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Abstract: Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths
in the world. More than half of patients with HCC present with advanced stage, and highly active
systemic therapies are crucial for improving outcomes. Immune checkpoint inhibitor (ICI)-based
therapies have emerged as novel therapy options for advanced HCC. Only one third of patients
achieve an objective response with ICI-based therapies due to primary resistance or acquired resis-
tance. The liver tumor microenvironment is naturally immunosuppressive, and specific mutations
in cell signaling pathways allow the tumor to evade the immune response. Next, gene sequencing
of the tumor tissue or circulating tumor DNA may delineate resistance mechanisms to ICI-based
therapy and provide a rationale for novel combination therapies. In this review, we discuss the
results of key clinical trials that have led to approval of ICI-based therapy options in advanced HCC
and summarize the ongoing clinical trials. We review resistance mechanisms to ICIs and discuss
how immunotherapies may be optimized based on the emerging research of tumor biomarkers and
genomic alterations.
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1. Introduction

Primary liver cancer is the sixth most diagnosed cancer worldwide. Hepatocellular carci-
noma (HCC) is the predominant subtype, accounting for close to 90% of cases [1,2]. There were
varying incidences ranging from 6.3 per 100,000 in the United States to >50 per 100,000 in
some countries in East Asia in 2020 [1]. It is the second leading cause of cancer-related
death in men and sixth in women [3]. The gap in incidence rates is due to disparities in the
prevalence of risk factors [3–5].

Hepatitis C virus (HCV) is the leading cause of HCC in Western Europe, North Amer-
ica, and Japan, while Hepatitis B virus (HBV) is the leading cause of HCC in Asia (besides
Japan), South America, and Africa [6]. The prevalence of some modifiable risk factors is on
the rise globally, including alcohol consumption, metabolic syndrome, and non-alcoholic
fatty liver disease (NAFLD). One study found that >3 drinks per day was associated with
a 16% increased risk of HCC [7]. For another risk factor, metabolic syndrome, one study
found it was associated with an 81% increased risk of developing HCC, and that risk can
be reduced by treating one of the many conditions attributed to metabolic syndrome such
as insulin resistance, obesity, hypertension, and dyslipidemia [7].

Immune checkpoint inhibitor (ICI)-based therapies have emerged as novel therapy
options in advanced HCC. Early approved ICI’s included targets for programmed cell
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death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) in the form of antibodies. ICI’s
have shown progressive improvements in overall survival outcomes compared to sorafenib
(TKI). Combination agents targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
and (PD-1) have been approved as well, surpassing the ICI monotherapy overall survival
rates. Approximately two thirds of patients do not achieve the objective response with ICI-
based therapies due to primary or acquired resistance created by the tumor’s overwhelming
immunosuppressive state [8].

There has been increasing attention on using small molecules to target PD-1/PD-L1.
The motive behind these is the potential for toxicity, lower costs, and greater stability
compared to ICI antibodies. None so far have been approved for clinical use, but there are
preclinical studies and a few ongoing early-phase clinical trials, which will be discussed
below [9].

Unfortunately, there are no specific biomarkers to predict who will respond or de-
velop resistance to ICIs. However, recent preclinical studies and molecular analysis in key
landmark trials have described the large role that specific genes alterations and baseline
immune characteristics of the tumor may have on developing resistance and their potential
as targets to overcome resistance. In this review, we outline current approved and develop-
ing therapies for advanced HCC, discuss the mechanisms of ICI resistance, and discuss
potential solutions to overcome resistance.

The Role of the Tumor Microenvironment in HCC

The tumor microenvironment (TME) of HCC is characterized by a heterogeneous
group of immune cells, tumor cells, and cytokines in the setting of a chronically inflamed
liver. Various mechanisms take place to permit tumor cell immune evasion and the devel-
opment and progression of HCC.

A central theme to the success of the anti-tumor response is proper antigenicity. Tumor
cells may display tumor-associated antigens (TAAs), which are peptides allowing the host
immune system to recognize the tumor cells. Some examples of TAAs include alpha-
fetoprotein (AFP) and glycpican-3 (GPC-3). They can be pre-existing or formed by the
tumor as hepatocarcinogenesis occurs. A spontaneous immune response may occur during
liver injury after recognition of the TAAs by the naturally occurring TAA-specific CD8+ T
cells [10–12].

The liver endothelial sinusoidal cells (LESCs) are fenestrated cells lining the liver
sinusoids important in inducing immune tolerance by acting as antigen-presenting cells
(APCs) [13]. After chronic injury (Figure 1), LSECs undergo capillarization, meaning they
lose their basement membrane and fenestrations, making it challenging for hepatocyte
oxygenation. The hepatocytes in this hypoxic environment thereby undergo apoptosis
and necrosis, releasing specific damage-associated molecular patterns (DAMPs), which
can activate the typically quiescent hepatic stellate cells (HSCs), which then can transform
to cancer-associated fibroblasts (CAFs) under the influence transforming growth factor-β
(TGF-β) [14–16]. CAFs contribute to HCC progression by recruiting macrophages and
converting them to an M2 macrophage (pro-tumor) phenotype and by upregulating T
regulatory (Tregs) cells via secretion of vascular endothelial growth factor (VEGF) [17].
Surrounding the hypoxic hepatocytes, VEGF is released, which stimulates angiogenesis
and Treg cell proliferation. Tregs are mostly known for their immunosuppressive effects,
occurring via secretion of TGF-β1 and IL-10 in a chronically inflamed liver. Studies have
found that VEGF receptor (VEGFR)-2 can increase Tregs presence in the tumor microen-
vironment [18]. Myeloid-derived suppressor cells (MDSCs) are also present in the TME
and promote the expansion of Tregs. MDSCs interact with Kupffer cells and induce an
immunosuppressive environment by upregulating their expression of PD-L1. MDSCs
secrete IL-10 and VEGF to help recruit Tregs, which further contributes to the immune
downregulation [19,20].
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Figure 1. The role of the tumor microenvironment in HCC.

Conversely, CD8+ T cells provide an anti-tumor response. Earlier studies have shown
that these cells are decreased in hepatocellular tumor tissue compared to that of the non-
malignant tissue [21,22]. These cells also express an exhausted phenotype. One more recent
study revealed that in HCC patients, there was more expression of the immune checkpoints
on the CD8+ T cells in the malignant tissue compared to in the periphery [23].

Concerted efforts are underway to expand therapeutic armamentarium in HCC by
inhibiting pro-tumor pathways and enhancing anti-tumoral immune cytotoxicity in several
ongoing clinical trials [24].

2. Current First-Line Therapies for Advanced/Metastatic HCC
2.1. TKI-Based Therapies
2.1.1. Sorafenib

Sorafenib, a multi-kinase inhibitor, (Figure 2) was the first systemic therapy to gain
FDA approval for the treatment of HCC. The landmark SHARP trial was a multicenter,
randomized control phase III trial that included 602 patients assigned in a 1:1 ratio to
receive 400 mg sorafenib or placebo. Eligible patients were Child–Pugh Class A and had
no previous systemic therapy. Most patients had HCC caused by chronic HCV (56%) and
alcohol consumption (52%), and chronic HBV (37%) closely followed [25]. Median OS was
10.7 months in the sorafenib group and 7.9 months in the placebo group (Hazard Ratio
(HR) = 0.69; 95% confidence interval (CI) = 0.55 to 0.87; p < 0.001). The incidence of drug
related serious adverse events (AEs) was 9.4–14.6% in the sorafenib group and 5.0–25% in
the placebo group [26]. The subsequent Asia–Pacific study confirmed the findings of the
SHARP trial, showing that the mOS was 6.5 months in the sorafenib arm and 4.2 months in
the placebo arm (HR = 0.68; 95% CI = 0.50–0.93; p = 0.014). Inclusion and exclusion criteria
were similar as well [25,27–29].
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After sorafenib received FDA approval, multiple clinical trials with other drugs failed
to improve survival when compared to sorafenib. These drugs include sunitinib, brivanib,
linifanib, everolimus, and tivantinib [30–35].

2.1.2. Lenvatinib

Lenvatinib is a multi-kinase inhibitor targeting VEGFR, fibroblast growth factor recep-
tor (FGFR), platelet-derived growth factor receptor (PDGFR alpha), RET protooncogene
(RET), and kit-protooncogene (KIT). In the REFLECT trial, a randomized phase III non-
inferiority trial, lenvatinib was found to be noninferior in overall survival compared to
sorafenib (mOS 13.6 vs. 12.3 months, HR = 0.92; 95% CI = 0.79–1.06). The secondary
endpoint of median progression-free survival (PFS) was 7.4 months in the lenvatinib group
versus 3.7 months in the sorafenib group (HR = 0.66, 95% CI 0.79–1.06). Hypothyroidism,
decreased appetite, and hypertension were more common in the lenvatinib group, and
diarrhea and a hand–foot–skin reaction was less common the lenvatinib group. In 2018, the
FDA approved lenvatinib for first-line treatment of patients with advanced HCC [36].

2.2. ICI-Based Therapies
2.2.1. Atezolizumab and Bevacizumab

The combination of atezolizumab, an anti-PD-L1 antibody, and bevacizumab, an anti-
VEGF antibody, has shown synergistic anticancer activity [37,38]. Bevacizumab blocks
VEGF, enabling maturation of dendritic cells that would have otherwise been downregu-
lated with VEGF activity. Blocking VEGF prevents upregulation of MDSCs, which in turn
allows for proliferation of CD8+ T cells and suppression of Tregs. With this environment,
there is adequate antigen presentation, but tumor cells still can inhibit cytotoxic activity of
the T cells with PD-L1/PD-1 upregulation. With the addition of an anti PD-L1 antibody,
the T cells are able to destroy cancer cells without inhibition [37].

The phase Ib clinical trial GO30140 was an open-label, multi-arm trial where one of
the HCC cohorts (A) studied the safety and efficacy of atezolizumab plus bevacizumab,
while the other cohort (F) studied atezolizumab plus bevacizumab versus atezolizumab.
Both cohorts met their primary endpoints with statistical significance [39].

IMbrave150 is a phase III randomized trial in patients who had unresectable HCC,
no prior history of systemic therapy, and well-compensated liver disease (Child–Pugh
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A (CPA)). Patients were randomized to atezolizumab + bevacizumab versus sorafenib
in a 2:1 ratio. The mOS was 19.2 months in the combination arm and 13.4 in the control
arm (HR = 0.66; 95% CI = 0.52–0.85; p < 0.001). Grade 3 or 4 treatment-related adverse
events occurred in 43% of the atezolizumab + bevacizumab group and 46% of the sorafenib
group [40].

A recent study analyzed the correlative baseline tumor samples from a group of
patients enrolled in the GO30140 or IMbrave150 phase III trial and provided insight to
potentially significant biomarkers (key correlative findings are summarized in Table 1) [41].
It was demonstrated that genes or immune markers associated with pre-existing immu-
nity, including expression of PD-L1 mRNA and effector T cell (Teff), were correlated with
higher response to atezolizumab + bevacizumab in both GO30140 cohort A and in the
IMbrave150 trial. Validation with immunohistochemical analysis was not able to demon-
strate a clinically significant relationship between PD-L1 levels and ORR but revealed
higher rate of infiltration of CD8+ T cells in the responders in arm A of GO30140 cohort
A and in the IMbrave150 trial. Additionally, the study revealed that patients in the IM-
brave150 trial with a low ratio of Treg/Teff signatures had a statistically significant higher
PFS and OS in the atezolizumab + bevacizumab combination therapy group compared
to sorafenib.

Table 1. Summary of molecular correlative analysis results in GO30140 and IMbrave 150 trials [41].

GO30140 Cohort A: Atezolizumab + Bevacizumab

Gene Alterations or Immune Signatures Immune Cell Types TMB

Gene alterations or immune signatures
associated with greater response:
CD274 (PD-L1 mRNA): high expression
associated with longer PFS compared to those
with low expression (p = 0.0011).
Teff: high expression associated with longer
PFS in combination compared to those with
low expression (0.0035).

Higher density of CD8+ T associated
with better response (p = 0.007).

Greater ORR in TMB-high group (56%)
compared to TMB-low group (35%).

Phase III IMbrave 150 Trial: Atezolizumab + Bevacizumab vs. Sorafenib

Gene Alterations or Immune Signatures Immune Cell Types TMB

Gene alterations or signatures associated with
greater response:
CD274 (PD-L1 mRNA): high expression
associated with longer PFS in combination
group versus sorafenib (p = 0.015), as well as
greater OS (0.002)
Teff: high expression associated with longer
PFS in combination group versus sorafenib
(p = 0.047), as well as greater OS (0.0002)

Higher density of intra-tumoral CD8+
T cells showed longer PFS (0.053) and
OS (0.001)
Low ratio of Treg/Teff signatures had
higher PFS and OS compared to
sorafenib
Higher density of CD8+ T cells
associated with longer OS and PFS
compared with sorafenib

No associations of TMB with outcome

GO30140 Cohort F: Atezolizumab + Bevacizumab vs. Atezolizumab

Gene Alterations or Immune Signatures Blood Vessel Density

Genes or signatures associated with greater
response:
Myeloid inflammation: high expression
associated with greater PFS (p = 0.036 versus
monotherapy
Gene signatures of Teff: high expression
associated with greater PFS (p = 0.034 versus
monotherapy
KDR (VEGF receptor 2): high expression
associated with greater PFS in combination
group compared to monotherapy (p = 0.011)

High vessel density in baseline tumors associated with longer PFS in
combination group compared to monotherapy (p = 0.0018)
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The study was able to use the GO30140 cohort F correlative samples to study the
benefits of the added bevacizumab. Immune subsets of CD8+ T cells, Treg cells, and
macrophages were associated with outcomes with the addition of bevacizumab [41,42].
Effector T cell and myeloid gene signatures at baseline were associated with improved
outcomes in the combination group. It was also shown that the expression of the VEGFR-2
gene (KDR) was decreased in the combination group compared to monotherapy in pre-
and post-treatment tumor biopsies. In addition, 80% of the responders had a decrease in
the Treg signature in the combination group compared to 33% of the responders in the
atezolizumab group. Lastly, higher blood vessel density was associated with longer PFS in
the combination group compared to monotherapy.

The study also investigated the impact of TMB on therapy outcomes using whole-
genome sequencing (WES) on tumor-blood samples of patients in both trials. TMB was not
associated with outcomes in the IMbrave150 group [41].

2.2.2. Durvalumab + Tremelimumab

In a phase II trial involving patients with unresectable HCC, the combination of
tremelimumab (anti-CTLA-4 antibody) plus durvalumab (a PD-L1 inhibitor) demonstrated
promising clinical activity and safety [43]. Patients were randomly assigned to receive
either 300 mg of tremelimumab for one dose plus 1500 mg of durvalumab every 4 weeks,
1500 mg of durvalumab every 4 weeks, 75 mg of tremelimumab every 4 weeks for a total
of four doses plus 1500 mg of durvalumab every 4 weeks (a combination given the term
T75 +D), or 400 mg of sorafenib twice a day.

The phase III HIMALAYA trial randomized previously untreated advanced HCC
patients using the STRIDE (Single Tremelimumab Regular Interval Durvalumab) regimen,
sorafenib, durvalumab, or 75 mg of tremelimumab every 4 weeks for a total of four doses
plus 1500 mg of durvalumab every 4 weeks (T75 +D). Later, the T75 + D arm was closed
based on the data from the phase II trial. The HIMALAYA trial demonstrated that the
STRIDE regimen improved overall survival with mOS of 16.43 months versus 13.77 months
for sorafenib (HR = 0.78; 96 CI = 0.65–0.92; p = 0.0035). The trial also demonstrated that
durvalumab was noninferior to sorafenib. Based on the results of the HIMALAYA trial, the
STRIDE regimen was approved for first-line therapy in advanced HCC [43,44].

An international, randomized phase III trial NCT03764293 studying camrelizumab
plus rivoceranib, also known as apatinib (an anti-angiogenic), versus sorafenib recently
revealed pivotal results in a front-line setting, with OS 22.1 months versus 15.2 months;
HR = 0.62; 95% CI = 0.49–0.80; p < 0.0001. This study is now known as CARES-310, and a
new drug application has just been submitted for the combination as a first-line treatment
option [45].

3. Current Second-Line Therapies for Advanced/Metastatic HCC
3.1. ICI-Based Therapies
3.1.1. Nivolumab

Checkpoint 040 trial was a multi-cohort, open-label clinical trial studying nivolumab
as both monotherapy and in combination with ipilimumab in advanced HCC patients
with prior sorafenib use and those who were sorafenib naive. Patients with Child–Pugh
A were included in cohorts 1–3, which included a dose-escalation phase for safety and a
dose-expansion phase to assess safety and clinical data for different doses of nivolumab
monotherapy. The trial revealed ORRs of 15 and 20% in dose escalation and expansion
phases, respectively. The FDA approved this drug for second-line treatment in HCC;
however, it was later withdrawn [46]. In cohort 5, only patients with Child–Pugh B
were included, and most patients were Child–Pugh B7 (76%). Patients were treated with
nivolumab alone in this non-comparative study. The mOS of the Child–Pugh B group was
7.6 months (95% CI = 4.4–10.5). Patients who responded to nivolumab monotherapy in
cohort 5 showed stable or improved liver function, evidenced by five of the six responders
improving from Child–Pugh B to Child–Pugh A. All responders showed stable ALBI
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grades [47]. These findings signify the potential role that immunotherapy may have in
reversing tumor-mediated decline in liver function.

The confirmatory Check-Mate-459 trial randomized previously untreated advanced
HCC patients to nivolumab versus sorafenib but failed to improve OS. Therefore, the
nivolumab approval based on the Checkpoint 040 trial was withdrawn [48].

3.1.2. Pembrolizumab

Pembrolizumab originally received accelerated second-line approval for advanced
HCC based on the findings of the Keynote-224 trial, which revealed an ORR of 17% per
the RECIST v1.1 (95% CI = 11–26) and mOS of 12.9 months (95% CI 9.7–15.5) [49]. In the
subsequent Keynote-240 trial assessing the safety and efficacy of pembrolizumab, mOS
was 13.8 months in the pembrolizumab group and 10.6 months in the placebo group
(HR = 0.78; 95% CI = 0.611–0.998; p = 0023), which did not meet the prespecified boundary
of p = 0.0174 for OS [50].

Keynote-394, another phase III trial conducted in Asian patients with previously
treated advanced HCC, revealed improvements in mOS and mPFS in those receiving
pembrolizumab over best supportive care; mOS was 14.6 months for the pembrolizumab
arm and 13.0 months for the placebo (HR = 0.70; 95% CI = 0.63–0.99; p = 0.0180). This trial
is promising for the role of second-line ICIs for HCC in Asian patients [51,52].

3.1.3. Nivolumab/Ipilimumab

In 2020, a nivolumab plus ipilimumab combination was approved for the treatment
of patients with advanced HCC who were previously treated with sorafenib. This was
based on results of Arm A of cohort 4 of the Checkmate 040 trial, where patients re-
ceived nivolumab (1 mg/kg) with ipilimumab (3 mg/kg) every 3 weeks for a total of
four doses followed by nivolumab (240 mg) every 2 weeks. The ORR was 32% (RECIST
v1.1) while the median response duration was 17.5 months (4.6–30.5 months). A follow-up
showed that the ORR continued to stay at 32% while the 24-month OS rate improved to
46% (95% CI = 32–59%) [46,53].

Currently approved TKI-based therapies in second-line and beyond are summarized
in Table 2 with key findings of the landmark trials.

Table 2. Results from clinical trials from approved systemic therapies in advanced HCC.

Clinical Trials
in HCC Phase Line of

Therapy Arms Primary
Outcome(s) Median OS (Months) ORR (%) Year Approved

Multikinase inhibitors and monoclonal antibody against VEGFR2

SHARP [26] III First Sorafenib (S)
Placebo (P) OS

S: 10.7
P: 7.9

(HR = 0.69; 95%
confidence interval

(CI) = 0.55–0.87; p < 0.001)

S: 43
P: 32

p = 0.002
2007

RESORCE [54] III Second
(post-SOR)

Regorafenib (R)
Placebo OS

R: 10.6
P: 7.8

(HR = 0.63; 95%
CI = 0.50–0.79; p < 0.0001)

R:11
P: 4

p = 0.0047
2017

REFLECT [36] III First Lenvatinib (L),
Sorafenib OS

L: 13.6
S: 12.3

(HR = 0.92; 95%
CI = 0.79–1.06)

L: 18.8
S: 6.5

p < 0.0001
2018

CELESTIAL
[55] III

Second
(post-SOR or

other)

Cabozantinib
(C)

Placebo
OS

C: 10.2
P: 8.0

(HR = 0.76; p < 0.005)

C:4
P < 1

p = 0.009
2019

REACH-2 [56] III Second

Ramucirumab
(Ra),

Placebo
(AFP ≥ 400

ng/mL)

OS
Ra: 8.5
P: 7.3

(HR = 0.71; p < 0.019)

R:5
P:1

p = 0·1697
2019
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Table 2. Cont.

Clinical Trials
in HCC Phase Line of

Therapy Arms Primary
Outcome(s) Median OS (Months) ORR (%) Year Approved

Immunotherapy (monotherapy)

Keynote-224
[49] II Second

Pembrolizumab
(Pem)

(post-SOR)
ORR Pem: 12.9 months

(95% CI = 9.7–15.5)
17

(95% CI = 11–26) 2018

Checkmate 040
(cohorts 1–3 in
dose expansion

phase) [46]

I/II Second Nivolumab (N)
(post-SOR) ORR 6 months:83%

9 months:74%
20

(CI = 15–26) 2017

MKI with ICI

IMbrave150
(2020) [57] III First

Atezolizumab +
Bevacizumab

(AB), Sorafenib
AB: 19.2
S: 13.4

A + B:30
S:11 2020

Dual checkpoint inhibitors

Checkmate 040
(cohort 4) I/II Second Nivolumab +

ipilimumab ORR

Arm A: 22.8 months
(95% CI, 9.4-not reached)

Arm B: 12.5 months
(95% CI, 7.6–16.4)

Arm C: 12.7 months
(95% CI, 7.4–33.0)

ARM A: 32
(95 = CI 20–47)

ARM B: 27
(95% CI = 15–41)

ARM C: 29
(95% CI = 29 (17–43)

2020

HIMALAYA
[44] III First

Durvalumab +
Tremelimumab

(STRIDE),
Durvalumab

(D),
Sorafenib

OS

STRIDE: 16.4
S: 13.8

(HR = 0.78; 96%
CI = 0.65–0.92; p = 0.0035)

Durvalumab did not
demonstrate superiority to

sorafenib (p = 0.0674)

STRIDE:20.1
D: 17
S: 5.1

2022

4. Combination Therapy of ICI with Anti-Angiogenic Therapy and TKI

The combination of immune checkpoint inhibitors with anti-angiogenic agents has
changed HCC frontline therapy. Several other studies have taken advantage of the syner-
gistic effect of an ICI with another novel agent [33].

The Keynote 524 trial was an open-label, phase Ib, multicenter, single-arm study where
patients with unresectable HCC received lenvatinib and pembrolizumab. The primary
objective was ORR via modified RECIST (mRECIST), RECIST version 1.1 (v1.1) per indepen-
dent imaging review (IIR). One hundred out of the 104 patients did not receive any prior sys-
temic therapy, and patients had BCLC stage B or C disease. The combination proved to have
confirmed ORR of 46% (95% CI = 36–56) per mRECIST and 36% (95% CI = 26.6.0–46.2) per
RECIST v1.1 [58].

Leap-002 was a phase III study that compared lenvatinib plus pembrolizumab ver-
sus lenvatinib plus placebo in previously untreated advanced HCC in a 1:1 ratio Child–
Pugh Class A. The trial had co-primary endpoints of OS and PFS. The primary end-
points of OS and PFS in the combination of lenvatinib and pembrolizumab arm did not
meet pre-specified statistical significance [59]. Although this trial failed to meet the pre-
specified outcomes, it revealed significant survival data in both arms, with 21.2 months
(95% CI = 19.0–23.6) in the lenvatinib plus pembrolizumab arm and 19.0 months
(95% CI = 17.2–21.7) in the lenvatinib plus placebo arm.

The COSMIC-312 study is a phase III, multicenter, and open-label trial that stud-
ied the combination of cabozantinib and atezolizumab versus sorafenib. It randomized
837 patients with advanced HCC and no prior history of receiving systemic therapy to
atezolizumab and cabozantinib versus sorafenib versus cabozantinib in a 2:1:1 ratio. The
study had dual primary endpoints of PFS in the first 372 patients for the atezolizumab and
cabozantinib versus sorafenib arm and OS for the atezolizumab and cabozantinib versus
sorafenib in all patients. The primary endpoint of PFS was longer in the combination group
(6.8 vs. 4.2 months; HR 0.63, 99% CI5.6–8.3, p = 0.0012), but there was no significant dif-
ference in the overall survival (15.4 vs. 15.5 months; HR 0.90, 96% CI 0.69–1.18, p = 0.44)
between the groups [60]. Given the lack of improvement in survival, this combination
therapy is unlikely to be adopted for first-line therapy in advanced HCC.
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The ICI/anti-angiogenic combination trials so far have rendered impressive results
as shown in the IMbrave 150 trial underscoring the unique synergistic activity of this
combination approach. Although early phase trials with ICI/TKI combinations were
promising, the survival benefit over single-agent TKI was not shown in larger trials. Several
other studies involving anti-angiogenics or TKIs and ICIs are underway, as shown in Table 3,
including tivozanib plus durvalumab (NCT03970616) and regorafenib plus tiselizumab
(NCT04183088) [61–63].

Table 3. Ongoing clinical trials of ICI-based approaches in HCC.

Trial Name and ID Cancer Type Estimated
Enrollment

Targeting
Mechanism Control Arm Phase Start and

Completion Dates
Primary

Measures

RATIONALE—301 [64]
NCT03412773 HCC December 2017

Tislelizumab
(anti-PD-1
antibody)

Sorafenib III December 2017
July 2023 OS

Checkmate 9DW [65]
NCT04039607 HCC September 2019 Nivolumab +

Ipilimumab
Sorafenib or
lenvatinib III September 2019

June 2025 OS

NCT03764293 [45]
(CARES-310)

Locally
advanced or

metastatic and
unresectable

HCC

June 2019

Camrelizumab
(anti-PD-1
antibody) +

Apatinib (VEGF
inhibitor)

Sorafenib III June 2019
April 2023

OS
PFS

DEDUCTIVE [62]
NCT03970616

Advanced
HCC September 2019

Tivozanib
(selective

VEGFR 1,2,3
TKI) +

Durvalumab
(PD-L1

inhibitor)

N/A 1/IIb September 2019
March 2023 TEAEs

NCT04183088 [63] Advanced
HCC December 2020

Tislelizumab
(anti-PD-1
antibody) +
regorafenib

(TKI)

N/A II December 2020
March 2025

TRAE
ORR
PFS

NCT04401813 [66] Advanced
HCC June 2020

IBI308
(anti-CTLA4
antibody) +

Sintilizumab
(anti-PD-1
antibody)

N/A I June 2020
April 2023

AE
ORR

NCT04212221 [67] Advanced
HCC April 2020

MGD013 (anti
PD 1 antiobdy

and anti-LAG-3
antibody) +

Brivanib

N/A I/II Completed Pending
results

DLTs
ORR

NCT03680508 [68] Advanced
HCC December 2019

Cobolimab
(TIM-3 binding

antibody) +
Dostarlimab

(anti PD-1
antibody)

N/A II December 2019
October 2025 ORR

NCT03841201 [69] Advanced
HCC June 2019

Lenvatinib
(TKI) +

Nivolumab
(anti-PD-1
antibody)

N/A II June 2019
March 2023

ORR
AE
SAE

RENOBATE [70]
NCT04310709

Advanced
HCC June 2020 Regorafenib +

Nivolumab
Completed

Pending results Response Rate

ARYA-1 [71]
NCT04502082

Advanced
HCC April 2021

ET140203
autologous T
cell product

N/A I/II April 2021
June 2024

Incidence of AE
and severity
rates of AE

Incidence rates
of DLT
RP2D

TRIPLET [72]
NCT05665348

HCC—
Hepatocellular

Carcinoma
September 2021

Atezolizumab
(anti-PD-L1
antibody) +

Bevacizumab
(VEGF

inhibitor) +
Ipilimumab

(anti-CTLA-4
antibody)

Atezolizumab
+

Bevacizumab
II/III September 2021

April 2026

Objective
response
Overall
survival
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Table 3. Cont.

Trial Name and ID Cancer Type Estimated
Enrollment

Targeting
Mechanism Control Arm Phase Start and

Completion Dates
Primary

Measures

NCT05022927 [73] Advanced
HCC June 2021

ERY974 +
Tocilicumab +

Atezolizumab +
Bevacizumab

N/A I June 2021
September 2024

Incidence of
treatment-
emergent

adverse events
(TEAE)

The PNeoVCA Study
[74]

NCT05269381

Various
advanced

solid tumors
including

HCC

March 2022

Cyclophosphamide
(alkylating

agent) +
Neoantigen

vaccine
(containing

sargramostim
(GM-CSF)) +

Pembrolizumab
(anti-PD-1
antibody)

N/A I March 2022
February 2025 Incidence of AE

RELATIVITY—106 [75]
NCT05337137

Advanced
HCC April 2022

Relatinib +
Nivolumab +
Bevacizumab

Nivolumab +
Bevacizumab 1/2 April 2022

March 2023

Incidence of
DLT
PFS

5. Chimeric Antigen Receptor (CAR)-T Cell Therapy

CAR-T cell therapy involves modifying T cells genetically to express chimeric antigen
receptors that enable precise targeting and elimination of tumor cells. Initially successful in
blood cancers, CAR-T therapy is being explored to treat solid tumors, including HCC. A
novel double-target CAR-T cell therapy has been developed, recognizing GPC3 (a protein
upregulated in HCC) and inhibiting PD-1, demonstrating superior therapeutic effects on
HCC compared to single-target CAR-T cells. These double-target CAR-T cells showed
enhanced persistence, limited inhibitory receptor expression, and potent resistance against
tumor cells [76]. In a phase I clinical trial focusing on Glypican-3 (GPC3), a significant
HCC-associated antigen, as a promising target for heavily treated HCC patients CT017
CAR T cells co-expressing CAR-GPC3 and RUNX3 were engineered to induce CD8+ T-cell
infiltration within the cancer microenvironment. The trial demonstrated a manageable
safety profile, with all patients experiencing cytokine release syndrome (CRS) primarily
at grades 2 and 3, which resolved post-treatment. Notably, one patient achieved a partial
response, and two had stable disease, resulting in a 16.7% objective response rate and a
50% disease control rate [76–79].

6. Small-Molecule Inhibitors

Small molecules blocking PD-1/PD-L1 pathway may have shorter half-life, increased
tissue penetration, oral bioavailability, increased anti-tumor activity and lower toxicity
compared to monoclonal antibodies [80]. However, only a few have made it to clinical
trials and HCC specific preclinical trials are still lacking.

The molecule CA-170, the first oral small molecule to target PD-L1, demonstrated
acceptable safety in a phase I study in Hodgkin lymphoma and solid tumors known to
express PD-1, including but not limited to renal cell carcinoma (RCC), melanoma, and
non-small cell lung cancer [81,82]. The phase II study reported an ORR of 30% in the
Hodgkin lymphoma group. Updated results of the phase II study reported a clinical benefit
rate (CBR) of 75% in the no-squamous NSCLC. Currently, this agent is being studied in
NSNSCLC in a phase IIb/3 clinical trial [83,84].

Most recently, a preclinical study of CCX559, a PD-L1 small-molecule inhibitor, was
shown to achieve reversible PD-L1 internalization, activation of T cells, and anti-tumor
activity in murine models [85,86]. An ongoing phase I study with single-agent CCX559 in
solid tumors reported on-target pharmacokinetic effects suggesting PD-L1 inhibition [87].
Tubeimoside-1 (TBM-1) is a small molecule derived from the herb Bolbostemma panicula-
tum [88]. Liu at al. demonstrated that this molecule can induce lysosomal degradation of
PD-L1 in cancer cells via mTOR inactivation [89]. A recent study reported that diminishing
mitochondria oxidative phosphorylation (OXPHOS) can inhibit PD-1 expression. LND
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was already known to disrupt OXPHOS at high doses but did not have mitochondria-
specific targeting abilities. Therefore, the study created a small molecule, IRLND@Alb,
using a triphenylphosphonium (TPP+), a mitochondrial target. It is also attached to al-
bumin to promote tumor accumulation through improved permeability. It was shown
that this molecule was able to downregulate PD-L1 expression compared to the control
(p < 0.05) [90]. Tables 4 and 5 summarize the preclinical and clinical studies with small-
molecule inhibitors [86]. At this moment, there are no small molecules against CTLA-4. The
one study that looked at a B7-1 blockade to prevent CTLA-4 binding showed no inhibition.

Table 4. Small molecules in clinical trials.

Agent Target Clinical Trial Cancer Type Primary Objective

CA-170
Trial IDs:

CTRI/2017/12/011026 (phase II)
CTRI/2020/07/026870

(phase IIb/III)

PD-L1 Phase II Lymphoma ORR: 30%

PD-L1 Phase IIb/III
Non-squamous,

non-small cell lung
cancer

ORR: ongoing

INCB086550
Trial ID:

NCT04629339
PD-L1 Phase II Select solid tumors ORR: ongoing

CCX559
Trial ID:

ACTRN12621001342808
PD-L1 Phase I Solid tumors Safety

Table 5. Small molecules in preclinical studies.

Small-Molecule Inhibitors in Preclinical Studies

Molecule Immune Checkpoint Pathways

SMI402 in tumor-bearing mice [91] TIM-3 Inhibition of tumor growth by increasing
CD8+ T cell infiltration at tumor site

“Compounds 8 and 9” [92] B7-1, preventing interaction with CTLA-4 Lack of inhibition in a cell adhesion assay

Tubeimoside-1 (TBM-1) [89] PD-L1 Lysosomal degradation of PD-L1 in
cancer cells via mTOR inactivation.

7. Resistance Mechanisms to ICIs in HCC and Possible Solutions

Several clinical trials with ICI-based therapies have shown its capabilities in warding
off tumor cells; however, many patients either do not achieve objective response or develop
resistance to immune checkpoint inhibitors. The mechanisms of resistance can be catego-
rized broadly into internal and external (Table 6). An internal resistance mechanism is one
caused by the tumor itself, and an external resistance mechanism is caused by the tumor’s
interaction with other cells in the TME.

7.1. Internal Resistance
7.1.1. TMB

Tumor mutational burden (TMB) refers to the number of mutations per megabase in
a tumor’s genome. Neoantigens are antigens derived from tumor cells or from the self
and contribute the total TMB. It has been studied that when a tumor has a high TMB,
many neoantigens are processed and presented by APCs to neoantigen-specific T cells, and
the tumor becomes more immunogenic. Research has shown that a high TMB has been
associated with a better ICI response in several solid tumor types [93–95]. However, this
association is not consistent in HCC [96].
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7.1.2. Gene Signatures and Biomarkers

Correlation of gene signatures and response to therapy is an area of intense research
in patients receiving ICI therapy [93,95]. Molecular classification of HCC through whole-
exome sequencing has revealed an association between CTNNB1 mutation and immune
evasion [41]. CTNNB1 mutation leads to an overly active Wnt/beta-catenin pathway [97].
Subsequently, this leads to a decrease in CD8+ T cells and an increase in Treg cells in
the tumor environment [98]. Harding et al. noted that in the ten out of twenty-seven
HCC patients with either Barcelona Clinic Liver Cancer (BCLC) Stages B or C treated
with immunotherapy, seven had the CTNNB1 mutation while three had another mutation
leading to an active Wnt pathway. All 10 patients were refractory to immunotherapy [99].

Zhu et al. also studied this mutation in tissue samples from the IMbrave 150 phase III
trial and found no prognostic value of the CTNNB1 mutation status in the atezolizumab +
bevacizumab group [41]. However, patients in the sorafenib group with the mutation had
a longer PFS and OS. Prior clinical data noted that sorafenib has potential to decrease Wnt
pathway signaling [100]. The study ultimately concluded that the similarity in survival
benefit between the wild-type and mutant groups in the IMbrave150 study indicates
that the addition of anti-angiogenics such as bevacizumab could help overcome the Wnt
pathway-induced resistance to atezolizumab. Additionally, several other preclinical studies
have shown that VEGFA is decreased after B catenin knockdown in HCC [101,102].

In the same study by Zhu et. al, it was noted that in the phase Ib study (GO30140),
a high expression of the VEGF receptor 2 (KDR gene) was associated with greater PFS in
the combination group compared to the group who received atezolizumab monotherapy.
This validates that bevacizumab aids synergistically in the anti-tumor response by also
inhibiting angiogenesis [41].

Several biomarkers including the CD274 gene (PD-L1 mRNA) and genes encoding
effector T cells were associated with greater outcomes at higher expressions compared
to lower expressions in the combination group in both the IMbrave 150 study and the
GO30140 study (cohort A) [41].

Specific biomarkers can be isolated from tumor cells via next-generation sequencing
(NGS). Tumor tissue biopsy has been a conventional method, but it does have limitations
with inaccessible or smaller tumors. Cell tumor DNA (ctDNA) is DNA derived from tumor
cells. ctDNA is released into the blood after apoptosis and has emerged as a non-invasive
way of analyzing tumor biomarkers [103].

Table 6. Immunotherapy resistance mechanisms [104,105].

Internal Mechanisms External Mechanisms

1. Gene mutation: [41,100]

a. CTNNB1 mutation: [106]

↑Wnt/beta-catenin pathway associated with ↑
T reg cells, ↓ CD8+ T cells

1. ↑ Immune checkpoints: [105]

a. PD-1
b. PD-L1
c. CTLA-4
d. LAG-3
e. TIM-3
f. TIGIT

2. Gene expression variation: [107]

a. ↓ CD274 gene expression (PD-L1 mRNA)
associated with ↓ benefit from
atezolizumab + bevacizumab

2. ↓ CD8+ T cells: [108]

a. ↑ Pro-tumor state

3. ↓ Tumor mutational burden *: [105] 3. ↑ T reg cells: [108]

a. ↑ Pro-tumor state

* Association of high TMB and ICI resistance has inconsistent data in the literature for HCC.
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7.2. External Resistance

One external resistance mechanism is the development of immune checkpoint molecules
by tumor cells. When presented with an antigen, the tumor cell can upregulate checkpoint
molecules to evade the immune response. These molecules include PD-L1, PD-1 and
CTLA-4, lymphocyte activation gene-3 (LAG-3), T-cell immunoglobulin and mucin domain
(TIM-3), and TIGIT [89]. Studies have shown that the increased expression of TIM-3 in
many cancers, including liver cancer, is associated with a poorer prognosis [109]. It was
observed that persistent exposure to an anti PD-1 antibody upregulated TIM-3 expression
in a tumor-bearing lung in mouse models, which supports the idea that a TIM-3/PD-1
blockade may have great therapeutic potential [110–112].

Another external resistance mechanism is the decreased infiltration of pro-tumor cells.
The immunosuppressive cellular components of the liver TME includes Treg cells and
CD8+ T cells [113]. The activation and proliferation of Treg cells inhibit CD8+ T cells, thus
allowing tumor growth and progression [21]. Combatting overactive Treg function is a field
that requires further studies in advanced HCC, but recent findings looking at the CTNNB1
gene have unmasked significant correlations between these CD8+ T cells and response to
ICIs. External resistance mechanisms may overlap with internal ones, as gene alterations
may alter the immune phenotype and cells involved [106].

8. Immunotherapy Combined with Locoregional Therapies

The combination of immunotherapy and liver-directed therapy is a promising ap-
proach that integrates two distinct strategies to improve outcomes in HCC. Immunotherapy
utilizes the body’s immune system to recognize and attack cancer cells, while liver-directed
therapy directly targets and treats tumors within the liver. Combining these approaches
can potentially synergize their effects and improve overall treatment outcomes [114]. Ra-
diofrequency ablation (RFA), microwave ablation (MWA), transarterial chemoembolization
(TACE), stereotactic body radiation therapy (SBRT), and yttrium-90 (Y-90) radioemboliza-
tion are all local therapies that aim to shrink and control tumors within the liver. This
can make the remaining cancer cells more susceptible to the immune system, which is
then boosted by immunotherapy. Tumor antigens released due to tumor destruction by
liver-directed therapy can synergize with ICIs and achieve better anti-tumor response.
Overall, combining immunotherapy with liver-directed therapy is a promising approach
that capitalizes on their complementary mechanisms of action. This can lead to enhanced
tumor control, systemic immune activation, and potential synergistic effects for a more
effective and comprehensive treatment of liver cancers [28,115,116].

Clinical trials have explored the incorporation of RFA with either molecular targeting
agents or immunotherapy. In a comparative analysis involving patients with primary
HCC, a noteworthy extension in progression-free survival (PFS) was observed in the
RFA combined with cellular immunotherapy (CIT) group (44 months vs. 30 months,
p = 0.025) [117]. Additionally, a randomized trial comparing combined RFA with [(131)I]
metuximab versus RFA alone in patients with BCLC 0-B HCC showcased a superior
anti-recurrence advantage in the combined treatment cohort (median overall tumor re-
currence of 17 months vs. 10 months, p = 0.046) [118]. A phase III randomized controlled
trial revealed that HCC patients who underwent curative treatments (surgery, RFA, or
percutaneous ethanol injection) and received adjuvant immunotherapy with activated
cytokine-induced killer (CIK) cells experienced prolonged RFS and OS compared to those
without adjuvant immunotherapy (median RFS of 37 months vs. 19 months, p < 0.001;
median OS of 67 months vs. 41 months, p < 0.001) [119]. Subsequently, a retrospective
analysis of the same patient cohort in Korea demonstrated that adjuvant immunotherapy
following curative treatments (surgery or RFA) led to significantly extended RFS (median
RFS of 45 months vs. 28 months, p < 0.001) [120]. Another retrospective study involving
patients with established recurrent HCC who underwent either RFA alone or RFA coupled
with anti-PD-1 therapy exhibited a notably higher 1-year recurrence-free survival rate in
the group receiving anti-PD-1 plus RFA (32.5% vs. 10.0%, p = 0.008) [121].
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Several ongoing clinical trials combining liver-directed therapy with ICIs hold promise
in advancing the treatment of HCC. One such trial, NCT03753659, is a multicenter, single-arm,
prospective, open-label phase II study examining the clinical efficacy of peri-interventional
treatment using the anti-PD-1 antibody pembrolizumab in HCC patients eligible for local
ablation via various methods such as RFA, MWA, brachytherapy, or a combination of TACE
with RFA, MWA, or brachytherapy [122]. Another trial, NCT04663035, compares CT-guided
thermal ablation plus tislelizumab versus ablation alone for intrahepatic recurrent early-
stage hepatocellular carcinoma through a randomized controlled phase II clinical trial [123].
In a different study, the NCT04727307 trial aims to address the high intrahepatic distant
recurrence rate and investigate adjuvant/neoadjuvant strategies targeting tumor growth
and metastatic escape in the context of percutaneous thermal ablation for small HCC [124].
Additionally, NCT04652440, a phase II, single-arm, single-center study, is assessing the
safety and tolerability of combining radiofrequency or microwave ablation with a PD-1
monoclonal antibody in HCC patients [125]. The study also aims to evaluate the efficacy
of this combination and its effect on immune function and hepatitis virus infection status
in patients with HCC. The study is divided into two stages, with the first stage focusing
on dose-limited toxicity observation in six patients. If dose-limited toxicity is observed in
fewer than two patients, the second stage will enroll an additional twenty-four patients for
further evaluation [126].

9. Potential Solutions to Overcome Resistance to Immune Checkpoint Inhibitors in
HCC via Targeting Other Checkpoint Molecules

Preclinical studies and analysis of clinical samples from the recently completed clinical
trials in HCC shed light on some of the possible resistance mechanisms to ICI-based
therapies. Targeting other immune checkpoints such as TIM-3, LAG-3, and T-cell immune
receptors with immunoglobulin and ITIM domains (TIGITs) in combination with anti-
PD-1/PD-L1/CTLA-4 pathways, or other relevant targets such as VEGF and VEGFR, are
potential solutions. Table 7 outlines the mentioned targets.

9.1. TIM-3

Targeting PD-1 and TIM-3 simultaneously is an emerging concept. Two models of
lung cancer harboring oncogenes KRAS or EGFR oncogenes were studied during their treat-
ment with anti-PD-1 antibodies [110]. They were treated until they developed resistance,
which was defined as initial response to therapy with a subsequent increase in the tumor
size >120% of the initial size of the tumor. In the treated models who developed resistance,
an upregulation of the TIM-3 antibody was found and confirmed via flow cytometry. To
assess if blocking TIM-3 would have a therapeutic effect at time of resistance, an anti-TIM-3
antibody was administered. The cohort treated with anti-TIM-3 antibody demonstrated a
greater median survival of 11.9 weeks compared to the group treated with the anti-PD-1
antibody alone (p = 0.0008). To see if these results mirror the patterns of resistance in
patients with lung cancer, two patients who were treated with an anti-PD-1 antibody were
analyzed, and it was found that TIM-3 expression was higher in the specimens from the
patients who developed resistance to anti-PD-1 therapy compared to the samples from
patients who did not receive anti-PD-1 therapy. This study suggests that there may be an
adaptive resistance mechanism to anti-PD-1 antibody via the upregulation of TIM-3, and
that targeting this may augment the anti-PD-1 response.

Although this study focused on markers in lung adenocarcinoma, an immunohis-
tochemical study was performed that analyzed the expression of PD-1 and TIM-3 in
HBV-associated HCC compared to HBV-induced liver cirrhosis, and it found elevated ex-
pression of TIM-3 in the HCC tissues over the cirrhosis tissues (p < 0.001) [127]. It was also
reported that the expression levels positively correlated with the HCC grades, and those
patients with grades 3 and 4 had significantly higher expression levels of both markers
than those patients with lower grades.
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One of the first clinical trials studying a combination of TIM-3 blockade and PD-1
blockade in HCC recently shared their interim results. In this phase II trial, 42 patients with
BCLC stage B or C HCC are enrolled to receive cobolimab (anti-tim-3 antibody) 300 mg
and dostarlimab (anti-PD-1 antibody) 500 mg on day 1 of each 21-day cycle for a maximum
of 2 years, or until there is treatment failure. The primary objective is ORR. On 1 September
2022, 16 patients, with a median age of 68 years, had been enrolled. Only one patient had
complete response, five patients had partial response (ORR of 46%), three patients had
stable disease (23%), and four patients had disease progression (31%). There was only
one grade 4 treatment-related adverse event of neutropenia, and the rest of the events
were grade 1 and 2 and included pruritis, rash, and fatigue [68]. A phase I/II clinical trial
investigating the TIM-3 antibody (BGB-A425) + tislelizumab (an anti-PD-1 antibody) in
patients with previously treated locally advanced solid tumors is underway [128].

9.2. LAG-3

Analysis of tumor-infiltrating lymphocytes in HCC revealed that LAG-3 expression
was upregulated in HBV-specific CD8+ T cells compared to the CD8+ T cells in the pe-
ripheral blood [129]. The study also demonstrated a correlation between LAG-3 and the
amount of dysfunctional CD8+ T cells in the HBV-specific CD8+ T cells, further supporting
the relationship between the two.

Initially studied alone, LAG-3 has recently been studied alongside PD-1 [130,131].
The first preclinical studies came from those studying ovarian and colorectal cancer.
Woo et al. hypothesized that these immune checkpoint molecules can work synergisti-
cally to reduce tumor growth. They studied the dual blockade of LAG-3/PD-1 and tumor
response in Sa1N fibrosarcoma and MC38-colorectal adenocarcinoma-inoculated mice.
Tumor resolution occurred in 70–80% of the Sa1N fibrosarcoma and MC38-colorectal
adenocarcinoma-inoculated mice, respectively. Of the two groups, much less tumor reso-
lution occurred (0–40%) in the mice treated with anti-PD-1 or anti-LAG-3 blockade [132].
Another preclinical study examined mechanisms of enhanced anti-tumor immunity with a
dual blockade of LAG-3 and PD-1 in an ovarian tumor murine model [133]. It revealed that
there was an increase in CD8+ T cell and CD4+ T cell infiltration in the tumor environment
along with a decreased number of Treg cells after blockade. It also confirmed that the influx
of the CD8+ T cells were not exhausted T cells by making note of the increased amount of
IFN-γ and TNF-α cytokines, indicating that they were active.

Guo et al. utilized multiplex immunofluorescence to examine the distribution of
LAG-3, PD-L1, and CD8+ T cell expression in HCC tissue after hepatectomy compared
to matched non-tumor tissue in patients. They concluded that expression of LAG-3 was
an independent predictor of worse overall survival, which is similar to findings of other
studies, which found that LAG-3 predicted worse overall survival in melanoma and non-
small cell lung cancer [134–136].

In another HCC-specific study, Guo et al. demonstrated that patients with a high
LAG-3 level prior to TACE therapy were correlated with worse disease outcome. Patients
with elevated LAG-3 and PD-L1 levels had poorer overall survival compared to those with
only PD-L1 or LAG-3 elevated in the same study [137].

Conversely, a study in 2023 by Wei et al. revealed that PDCD-1 (gene of PD-1) and
LAG-3 polymorphisms did not influence the risk of HCC. However, a limitation to this
study could be that the samples were obtained from the peripheral blood, compared to the
other studies mentioned, which included samples from HCC tissue [138].

Ongoing clinical trials with dual LAG-3 and PD-1 blockade in HCC have recently been
launched. RELATIVITY-073 is an ongoing phase II trial where patients with advanced HCC
who progressed on TKI and who are naïve to immunotherapy are being randomized in a
2:1:2 ratio to either nivolumab (arm A) or one of two regimens of relatinib + nivolumab
(arms B and C) [139]. Patients must have proven LAG-3 expression and be Child–Pugh
class A. The primary endpoint is ORR.
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RELATIVITITY-106 is a novel phase I/II trial studying the combination of nivolumab
+ relatinib + bevacizumab compared to nivolumab + bevacizumab in treatment-naïve,
advanced HCC patients. The primary endpoints are PFS and incidence of dose-limiting
toxicities [75].

Initial results from a phase I/II dose escalation and expansion trial studying tebote-
limab, a PD-1/LAG-3 bispecific antibody in advanced HCC patients who had failed prior
immunotherapy, revealed that tebotelimab had a tolerable safety profile [140–142].

9.3. TIGIT

A T-cell immune receptor with immunoglobulin and ITIM domains (TIGIT) is a co-
inhibitory molecule expressed on activated T cells (Treg, CD8+ T cells, and CD4+ T cells),
B cells, and NK cells. Chiu et al. studied the mechanisms of mice liver tumor resistance
via mass cytometry. In this study, the anti-PD-1 antibody not only did not inhibit tumor
growth, but it also led to the mice harboring many more T cells expressing PD-1, LAG-3,
and TIGIT compared to the non-treatment mice. After injection of a combination of the
anti-PD-1 antibody and anti-TIGIT antibody, there was evidence of reduced tumor growth,
increased overall survival, and more expression of CTLs [143].

Ge et al. studied the role of blockade of these proteins in human HCC tissue and
found that co-blockade of TIGIT and PD-1 resulted in an enhanced proliferation of CD8+
T in nivolumab non-responders [144]. The study also noted that the CD8+ T cells with
high expression of PD-1 with co-expression of TIGIT also expressed the other inhibitory
receptors such as TIM-3 and LAG-3. They concluded that this specific subset includes the
most exhaustive CD8+ T cells.

In addition, other studies in HCC tissue found a negative correlation between the
levels of expression of TIGIT and the degree of tumor progression [145,146]. As a TIGIT
blockade seems to only affect exhausted T cells and is more specific on where and when
it is expressed, there is potential that this blockade may produce fewer treatment-related
adverse events than other checkpoint blockades [147].

The MORPHEUS-liver study is a novel phase Ib/II study investigating the combina-
tion of an anti-TIGIT therapy and tiragolumab, along with bevacizumab + atezolizumab ver-
sus the control arm of atezolizumab + bevacizumab in previously untreated patients with
unresectable HCC. At the median follow-up of 14.0 months in the experimental group and
11.8 months in the control group, ORR was 43.5% in the experimental group and 11.1% in
the control group, and no new safety-related concerns arose. This trial builds on the data of
the preclinical studies and identifies a potentially new first-line agent for unresectable HCC
if confirmed in larger trials [148]. The phase III study, IMbrave152/SKYSCRAPER-14, will
be the next trial to study the efficacy and safety of this novel combination and is expected
to start in July 2023 [149].

Table 7. Emerging checkpoint inhibitors in preclinical and clinical trials.

TIM-3 Preclinical Studies

Study Findings

Anti-TIM-3 blockade after PD-1 failure in lung cancer mice
models [110]

OS: 11.9 weeks in TIM-3 blockade after PD-1 failure versus
5.0 weeks in PD-1 blockade monotherapy (p = 0.0008) in
mice

PD-1 and TIM-3 expression in HBV-associated HCC versus
cirrhosis [127]

Greater PD-1 expression in tumor tissue compared to
surrounding cirrhosis tissue (p < 0.001)
Greater TIM-3 expression in tumor tissue compared to
cirrhosis tissue (p < 0.001)

LAG-3 Preclinical Studies
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Table 7. Cont.

TIM-3 Preclinical Studies

Study Findings

Mechanisms of enhanced anti-tumor immunity with dual blockade
of LAG-3 and PD-1 in an ovarian murine tumor model [133]

Increase in CD8+ T cells and decrease in Treg cells after
blockade
CD8+ T cells were not exhausted

Tumor response with LAG-3 and PD-1 blockade in Sa1N
fibrosarcoma and MC38-colorectal adenocarcinoma [132]

Combination: tumor resolution (% population):
Sa1N fibrosarcoma: 70%
MC38-colorectal adenocarcinoma: 80%
Monotherapy: tumor resolution
PD-1 and LAG-3 monotherapy: 0–40%

Outcome of PD-L1 and LAG-3 expression in HCC [137] Patients with high LAG-3 and PD-1 had poorer overall
survival compared to elevation of only LAG-3 or PD-1

TIGIT Preclinical Studies

Mechanisms of resistance of anti-PD-1 blockade in mice liver tumor
and effects of PD-1 and TIGIT blockade in mice liver tumor [143]

Anti-PD-1 blockade led to the mice harboring many more T
cells expressing PD-1, LAG-3, and TIGIT compared to the
non-treatment mice
After anti-PD-1 anti-TIGIT blockade, there was evidence of
reduced tumor growth, increased overall survival, and more
expression of CD8+ T cells

Effect of TIGIT and PD-1 blockade on CD8+ T cells; CD8+ T cells
effect on antibody response [144]

Dual blockade enhanced proliferation of CD8+ T cells
compared to single blockade (p < 0.05)
Tumors with CD8+ T cell depletion did not show response
to anti-TIGIT and PD-L1 blockade

TIGIT expression of T cells in healthy donors compared to those
with chronic HBV infection [147]

TIGIT expression was highest for effector T cells in chronic
HBV infection compared to healthy donors

10. Conclusions and Future Direction

Advanced HCC can be treated with several FDA-approved agents including ICI-based
therapies with or without anti-angiogenics and TKIs. Two thirds of patients do not respond
to ICI-based therapies. Identification of biomarkers is an urgent unmet need. Recent
correlative analysis of baseline tumor samples from a group of patients from GO30140 or
IMbrave150 shed light on potential biomarkers. Robust ongoing efforts in CAR- T cell
therapy, targeting other checkpoint molecules such as TIM-3, LAG-3, and TIGIT, may
expand ICI-based therapeutic options for HCC. Depending on further research, small-
molecule inhibitors targeting the PD-1/PD-L1 pathway may create an alternative with
more oral bioavailability, anti-tumor activity, and less toxicity.
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