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Abstract: Epilepsy is a neurological disorder characterized by spontaneous recurrent seizures. While
20% to 30% of epilepsy cases are untreatable with Anti-Epileptic Drugs, some of these cases can
be addressed through surgical intervention. The success of such interventions greatly depends
on accurately locating the epileptogenic tissue, a task achieved using diagnostic techniques like
Stereotactic Electroencephalography (SEEG). SEEG utilizes multi-modal fusion to aid in electrode
localization, using pre-surgical resonance and post-surgical computer tomography images as inputs.
To ensure the absence of artifacts or misregistrations in the resultant images, a fusion method
that accounts for electrode presence is required. We proposed an image fusion method in SEEG
that incorporates electrode segmentation from computed tomography as a sampling mask during
registration to address the fusion problem in SEEG. The method was validated using eight image pairs
from the Retrospective Image Registration Evaluation Project (RIRE). After establishing a reference
registration for the MRI and identifying eight points, we assessed the method’s efficacy by comparing
the Euclidean distances between these reference points and those derived using registration with
a sampling mask. The results showed that the proposed method yielded a similar average error to
the registration without a sampling mask, but reduced the dispersion of the error, with a standard
deviation of 0.86 when a mask was used and 5.25 when no mask was used.

Keywords: image fusion; stereotactic electroencephalography; computer tomography; magnetic
resonance imaging; image registration

1. Introduction

Epilepsy is a neurological disorder with a worldwide prevalence of 0.8% to 1.2%,
where 20% to 30% of cases are untreatable with Anti-Epileptic Drugs (AED) [1,2]. For those
patients, a valuable treatment is a surgical intervention [3], with a success rate ranging from
30% to 70% [4].

The success of the surgical intervention depends on a precise localization of the
epileptogenic tissue. Diagnostic techniques, including but not limited to Stereotactic Elec-
troencephalography (SEEG), play a crucial role in achieving this accuracy [3,5,6]. The
SEEG measures the electric signal within the brain areas using deep electrodes, guiding the
implantation and electrode localization with Magnetic Resonance Imaging (MRI) and Com-
puter Tomography (CT) images. However, given the limited structural details in CT images,
a fusion with an MRI is required. This fusion ensures a comprehensive representation of
both anatomical structures and electrode positions in a unified image [7–9].

Image fusion is a processing technique that involves mapping images into a common
coordinate system and merging the aligned results into a single output. Numerous methods
are available for image fusion; however, the performance of each technique is influenced by
characteristics related to the acquisition and image type [10,11]. When external objects are
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present in an SEEG sequence, it may interfere with the registration process, which relies
on similarity metrics computed using voxel data between images [10,11]. Consequently,
changes in the structural data of the CT image can affect the calculation of similarity metrics,
leading to misregistration in the fused images.

Based on the challenges associated with image registration, we conducted a systematic
review, using the methodology outlined by Kitchenham [12] for literature reviews in
software engineering. Our research looked into the techniques and tools used for brain
image fusion between CT and MRI, as well as the validation techniques employed to
measure the performance [13]. Our review revealed a notable absence of a standard
method for image fusion validation in CT and MRI, especially when external objects are
present. Furthermore, we identified a significant lack of validation methodologies for these
techniques. This is particularly concerning given that the Retrospective Image Registration
Evaluation Project (R.I.R.E.), once a standard methodology, is no longer in use. Our review
also highlighted the importance of understanding the performance of various image fusion
techniques in applications like SEEG that involve external objects. We found that methods
using Mutual Information (MI) as the optimization metric exhibited superior performance
in multimodal image fusion.

These challenges were evident in SEEG examinations conducted at Clinica Imbanaco
Grupo Quironsalud in Cali, Colombia, where we identified registration errors in the
fusion of MRI and CT images primarily attributed to the presence of electrodes. These
inconsistencies required manual adjustments to correctly align the misregistered MRI
images. In response to these challenges, we introduce an image fusion method that accounts
for external elements, primarily in exams like SEEG. It is crucial to note that while our
method is designed to mitigate the impact of external objects in the images and enhance
the spatial accuracy of electrode localization, it does not explore into the analysis of electric
signals from the deep electrodes. Such an analysis falls outside the scope of this study and
would demand a distinct analytical framework.

2. Fusion Method

The general procedure shown in Figure 1 consists of seven main steps: (i) initial
electrode segmentation in the CT image; (ii) generation of a mask of all non-electrode
voxels in the CT image; (iii) registration of the MRI against the CT image using the non-
electrode sampling mask to compute the transformation; (iv) segmentation of the brain
from the registered MRI with the ROBEX tool, and subsequently computing a brain mask;
(v) improving the electrode segmentation using the brain mask obtained from the previous
step; (vi) integrate the fully segmented electrodes with the registered MRI.

Figure 1. Image fusion method with external object.
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2.1. CT Electrode Segmentation

Given that our literature search did not identify any fusion methods that take into
account the electrode and utilize segmentation for registration [13], we devised our own seg-
mentation procedure. This procedure employs thresholding and morphological operations,
as shown in Figures 2 and 3.

Figure 2. Electrode segmentation general procedure.

Figure 3. Electrode segmentation detailed procedure.

To extract the electrodes from the CT, we employed simple thresholding with a window
of 1500 HU to 3000 HU (i). Subsequently, we computed a mask of the head tissue to remove
the skull from the segmented image (viii). Next, we generated a brain mask for the MRI,
which had been aligned with the CT, utilizing the ROBEX (Robust Brain Extraction) tool,
which is a stripping method based on the work of Iglesias et al. [14]. Finally, we applied
this mask to the registered electrodes to remove any objects situated outside the brain.

To segment the skull, we employed a simple threshold with a window ranging from
300 HU to 1900 HU (ii). Subsequently, we employed a morphological eroding technique
with a cross kernel of size 3 × 3 × 3 to eliminate the electrodes from the skull. Next, a
morphological closing and dilation operation with a ball kernel of size 4 × 4 × 4 was
performed to connect all the bone tissue (iii). Finally, we applied a NOT operator to
generate a mask of no-skull gray voxels (iv).

We generate a head mask using Otsu’s thresholding (v) to exclude any object external
to the head [15]. After that, we apply a morphological hole-filling operation to remove any
internal gap within the head (vi). Then, we create a brain mask by intersecting the head
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mask and the no-skull mask (vii). Finally, we combine the brain mask with the thresholding
electrodes, ensuring the removal of most of the skull tissue (viii).

2.2. MRI Registration

For MRI registration, we employed an affine rigid transformation combined with
a gradient descent algorithm, using Mutual Information (MI) as the similarity metric.
We opted for this registration approach because MI is based on the normal probability
distribution between images [10,11], which has been shown to be more effective in multi-
modal registration [13]. To enhance the registration process, we add a unique step that uses
a sampling of the voxels that do not contain electrodes when computing the MI. We achieve
this by creating a mask through the application of a NOT operation to the segmented
electrodes, as detailed in Section 2.1. Figure 4 shows a schema of the registration procedure.

Figure 4. Registration procedure.

2.3. Final CT Electrode Segmentation

The preliminary electrode segmentation employs both thresholding and morpholog-
ical operations. However, this approach might segment some bone tissue alongside the
electrodes, which must be excluded from the final image. To address this, we use the
aligned MRI to generate a brain mask with the aid of the ROBEX tool, as depicted Figure 5.

Figure 5. Final electrode procedure.

2.4. Image Merging

Finally, we add the segmented electrodes to the aligned MRI to produce the fused
image (Figure 6).
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Figure 6. Image merging procedure.

3. Validation Method

Given the lack of a standardized validation methodology for multi-modal image
fusion, as highlighted in our 2021 literature review [13], we opted to employ two distinct
methods to validate our proposed technique. Initially, we employ the RIRE dataset to
generate synthetic data. Then, for our second validation, we used four pairs of MRI and
CT images from SEEG exams, measuring the performance by identifying five anatomical
structures in the CT and MRI.

3.1. Validation Using RIRE Dataset

We selected eight images from the RIRE dataset containing both MRI and CT im-
ages. To simulate the presence of electrodes, we introduced cylinders into the CT images.
Subsequently, we performed a rigid registration on the images without electrodes. The
transformation obtained from this registration served as a reference for further analysis.

Furthermore, to measure the performance, we compared the location of brain struc-
tures in the registered images. This comparison was conducted using the Euclidean
distance between the reference structure in the CT and the corresponding structure in the
registered MRI.

3.1.1. Electrodes Generation

To obtain a CT image with electrodes, we used the RIRE dataset and added cylinders
to the images to simulate SEEG electrodes. These simulated electrodes were designed with
a diameter of 3 mm and a length of 80 mm, mirroring the specifications of deep electrodes
that feature eight contacts with a 10 mm spacing between them [16]. The gray values of
the generated electrodes ranged between 1500 and 3000 HU. In total, we added a total of
12 electrodes to the CT images, placing them at random orientations and positions within
the brain tissue. Figure 7 shows an example of the generated images.

Figure 7. Example of a generated image with electrodes.
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3.1.2. Reference Registration Images

To evaluate the performance of our method, we applied a rigid registration on the RIRE
dataset without electrodes. This registration procedure employed an affine transformation
with a gradient descent algorithm. We used the eight points defined in the RIRE dataset to
calculate the reference point using the reference registration. Table 1 presents the original
points used, while Table 2 displays the resulting reference points per image.

Table 1. Original point positions in mm.

Point X Y Z

1 0.0000 0.0000 0.0000
2 333.9870 0.0000 0.0000
3 0.0000 333.9870 0.0000
4 333.9870 333.9870 0.0000
5 0.0000 0.0000 112.0000
6 333.9870 0.0000 112.0000
7 0.0000 333.9870 112.0000
8 333.9870 333.9870 112.0000

Table 2. Reference resulting point for all eight images.

Image 1 Image 2 Image 3

X Y Z X Y Z X Y Z
3.4167 −22.2013 −2.6957 2.9734 −29.8271 −17.7596 7.3801 −30.8327 −32.4198

331.6863 −22.0400 −3.7915 332.0465 −27.5075 −16.6379 333.7592 −29.2687 −27.2289
4.6098 309.1427 1.7573 2.2699 305.3511 −17.0817 9.9346 301.5044 −31.1614

332.8794 309.3039 0.6615 331.3430 307.6706 −15.9600 336.3137 303.0685 −25.9705
3.6098 −21.9385 107.9271 3.0988 −24.7405 94.2014 7.8149 −28.1302 73.5445

331.8794 −21.7772 106.8313 332.1718 −22.4210 95.3231 334.1940 −26.5661 78.7354
4.8029 309.4055 112.3801 2.3953 310.4376 94.8793 10.3693 304.2070 74.8029

333.0724 309.5667 111.2843 331.4683 312.7571 96.0010 336.7485 305.7711 79.9938

Image 4 Image 5 Image 6

X Y Z X Y Z X Y Z
−4.4250 −22.1707 −6.5618 0.4343 −33.2795 −32.1174 −14.1576 −32.7423 −23.8992
327.7407 −21.7509 −8.7225 333.7756 −31.6846 −31.6177 308.7199 −34.2773 −26.0497
−4.2159 311.6391 −4.4026 1.3211 301.9878 −33.3221 −16.6352 298.2377 −21.9366
327.9498 312.0588 −6.5633 334.6624 303.5827 −32.8224 306.2424 296.7028 −24.0871
−4.0413 −22.2377 106.3093 0.9893 −30.9427 76.9555 −13.7173 −30.1729 85.4656
328.1243 −21.8180 104.1486 334.3306 −29.3477 77.4553 309.1603 −31.7078 83.3151
−3.8322 311.5720 108.4685 1.8761 304.3246 75.7508 −16.1948 300.8072 87.4282
328.3335 311.9917 106.3078 335.2174 305.9196 76.2505 306.6827 299.2722 85.2777

Image 7 Image 8

X Y Z X Y Z
−7.6836 −35.2270 −19.1140 16.5968 −32.3464 −22.5351
330.7646 −33.7368 −18.2985 337.2910 −39.1214 −20.8741
−8.3642 304.4994 −16.5283 34.2465 299.5795 −22.6286
330.0840 305.9896 −15.7128 354.9407 292.8044 −20.9676
−7.7841 −37.0440 92.8582 16.5872 −26.0946 90.3929
330.6641 −35.5538 93.6738 337.2813 −32.8696 92.0538
−8.4647 302.6823 95.4439 34.2369 305.8313 90.2994
329.9835 304.1725 96.2594 354.9310 299.0562 91.9603

Coordinates in X, Y, and Z for the points obtained from applying the reference transform in 8 pairs of CT and MRI
images from the RIRE dataset, without adding the synthesized electrodes. This point was used as a reference to
compute the Euclidean distance in the registration procedure with the synthesized images with electrodes.

3.1.3. Registration Error Using Reference Points

We computed the error using the resulting points in Table 2 and compared them to
the resulting point from the procedure described in Section 2. The error was calculated
as the Euclidean distance between the reference points and the points obtained from our
fusion method.

error =
√
(PRx − Px)

2 +
(

PRy − Py
)2

+ (PRz − Pz)
2, (1)

where PRx, PRy, PRz are the coordinates in mm for the reference points (Table 2), and
Px, Py, Pz are the reference points per image after applying our fusion method.
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3.2. Validation with Brain Structures

We measure the performance of the fusion method by using the subsequent brain
structures in the CT image as reference points: (i) the Sylvian aqueduct; (ii) the anterior
commissure; (iii) the pineal gland; (iv) the right lens; (v) the left lens.

With the guidance of a medical expert, we manually localized the structures of interest,
obtaining their positions in both the CT and registered MRI images using the 3D Slicer
version 4.11. Upon identifying these structures, we measured the error as the Euclidean
distance between the reference structure point in the CT image and the corresponding point
in the registered MRI using Figure 1. For performance evaluation, we evaluated the error in
images resulting from two distinct methods: (i) our proposed approach that incorporates a
sampling mask during registration, and (ii) a reference method from the existing literature
that conducts registration without a sampling mask. The purpose of this validation was to
determine whether the use of a mask reduces registration errors. Figures 8 and 9 show the
methods that were compared.

In our validation process, we also employed global fusion metrics to assess potential
distortions arising from the fusion procedures. The metrics we utilized include:

Mutual Information (MI):

Estimate the amount of information transferred from the source image into the fused
image [17]. Given the input images (Ii) and the fused image I f , the MI can be computed
using the following equation:

MI(Ii, I f ) = H(Ii) + H(I f )− H(Ii, I f ), (2)

where H(Ii, I f ) is the joint entropy between the input and fused images, and H(Ii), H(i f )
are the marginal entropy of the input and fused image, respectively.

Structural Similarity Index (SSIM):

Measure the preservation of the structural information, separating the image into three
components: luminance I, contrast C and structure S [17].

SSIM
(

Ii, I f

)
=
[

I
(

Ii, I f

)]a

.
[
C
(

Ii, I f

)]b

.
[
S
(

Ii, I f

)]c

. (3)

Root Mean Square Error (RMSE):

Measure the variance of the arithmetic square root [17].

RMSE =

√√√√( M

∑
x=1

N

∑
y=1

[
Ii(x, y)− I f (X, Y)

]2
)

, (4)

where Ii(x, y) and I f (X, Y), are the pixel values of the input and fused image, respectively,
and M, N are the dimensions of the image.

Peak Signal-to-Noise Ratio (PSNR):

The PSNR is calculated from the RMSE in the following equation given image of
dimension M × N [17]

PSNR = 10 · Log

[
(M × N)

2

RMSE

]
. (5)
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Figure 8. Proposed method that uses a sampling mask for the registration.

Figure 9. Method to compare that does not use a sampling mask in the registration.

4. Results

We validated the performance of the fusion method following the two methodologies
in Section 3. We used eight pairs of CT and MRI from the RIRE dataset for the first
method. The CT images were generated with the method described in Section 3.1.1. We
compared the procedure shown in Figure 8 against a fusion procedure that does not employ
a sampling mask of the brain tissue, which is shown in Figure 9. Both methods used a
rigid registration with MI as the similarity metric and gradient descent for the optimization.
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We used descriptive statistical metrics of central tendency and variation to compare the
methods using the validation from Section 3.1. These results were summarized in the
box plot shown in Figure 10. For the second validation, we faced a limitation in the
number of images available for evaluation. Given this constraint, we opted to compare
the methods individually for each of the four cases. A scatter plot was chosen as the most
suitable representation to visualize the error dispersion for both methods. Scatter plots are
particularly effective in such scenarios as they allow for clear visualization of individual
data points, making it easier to discern patterns or anomalies, especially when dealing with
a smaller dataset. This approach provides a more transparent and detailed view of the
distribution of errors across the limited set of images. The results of this comparison are
illustrated in Figure 11.

Table 3 displays the Euclidean distance between the reference points and the resulting
points of the transformation from the compared methods. From the data, we can observe
that the difference in the Euclidean distance for our method is significantly lower in images
3, 6, and 8. This is mainly caused by the differences in the original images that have some
variations in brain tissue, as shown in Figures 12–14. Due to some electrodes passing
through these areas with variations, the sampling in the registration does not use these
voxels to compute the transformation, thus improving the registration when the mask is
used. The results are represented in Figure 10, where our method using a sampling mask
yields a Euclidean distance of 1.3176 mm with a standard deviation of 0.8643. In contrast,
the method without a sampling mask yields a Euclidean distance of 1.2789 mm with a
standard deviation of 5.2511. These findings suggest that the use of the mask improves the
registration when there is a great difference in the tissue between the MRI and CT images
due to the reduction in voxel sampling of these varying tissues in the registration process.

Table 3. Euclidean distance in mm for the image fusion methods.

Point images 1 images 2 images 3 images 4

Mask no Mask Mask no Mask Mask no Mask Mask no Mask
1 0.209 0.179 1.260 0.535 2.114 3.469 1.247 0.594
2 0.367 0.191 0.666 0.617 1.553 4.152 0.915 1.015
3 0.468 0.131 1.446 0.727 1.307 6.576 1.507 0.703
4 0.159 0.365 1.409 0.586 1.279 7.070 0.430 0.415
5 0.148 0.258 1.204 0.749 1.714 5.029 0.843 0.343
6 0.489 0.114 0.850 0.870 0.987 5.274 0.958 0.827
7 0.346 0.174 1.386 0.575 0.960 8.033 1.344 0.859
8 0.228 0.297 1.494 0.496 0.972 8.282 0.803 0.553

Point images 5 images 6 images 7 images 8

Mask no Mask Mask no Mask Mask no Mask Mask no Mask
1 3.064 2.998 0.737 5.057 1.327 0.909 3.161 10.620
2 3.059 2.964 1.366 17.157 0.954 0.892 1.108 5.676
3 2.612 2.584 1.595 9.568 0.328 0.436 3.041 9.223
4 1.601 1.543 2.803 21.541 0.614 0.098 1.396 7.952
5 2.175 2.189 1.594 6.484 1.089 0.598 3.258 10.370
6 1.832 1.782 2.116 17.945 0.615 0.546 1.854 6.935
7 3.247 3.209 1.661 10.419 0.705 0.611 3.014 8.926
8 2.223 2.141 2.948 22.187 0.899 0.404 1.836 8.886

Euclidean distance between the resulting points computed with the transformation from the proposed method
using a sampling mask and the method with no sampling mask; images 3, 6, and 8 show a lower Euclidean
reduction when a mask was used.
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Figure 10. Box diagram of Euclidean distance for the different methods.

Figure 11. Scatter plot of the Euclidean distance between anatomical structures in the images
from Imbanaco.
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Figure 12. Image 3 fusion with no mask and with a mask.

Figure 13. Image 6 fusion with no mask and with a mask.

Figure 14. Image 8 fusion with no mask and with a mask.
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For the second validation, we use the methodology described in Section 3.2 in four
pairs of MRI and CT images obtained from Clínica Imbanaco Grupo Quirón Salud. Table 4
displays the localized points in the CT image that we used as a reference in our analysis.
The localized points for the structure in the MRI registered with our proposed methods are
shown in Table 5, while the points in the MRI from the method to compare are displayed in
Table 6.

Table 4. Reference structures in CT image.

Structure Image 1 Image 2

X Y Z X Y Z
Sylvian Aqueduct 1.619 132.161 128.294 1.719 130.778 −390.919

Anterior commissure 0.079 149.323 131.294 0.31 145.902 −365.217
Right lens 30.48 227.407 121.907 30.951 230.123 −365.558
Left lens −39.392 221.421 120.383 −38.422 226.1 −367.741

Pineal gland 1.399 132.381 139.294 2.155 125.729 −375.287

Image 3 Image 4

X Y Z X Y Z
Sylvian Aqueduct −0.001 133.384 −411.389 6.398 149.516 −571.414

Anterior commissure −0.425 170.072 −410.326 −0.19 170.766 −565.312
Right lens 29.609 225.447 −457.272 −0.743 234.271 −598.263
Left lens −36.389 224.62 −453.821 −54.969 215.592 −584.7

Pineal gland 1.039 141.247 −398.385 9.875 147.018 −558.196
Coordinates in X, Y, and Z of the located structures in the four CT images.

Table 5. Structures in MRI registered with mask.

Structure Image 1 Image 2

X Y Z X Y Z
Sylvian Aqueduct −0.497 135.501 131.223 −0.941 137.412 −374.917

Anterior commissure −2.628 159.994 140.26 −2.127 163.213 −365.627
Right lens 31.231 226.372 126.957 34.232 237.695 −379.789
Left lens −38.222 220.542 124.31 −36.479 233.46 −377.886

Pineal gland −0.381 134.024 139.112 −0.327 131.274 −372.335

Image 3 Image 4

X Y Z X Y Z
Sylvian Aqueduct −0.139 146.147 −404.701 3.085 150.405 −571.851

Anterior commissure −2.833 169.993 −409.066 −0.279 173.761 −569.139
Right lens 28.638 225.725 −456.317 13.94 230.782 −603.875
Left lens −37.283 224.27 −452.711 −46.124 228.076 −603.892

Pineal gland 0.002 143.884 −399.845 5.151 144.134 −566.054
Coordinates in X, Y, and Z of the located structures in the resulted fused images using a sampling mask in the
registration procedure.

Table 6. Structures in MRI registered without mask.

Structure Image 1 Image 2

X Y Z X Y Z
Sylvian Aqueduct −0.469 136.396 131.874 −0.435 134.905 −378.153

Anterior commissure −2.491 160.081 140.798 −2.048 158.782 −365.235
Right lens 31.606 226.472 127.22 33.893 231.655 −370.27
Left lens −38.372 220.462 124.4 −36.656 226.912 −371.566

Pineal gland 0.05 131.032 134.609 0.013 129.051 −375.979

Image 3 Image 4

X Y Z X Y Z
Sylvian Aqueduct 1.229 146.558 −405.057 3.03 151.037 −571.368

Anterior commissure −0.905 169.695 −409.541 −0.098 173.599 −569.108
Right lens 29.558 226.22 −455.332 14.847 230.98 −603.507
Left lens −36.204 224.27 −452.584 −45.157 228.144 −605.603

Pineal gland 1.401 141.552 −399.967 4.646 144.436 −565.84
Coordinates in X, Y, and Z of the located structures in the resulted fused images without using a sampling mask
in the registration procedure.
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After the structure localization, we compute the Euclidean distance between the points
from the registered MRI against the points of the CT images. This process is applied the
resulting images from our proposed method and the method that uses no sampling mask
in the registration. The resulting Euclidean distances are shown in Table 7.

The validation results, displayed in Table 7, show that our method has a higher
Euclidean distance compared to the method without a mask for images from patient 1,
patient 3, and patient 4. However, our method achieves a lower Euclidean distance in
images from patient 2. Further analysis of the two methods using global performance
metrics, as presented in Table 8, reveals a relatively low difference, indicating minimal
distortion in the images when comparing the two methods.

Table 7. Euclidean distance between resulting registered images.

Structure Image 1 Image 2 Image 3 Image 4

Mask no Mask Mask no Mask Mask no Mask Mask no Mask
Sylvian aqueduct 5.925 4.921 13.588 17.526 14.668 14.41 3.696 3.458

Anterior commissure 14.583 14.198 13.094 17.487 0.994 2.719 4.738 4.86
Right lens 5.511 5.209 5.762 16.451 2.089 1.39 16.774 16.101
Left lens 4.254 4.191 4.291 12.683 1.299 1.468 26.282 24.544

Pineal gland 5.059 2.429 4.013 6.754 1.651 3.188 9.615 9.612
Euclidean distance between the reference structures with the structures from the resulting fused image in the
methods using the mask and with no mask.

Table 8. Global fusion evaluation metrics in resulting registered images.

Metric Image 1 Image 2 Image 3 Image 4

Mask no Mask Mask no Mask Mask no Mask Mask no Mask
RMSE 7334.771 7334.767 7399.4 7537.772 6194.527 6207.718 7655.544 7657.312
PSNR 95.501 95.501 94.34 94.154 97.759 97.738 94.361 94.359
SSIM 0.893 0.893 0.87 0.9 0.774 0.775 0.853 0.853

MI 0.574 0.574 0.433 0.416 0.433 0.438 0.348 0.348
Global performance metrics for the fused images using the mask and without using the mask.

While the validation with the limited dataset showed some promising results, it still
requires further refinement. While we were able to reduce the Euclidean distances for all
structures in patient 2’s images and for some structures, such as the anterior commissure
and the pineal gland, in patient 3’s images, our method displayed a higher Euclidean
distance in images for patient 1 and patient 4. We employed global fusion metrics from
Table 8 to analyze if the difference in distance was caused by any distortion in the registra-
tion procedure. However, these metrics did not reveal any significant difference related to
distortion in the registered images using any of the compared registration methods.

While the application of the mask did induce an increase in error for certain images,
the implementation of our method with the mask notably reduced the average error and
overall dispersion, as depicted in Figure 11. This demonstrates the promising potential of
our method. However, with the limited dataset, while showing some promising results,
it is evident that further refinement is necessary. To conclusively affirm the improvement
introduced by our approach, a larger dataset is required for this validation methodology.

5. Discussion

Our proposed image fusion method between MRI and CT, which considers the elec-
trodes, is useful in addressing the identified problem, where the presence of external objects
produced a registration error. This approach improves the registration in the images using
the RIRE dataset. However, in the second validation stage, our method demonstrated
a lower average error, yet we observed instances where performance was lower when
the sampling mask was applied. This could be attributed to the potential importance
of information proximal to the electrode for the calculation of similarity metrics during
the registration procedure. However, even in these cases, the error increase was minimal
compared to scenarios where the error was lower.
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Another challenge was the absence of a standardized validation method for mul-
timodal fusion, prompting us to develop our own method using available data. This
included the limited dataset from Imbanaco and the deprecated RIRE dataset.

We also found a lack of research on methods for electrode segmentation in SEEG. This
necessitated the development of our own registration method, a task that was not initially
included in the project scope.

All objectives of the project were achieved. The project successfully identified primary
techniques for image registration and fusion between MRI and CT images, developed a
method to fuse these images when external objects were present, and conducted an evalua-
tion to measure and compare the performance of the designed method. In the evaluations,
the method outperformed other existing state-of-the-art techniques in certain scenarios.

6. Conclusions

We have developed and presented an image fusion method for combining CT and
MRI from SEEG exams. Our approach aims to minimize misregistration errors between
pre-surgical MRI and post-surgical CT images, by the use of a sampling mask of all voxels
that are not electrode in the post-surgical CT image.

We acknowledged the lack of a standard validation method for image fusion and
registration in brain images, mainly when external objects are presented in one of the
images. We addressed this by employing two evaluation approaches: (i) a simulation-based
evaluation method with synthetic electrodes generated from the RIRE dataset; and (ii)
an evaluation using four image pairs acquired from patients at Clinica Imbanaco Grupo
Quirón Salud, where we measured the error using five anatomical structures that can be
localized in the pre-surgical MRI and post-surgical CT images.

Our findings indicate that the proposed method outperforms the existing state-of-the-
art techniques in the simulation-based evaluation using the RIRE dataset. In the evaluation
using clinical images, we observed that our method demonstrated superior performance
in some cases, while showing a slight decrease in performance in others. Despite this
variability, the overall average Euclidean distance was lower for our method, suggesting
an improvement in registration accuracy.

We recommend enhancing the second validation methodology by increasing the
number of images and refining the localization of brain structures to further reduce bias
in the evaluation results. This would enable a more comprehensive assessment of the
proposed fusion method’s performance for clinical scenarios.

In conclusion, our proposed image fusion method shows promise for improving
the accuracy of the registration in SEEG. With further development and refinement, this
approach has the potential to significantly impact the field of epilepsy treatment, offering
further aid in the localization of epileptogenic tissue when SEEG is employed.
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