 

structures, ordered regions most frequently show pLDDT scores greater than 80, while IDRs 

have a broad distribution of pLDDT scores, with about 40% of unresolved regions falling 

below a pLDDT score of 50. From this analysis, we conclude that confidence scores below 

80 are more indicative of disorder than of confidence in the accuracy of ordered structures, 

therefore in calculations on ordered-model accuracy we employ a cutoff of pLDDT>80.
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Divergence has a minor effect on model accuracy

A problem with the 6-bin histogram used to estimate the distribution of model accuracies 

(Fig. 2a in [11]) is that aRMSD is a non-local measure. If a model is incorrect at the 

fold level, the expectation value of aRMSD scales with the radius of gyration. Thus, a 

model with 30 Å aRMSD against the experimental structure could be consistent with an 

entirely misfolded domain of around 1000 residues in length [22] or simply with rotation 

of a smaller domain about a single residue. To characterize different effects on model 

accuracy, we down selected the post-AF2 test set to 1,779 models that can be aligned with 

a corresponding experimental structure (see Supplemental Information) and used them to 

evaluate all-atom and backbone measures. pLDDT correlates poorly with log(aRMSD) on 

this set: Spearman rank correlation coefficient is 0.43 on the median (Supplemental Figure 

S1A). Truncating the range of pLDDT over which the median is calculated with a floor of 

80 slightly improves the coefficient to −0.48 (Supplemental Figure S1B). We refer to the 

per-model median value of pLDDT scores greater than 80 as pLDDT80.

Next, we split this down-selected test set into two pairs of subsets. The first pair explored 

high (pLDDT80 > 90) or low (pLDDT80 < 88) confidence scores. The second pair explored 

high (in clusters at 100% identity for over 80% of the length) or low (out of clusters at 5% 

identity for over 80% of the length) sequence identity to structures previously in the PDB. 

Cutoff values in these pairings were chosen to give maximal differences while maintaining 

roughly comparable fractions of the test set in the two arms of each pairing. We calculated 

distributions on log(aRMSD) and on the all-atom LDDT [14] for each of the subsets (Figure 

2).

The aRMSD metric is not well-suited for characterizing structural models because its non-

local nature tends to exaggerate the effects in small number backbone angle changes [23]. 

The lack of a high-difference tail in the low-identity LDDT distribution, together with the 

suppression of the high-difference tail in the low-confidence distribution, suggest that most 

differences between model and structure are in a few local coordinates, rather than many. 

Using LDDT as the accuracy measure improved Spearman’s correlation on pLDDT80 to 

0.60 (Supplemental Figure S2).

Less than 1% of the high-confidence distribution appears in the range consistent with 

fold-level inaccuracies at LDDT<50. Distributions for the low-similarity, high-confidence, 

and high-identity subsets are approximately the same, with the caveat afforded by the 

paucity of low-similarity models. But the 4% of models in the low-confidence distribution 

are distinctly worse than the other subsets. These observations suggest that AF2 produces 

models that are correct at the fold level more than 95% of the time, better than the 

previous two-thirds estimate [11]. The high-confidence and high-identity subsets similarity 

suggest that sequence divergence with PDB entries is not the primary driver of AF2 model 

inaccuracy for this set of structures.

Discordance limits model accuracy

Another driver of model inaccuracy is how AF2 handles differences among structures in the 

PDB with similar or identical sequences, a phenomenon we call conformational discordance. 
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AF2's training algorithm propagates conformational discordance through down-selecting 

among multiple PDB structures in a way that preserves maximum differences [11]. A key 

question is how well AF2 preserves correlations among conformational degrees of freedom–

not just mean values and uncertainties–because those correlations are not needed to address 

the problem for which its algorithms were designed.

An illustrative case of conformational discordance is calmodulin (shown in Figure 3). 

Calmodulin is a kinase that, upon binding Ca++ ions, changes from a globular to a dumb-bell 

shape primarily through differences in two adjacent hinge residues [24]. In the calmodulin 

AF2 model, the effects of both conformations present in the training set are reflected in 

low confidence scores at the two hinge residues. While different AF2 runs yield slightly 

different results, none of the resulting models that we have sampled accurately reflect either 

the ion-free or ion-bound structures, but rather seem to be variations around the average of 

the two states and correlated changes in the two hinge residues have been lost. This example 

suggests that conformational discordance in the PDB results in composite AF2 models that 

rarely sample underlying conformations in the PDB.

Druggability: Are AF2 models ready for virtual screening?

Important structural elements relevant for drug discovery, such as prosthetic groups, ion 

binding, and protons are not included in AF2 models. Known protein conformational 

changes (as shown in Figure 3) can help us assess the effects of model accuracy on AF2 

model readiness for target-based virtual screening (TBVS). If the model needs to be as 

close to the crystal structure as deoxy-myoglobin is to carboxy-myoglobin [25], only a tiny 

fraction of the AF2 models would be suitable for TBVS. If the model needs to be as close 

as R-state is to T-state hemoglobin, AF2 models may be suitable for characterizing allosteric 

sites [26]. A more typical TBVS example, where accuracy needs to be similar in capturing 

conformational changes, is when ERK2 is doubly phosphorylated. Given this example, a 

practical lower bound of global pLDDT of 80 could serve as basis for a model to likely 

be TBVS-ready. A value of pLDDT of 80 indicates a 68% likelihood of sidechain rotamers 

falling into the correct hemisphere (Fig 2B in [11]). Surfaces formed by two adjacent 

residues with pLDDT ≥ 80 are very close to the 50% accuracy limit if rotamer errors are 

independent. Having previously introduced pLDDT80, we set pLDDT80 ≥ 91.2 as criterion 

for assessing AF2 model quality, combined with the fraction of protein length for which 

this holds true (pLDDT80_frac) to evaluate TBVS potential; see Supplemental Information. 

These criteria allow us to calculate a confusion matrix (see Supplemental Figure S2) that 

gives the sensitivity (true positive rate of classification) of 90.1% and a precision (positive 

predictive value of classification) of 86.3%.

Given these criteria, we evaluated which AF2 models of the human understudied proteins, 

Tdark [7], which currently lack an experimental PDB structure might be TBVS-ready 

(Figure 4A). Of the set of 5592 “dark” proteins with AF2 models, 3051 (54.6%) meet 

our criteria for possibly being accurate enough for TBVS studies (Figure 4B). Taking into 

account the estimated false-positive rate (~6% of total), this implies that AF2 provides 

TBVS-ready models for about half of the understudied human proteins. Additionally, among 

the Tdark proteins associated with very high or confident AF2 models, 664 match druggable 
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protein classes as follows: 235 enzymes; 23 GPCRs; 220 immune response proteins; 5 ion 

channels; 16 kinases; 45 receptors; 25 signaling proteins; 97 transporters. More strictly, 

by matching Tclin protein motif domains (according to PFAM, InterPro, and Prosite) with 

Tdark proteins, 32 of the above 664 may be more likely to have “druggable” binding 

domains[27]. In total, 50 Tclin associated motifs are present in “very high” or “confident” 

Tdark AF2 models; see Supplemental Information.

CONCLUSIONS

In our opinion, future work would do well to move away from the familiar aRMSD metric of 

overall model-structure agreement in favor of LDDT or other local measures. The aRMSD 

metric suggests that AF2 models are worse compared to pLDDT. Structural bioinformatics 

would also benefit from developing measures that disambiguate the effects of disorder, 

discordance, and divergence.

Proteins can take on different conformations, and which protein conformation is more 

druggable depends on the clinical need associated with a particular disease state. Screening 

the right target in the wrong conformation reduces the likelihood of finding valuable 

leads. A few proteins are represented in the PDB by structures determined in multiple 

conformations, while most have only one. Many of the biophysical drivers that determine 

protein conformation, such as the hydrophobic effect, are poorly understood at present. 

More work will be needed on the taxonomy of possible protein conformations before AI 

approaches can be expected to tackle the problem of conformation robustly. Until then, it 

might be helpful to eliminate discordant structures from the training set to predict a single 

conformation with higher accuracy than achieved with composite conformations at present.

AF2 forces us to reconsider the implications of disorder on druggability because it performs 

well at predicting IDRs [28]. Having trust that a region is disordered versus trusting the 

ordered region's accuracy leads to different conclusions. It is worth noting that the dataset 

used in this work primarily includes proteins enriched with relatively short IDRs, as 95% 

of proteins in the dataset are at most 29% unresolved/disordered. In a scenario where 

the dataset included proteins with significantly longer stretches of IDRs, the results from 

current work may not apply. Proteins containing IDRs play critical roles in many biological 

functions [29-36] and are associated with various diseases [37-40]. Thus, IDRs are potential 

targets in drug discovery [41-43]. “Disordered” does not mean “undruggable” because 

unique strategies for drug discovery in targets containing disordered regions are available 

[44]. Regions of pLDDT < 50 in an AF2 model indicate those strategies could be employed. 

Moreover, the existence of a structural model is neither necessary nor a sufficient condition 

for drug discovery. Even the use of high-quality experimental structures of the correct 

conformational state does not guarantee successful TBVS hits.

About 5% of the human "dark" proteome has structures in the PDB (Supplemental 

Information). Cost-to-benefit analyses of whether to deploy TBVS on AF2 models 

remain project-dependent. However, AF2 model quality may be "good enough" for 

rapid deployment for over 3000 understudied human proteins. AF2 models may help 

de-risk protein targets through protein expression and solubility and may provide protein 
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engineering suggestions. By identifying likely boundaries of compact domains, disordered 

regions, or linkers, AF2 and other methods can enable synthesis-by-domain strategies that 

can break large proteins into more tractable modules to be expressed or synthesized then 

reconstituted in-vitro. Regardless of its impact on in silico technologies, AF2 does not 

preclude structural biology and structure-based drug design. However, AF2 is poised to 

become a powerful tool in the evolving drug discovery arsenal.

Computational models are very different from experimental structures in that they can be 

updated on-demand with the latest improvements. Public notebooks such as ColabFold [45] 

facilitate the removal of disordered termini, improving sequence alignment, adding a binding 

partner, and calculating new models within minutes. Although not designed with protein 

oligomers or assemblies in mind, multiple groups are working on use of AF2 to illuminate 

protein-protein interactions. In 2014, it was estimated that 40% of protein structures were 

experimentally determined [46]. With AF2 and future improvements, structural biology, 

and drug discovery are about to exponentially increase with new computational tools that 

combine sequence evolution, structures, and ligand binding knowledge [47].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of AlphaFold confidence scores across ordered (blue) and disordered (red) 
regions.
Ordered and disordered regions correspond to resolved and unresolved parts, respectively, 
for the post-AF2 test set. Terminal regions were not included. Ordered regions most 
frequently show pLDDT scores >80%. Disordered regions show a broad distribution of 
pLDDT scores with comparable frequencies from pLDDT scores between 20% and 90%.
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Figure 2. Kernel-density estimates of the distribution of differences between AF2 models and 
crystal structures using atomic Root-Mean-Square Displacements on Cα atoms (top) and Global 
Local Distance Difference Test metrics (bottom).
These distributions were calculated from crystallographic structures that were deposited 

in the Protein Data Bank after the AF2 training set cut-off date of April 30, 2018. Only 

residues that unambiguously intersect between AF2 models deposited in EMBL [48] and 

crystal structures were considered, with a minimum per-chain length cutoff of 20 residues, 

resulting in 1810 structural models to be compared. Distributions for mean confidence 

levels (pLDDT80) over the raw models at or above 90 (solid blue line) and below 88 

(dotted orange line) are plotted. We also clustered the PDB using mmseqs [49] to select 

for sequences nearly identical to an existing structure (in clusters with 100% minimum 

sequence identity over 80% of the longest sequence and cluster mode 2, dot-dash green 

line) or decisively non-matching regions (out of 5% minimum sequence identity, dotted 

red line). The high-confidence (pLDDT80>90) distribution on log(aRMSD) peaks at 1.7 Å 
aRMSD, with a long tail extending beyond 10 Å at the 10% level. The low-confidence 

distribution on log(aRMSD) has a broad flat shape suggesting peaks at 3 and 20 Å. The 

high-identity distribution looks similar to the high-confidence distribution, while the low-

identity distribution has peaks near 2 and 20 Å, respectively. Plotted against all-atom LDDT, 

the high-confidence, high-identity, and low-identity distributions look similar to each other; 

only the low-confidence distribution is distinct, with a single peak at LDDT ~75. Notations 

on the x-axis indicate differences between structures of ligand-free vs. ligand bound 

myoglobin (MB, PDB entries 1A6N and 1A6G); R- vs. T-state hemoglobin (HB, PDB 

entries 6BWP and 6BWU); unphosphorylated vs. doubly-phosphorylated conformations 
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of an extracellular signal-regulated kinase (ERK2, PDB entries 1ERK and 2ERK0); and 

calcium-free vs. calcium-bound calmodulin (CALM, PDB entries 1CLL and 1QX5). The 

cyan line shows the proposed LDDT cutoff for a structure that is likely to be useful for 

virtual screening.
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Figure 3. Comparison of discordant crystal structures of calmodulin with an AF model.
The calcium-bound crystal structure (PDB entry 1CLL, thin green cartoon with Ca++ ions 
as spheres), with alignments against the first half of the calcium-free crystal structure 
(PDB entry 1QX5, thin black cartoon) and the AlphaFold2 model (P0DP23-F1-model_v1, 
thick yellow-red cartoon), aligned on their N-terminal halves. Yellow regions of the model 
represent very high confidence (pLDDT > 90) residues, while dark-red regions represent 
very low confidence (pLDDT<50) residues. The low confidence region at the center of 
the AF model corresponds to a hinge where the calcium-bound and calcium-free models 
diverge. When aligned in this manner, aRMSD values of 7.2 Å against the calcium-bound 
structure and 6.7 Å against the calcium-free structure were obtained. When aligned across 
all residues, the AF model yields aRMSDs of 10 Å against the calcium-bound structure 
and 17 Å against the calcium-free structure, respectively. Global LDDT scores for the 
experimental structures are 49% for all atoms and 56% for Cα only.
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Figure 4. Fraction of the dark genome potentially illuminated by AF2 models.
A) Of the set of 5592 unique “dark” proteins with AF2 models, 3051 (54%) pass the 
proposed selection criteria of pLDDT80 greater to or equal to 91.2 while having at least 
20 residues with pLDDT ≥ 80. B) Pie chart illustrating AF2 model quality according to 
pLDDT80-derived criteria (see Supplementary Information): 3051 (54%) proteins associated 
with “very high” or “confident” AF2 models are likely to be TBVS-ready, whereas 2541 
proteins are not.
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