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Abstract: Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced
breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents
the most common subtype of breast cancer associated with the worst outcomes. Identifying the
genes associated with chemoresistance is crucial for understanding the underlying mechanisms and
discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant
chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole
RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant
patients. We further validated eight highly correlated genes associated with resistance. Among these,
solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4),
both implicated in ion transport, showed the strongest association with chemoresistance. Notably,
SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4),
encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential
link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal
breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to
overcome chemoresistance.

Keywords: luminal breast cancer; locally advanced; chemoresistance; neoadjuvant chemotherapy;
ion transport

1. Introduction

Breast cancer remains the most prevalent cancer in women, accounting for 24.5% of all
tumors found and over 2.2 million new cases in 2020 [1]. The mortality from breast cancer
is higher in lower-income countries, like in Latin America, where approximately 70% of
diagnoses are in patients with large-sized, node-positive, or inoperable tumors, known as
locally advanced breast cancer (LABC) [2–4]. The primary treatment for LABC involves a
neoadjuvant chemotherapy (NAC) regimen consisting of taxanes and anthracyclines [5].
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NAC is administered prior to surgery and serves multiple purposes. Firstly, it helps render
large tumors operable by reducing their size. Additionally, NAC allows for monitoring of
treatment responses, aiding in the determination of whether additional targeted therapy,
hormonal therapy, or radiation therapy is necessary. After completing NAC, patients com-
monly undergo surgery, and the effectiveness of the treatment is evaluated pathologically
in surgical specimens [6]. Different pathological methods are used to assess responses after
NAC, with residual cancer burden (RCB) being one of the most comprehensive methods, as
it assesses and quantifies the extent of residual disease in the mammary gland and lymph
nodes. RCB is calculated as a continuous variable defining four classes, ranging from a
complete pathological response (pCR or RCB-0) to chemoresistance (RCB-III) [7].

Chemoresistance, most often detected at the end of NAC, continues to be a great
challenge [8], especially in the luminal breast cancer subtype. Although this subtype rep-
resents most breast tumors and has the best long-term survival, it is also more likely to
exhibit resistance to NAC [9–11]. Thus, the clinical decision to administer NAC in this
subtype remains controversial [12]. Identifying the underlying mechanisms associated with
NAC chemoresistance could enable the application of effective therapies and minimize
the potential adverse effects of chemotherapy. Chemoresistance in breast cancer has been
attributed to several molecular mechanisms, such as efflux transporters, signaling path-
ways, non-coding RNAs, and cancer stem cells [13]. While significant progress has been
made in unraveling these mechanisms, a comprehensive understanding of the molecular
complexities in breast cancer remains a challenging task.

In the present study, our objective was to search for transcripts via RNA sequencing,
which could be associated with chemoresistance in luminal breast cancer, and to evaluate
them at the protein level using immunohistochemistry (IHC) to obtain insights into the
mechanisms underlying drug resistance that could guide the development of effective
treatment strategies. For that purpose, we sequenced the RNA of twelve patients from the
National Cancer Institute of Mexico and obtained differentially expressed genes (DEGs)
between sensitive and resistant patients (Scheme 1). Subsequently, we evaluated the DEGs
that were most associated with resistance and then validated two candidate genes using
IHC. We found that the genes solute carrier family 12 member 1 (SLC12A1) and glutamate
ionotropic receptor AMPA type subunit 4 (GRIA4) are associated with NAC resistance in
luminal breast cancer.
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Scheme 1. Method used to identify resistance markers in luminal breast cancer. We divided this
method into three steps: (1) patients and tissue collection, (2) discovery, and (3) validation.
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2. Results
2.1. Clinicopathological Features in the Breast Cancer Cohort

The description in Table 1 shows the clinicopathological characteristics of the luminal
LABC patients included in this study and the associated response to NAC, classified as
sensitive or resistant. The response correlated with the clinical stage (p = 0.029), in which
resistant patients were diagnosed with more advanced clinical stages compared to those
who were sensitive. In addition, most resistant patients were estrogen receptor positive
(p = 0.007) and HER2 negative (p = 0.002).

Table 1. Baseline characteristics of chemosensitive and chemoresistant luminal breast cancer patients
included in this study (n = 62).

Variable Chemosensitive
(n = 28)

Chemoresistant
(n = 34) p-Value

Age, yrs
Mean (range) 49.7 (34–68) 50.7 (34–68) 0.865 a

BMI, kg/m2

Mean (range) 29.2 (19.7–40.2) 29.5 (22.7–42.6) 0.932 a

Tumor size, cm
Mean (range) 6.6 (3–15) 6.4 (1.5–14) 0.691 a

Menopausal status
Pre 13 (46.4%) 15 (44.1%)

1 b
Post 15 (53.6%) 19 (55.9%)
Histological subtype
Ductal 25 (89.3%) 31 (91.2%)

1 b
Lobular 3 (10.7%) 3 (8.8%)
Clinical stage
II 8 (28.6%) 3 (8.8%)

0.029 b,*III 20 (71.4%) 31 (91.2%)
Grade
Low 4 (14.3%) 4 (11.7%)

0.249 bIntermediate 9 (32.1%) 19 (55.9%)
High 15 (53.6%) 12 (35.3%)
KI67
Low (<20%) 2 (7.1%) 11 (32.4%)

0.089 b
High (≥20%) 26 (92.9%) 23 (67.6%)
ER status
Positive 21 (75%) 34 (100%)

0.007 b,*Negative 7 (25%) 0 (0%)
PR status
Positive 33 (75%) 34 (100%)

0.389 b
Negative 2 (25%) 0 (0%)
HER2 status
Positive 13 (46.4%) 3 (8.8%)

0.002 b,*Negative 15 (53.6%) 31 (91.2%)
Subtype
Luminal A 2 (7.1%) 11 (32.4%)

0.001 b,*Luminal B HER2- 13 (46.4%) 20 (58.8%)
Luminal B HER2+ 13 (46.4%) 3 (8.8%)
Recurrence
Yes 4 (14.3%) 9 (26.5%)

0.39 b
No 24 (85.7%) 25 (73.5%)
Status
Death 2 (7.1%) 4 (11.8%)

0.856 b
Alive 26 (92.9%) 30 (88.2%)

a Mann–Whitney U test. b Yates’ Chi-squared test. * p < 0.05. Abbreviations: BMI, body mass index; ER, estrogen
receptor; HER2, human epidermal growth factor receptor 2.
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2.2. Downregulated Genes in Resistant Patients Were Associated with Pathways Involved in
Cancer and Membrane Transport

With the aim of identifying the genes potentially associated with NAC resistance,
we performed whole-transcriptome sequencing on 12 patient samples, comprising 4 sen-
sitive and 8 resistant cases. A differential expression analysis among both groups was
performed, obtaining 269 DEGs, most of which were downregulated in resistant patients
(Figure 1A). An enrichment analysis was carried out to explore the biological functions
and pathways of the 269 DEGs. In Figure 1B, the enriched human diseases are shown.
Interestingly, most of the downregulated genes were involved in carcinogenic processes,
while upregulated genes were linked with other diseases, such as respiratory diseases. The
gene ontology for biological processes is indicated in Figure 1C, where downregulated
genes participated in biological processes such as import and transport across the cell
membrane, while upregulated genes were involved in the formation and stabilization of
microtubules. Furthermore, the participation of the genes in molecular pathways was
explored, and the top 10 enriched pathways are shown in Figure 1D. The results revealed a
prominent participation of downregulated genes, such as NODAL, POU5F1, SOX2, and
NANOG, which are related to proliferation and differentiation.

In order to obtain a list of genes that correlate with a response to NAC and could
be further validated in this study, a correlation analysis was performed between the
DEGs and the RCB. A list of eight genes was retrieved, of which three were upregulated
(ABHD14B, NDUFAF3, TEX264) and five were downregulated (GRIA4, GHD, SOSTDC1,
HGD, SLC12A1) in resistant patients (RCB ≤ −0.7 or ≥0.7, Log2 FC ≤ 2 or ≥2 and p-
adjusted < 0.05; Figure 1E).

2.3. Validation of the DEGs in Breast Cancer Patients

The eight correlated genes were validated using real-time PCR and an external RNA-
seq dataset (Dataset ID: EGAD00001008269) obtained from the TransNEO study (See
Section 4). SOSTDC1 and SLC12A1 were significantly downregulated in resistant patients
using real-time PCR (p = 0.004 and p = 0.028, respectively; Figure 2A), whereas SLC12A1
remained the only statistically significant gene in the RNA-seq dataset (p = 0.018; Figure 2B).

2.4. SLC12A1 Is Associated with Chemosensitivity to NAC

The sample size was increased to validate SLC12A1 expression using qPCR (n = 46,
Figure 2C) The analysis revealed a significant decrease in expression among the patients
resistant to treatment (p = 0.0261). Consequently, we decided to further investigate by exam-
ining the presence of the SLC12A1 protein, also known as the Sodium-Potassium-Chloride
Cotransporter 2 or NKCC2. This assessment was conducted using tissue microarrays and
involved 31 breast cancer tissue samples collected prior to the start of chemotherapy. At the
protein level, NKCC2 was not detected in the breast cancer tissue samples from resistant
nor sensitive patients, as shown in Figure S1.

The prognostic significance of SLC12A1 mRNA was evaluated using the Kaplan–Meier
method from the qPCR data. The log-rank test was utilized to compare differences between
groups of patients with low and high expression of this gene. The survival analysis was not
significant for distant relapse-free survival in our cohort (HR = 0.76 [0.18–3.20]; p = 0.707;
Figure 2D), suggesting that this mRNA was not a prognostic factor in this cohort of luminal
breast cancer patients. Expanding our analysis, we studied a larger external breast cancer
dataset (GSE25066 from GEO repository, Figure 2E). Although a trend towards worse
distant relapse-free survival (DRFS) was observed in patients with higher gene expression,
it lacked statistical significance (HR = 0.58 [0.32–1.08]; p = 0.083). Consequently, SLC12A1
mRNA’s role as a prognostic biomarker in these cohorts seems uncertain. Unfortunately,
we could not evaluate overall survival due to limited events in our cohort and the absence
of this endpoint in the external database.
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tion); Genes that did not meet the significance threshold are denoted as ‘NS’; (B) Disease enrichment 
analysis dot plot generated using the DOSE package in R, based on differential expression analysis 

Figure 1. Analysis of differentially expressed genes and functional enrichment in luminal chemore-
sistant breast cancer patients. (A) Volcano plot of the up- and downregulated genes in chemoresistant
patients (p-adjusted < 0.05, log2 fold change > 1 for upregulation and <1 for downregulation); Genes
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that did not meet the significance threshold are denoted as ‘NS’; (B) Disease enrichment analysis
dot plot generated using the DOSE package in R, based on differential expression analysis with
p-adjusted < 0.05 and log2 fold change ≤ −1 or ≥1. Dot color indicates the p-adjusted value of
each term, and gene ratio indicates the proportion of genes in the term relative to the total number
of genes in the dataset. The plot shows the top 16 most significant human diseases, revealing a
significant enrichment of neoplasms in the downregulated genes. (C) Gene ontology analysis dot plot
of enriched biological concepts, analyzed using the clusterProfiler package in R. The downregulated
genes are associated with processes such as import and transport across the cell membrane, while
the upregulated genes are involved in the formation and stabilization of microtubules; (D) Network
of gene and biological concept linkages enriched in resistant patients, based on ConsensusPathDB
pathways. Node size reflects the number of genes associated with each biological concept, and edges
represent functional relationships between these genes; (E) Heatmap of differentially expressed genes
that correlate with the residual cancer burden (RCB) classification (correlation ≥ 7 or ≤−7, log2 fold
change ≥ 2 or ≤−2, and p-adjusted < 0.05). Rows represent genes, and columns represent tissue
samples, with expression levels indicated by a color scale ranging from blue (downregulated) to red
(upregulated).
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Figure 2. Chemoresistant patients showed downregulation of the solute carrier family 12 member
1 (SLC12A1) gene. (A) Box plots showing the validation of eight resistance-correlated genes in
12 patients using real-time PCR. Outlying data points are considered as outliers. (B) box plots
showing gene transcripts per million (TPM) of eight resistance-correlated genes in 102 breast cancer
samples from dataset EGAD00001008269 (published by Sammut et al. [14]); (C) box plot showing
SLC12A1 mRNA levels in 46 breast cancer samples, measured using real-time PCR; (D) Kaplan–Meier
graph for distant relapse-free survival (DRFS) of luminal-ER+ patients with low or high expression
of SLC12A1 determined using real-time PCR; (E) Kaplan–Meier graph for DRFS of luminal-ER+
breast cancer patients with low or high SLC12A1 expression from the microarray dataset GSE25066
(published by Hatzis et al. [15]). Median ± range are shown in box plots, and the Mann–Whitney test
was used to analyze the data. * p < 0.05, ** p < 0.005 were considered significant.
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The relationship between SLC12A1 expression and resistance in breast cancer patients
was further investigated using bivariate and multivariate logistic regression analyses
(Table 2). These analyses, using real-time PCR data, revealed that high expression levels
of SLC12A1 were positively associated with menopausal status (OR = 4.36 [1.13–19.42],
p = 0.039) and an age of over 50 years (OR = 4.50 [1.12–23.07], p = 0.045), but not with other
variables such as tumor size, clinical stage, or molecular subtype. The multivariate analysis,
adjusted for age and menopausal status, showed that only resistance remained a predictive
variable for high expression of SLC12A1 (OR = 0.09 [0.01–0.48], p = 0.011), indicating that
the resistant patients were 87% less likely to have high expression of SLC12A1 compared to
the non-resistant patients. The predictive capacity of SLC12A1 expression to differentiate
between the sensitive and resistant patients was also assessed. A receiver operating
characteristic (ROC) curve was constructed, where SLC12A1 showed a sensitivity of 41.67%,
specificity of 90.91%, and an area under the curve (AUC) of 0.70, indicating its ability to
identify true sensitive patients who benefit from NAC (Table 3). These findings suggest
that high expression levels of SLC12A1 are associated with sensitivity to neoadjuvant
chemotherapy in luminal breast cancer patients.

Table 2. Bivariate and multivariate logistic regression analysis to identify the variables related to
SLC12A1 expression (high vs. low, cutoff = 0.05) in patients resistant to neoadjuvant chemotherapy
(n = 46).

Bivariate Multivariate

OR 95% CI p-Value OR 95% CI p-Value

Age (≥50 vs. <50) 4.50 [1.12–23.07] 0.045 * 6.06 [0.20–133.15] 0.243
Menopausal status (positive vs. negative) 4.36 [1.13–19.42] 0.039 * 1.22 [0.07–34.70] 0.891
Tumor size (T3/T4 vs. T1/T2) 1.25 [0.28–4.99] 0.756
Clinical stage (III vs. II) 0.80 [0.20–3.57] 0.756
Luminal A (positive vs. negative) 0.47 [0.07–3.94] 0.440
Luminal B HER2- (positive vs. negative) 0.40 [0.08–1.59] 0.215
Luminal B HER2+ (positive vs. negative) 6.5 [1.07–125.78] 0.089
Resistance (positive vs. negative) 0.13 [0.02–0.60] 0.017 * 0.09 [0.01–0.48] 0.011 *

* p < 0.05. Abbreviations: OR, odds-ratio; CI, confidence interval.

Table 3. Predictive performance of marker candidates for neoadjuvant chemotherapy response in
luminal breast cancer patients.

Biomarker Detection Method AUC (95% Cl) p-Value Cut-Off Sensitivity (95% Cl) Specificity (95% Cl)

SLC12A1 Real-time PCR 0.70 (0.54–0.85) 0.026 0.05 41.67 (24.47–61.17) 90.91 (72.19–98.38)
GLUR4 IHC 0.77 (0.58–0.96) 0.019 1.5 88.24 (65.66–97.91) 54.55 (28.01–78.73)

Abbreviations: SLC12A1, solute carrier family 12 member 1; GLUR4, glutamate ionotropic AMPA type subunit 4;
AUC, area under the curve; CI, confidence interval; PCR, polymerase chain reaction; IHC, immunohistochemistry.

2.5. High Levels of GLUR4 Are Associated with Chemoresistance and Worse Prognoses

Ion channels and membrane transporters are well-known to be involved in drug
resistance [16,17]. Given SLC12A’s known function as an ion transporter and its previously
observed correlation with chemoresistance, we investigated GRIA4, which encodes the ion
channel glutamate receptor 4 (GLUR4). GRIA4 was chosen from a list of eight correlated
DEGs with chemoresistance (Figure 1E), owing to its functional resemblance to SLC12A1
and existing evidence of its involvement in cancer [18–20]. We hypothesized that both
genes might collectively contribute to ion transport mechanisms related to chemoresistance
in breast cancer.

In our analyses, no significant differences were observed in GRIA4 mRNA levels
between the sensitive and resistant groups. Consequently, we opted to examine GRIA4 at
the protein level (known as GLUR4) in breast cancer patient biopsies obtained before NAC
using tissue microarrays, as outlined in Section 4. We found that GLUR4 was significantly
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increased in resistant patients (p = 0.016; Figure 3B,C). In addition, patients with high
protein abundance had worse distant relapse-free survival rates, although this was not
statistically significant (HR = 4.42 [0.80–24.47]; p = 0.089) compared to patients with low
protein levels, as shown in the Kaplan–Meyer curve in Figure 3E. To further investigate
the prognostic value, GRIA4 mRNA expression was evaluated in a larger external cohort
from the GSE25066 dataset (n = 297; Figure 3F). In this cohort, no significant differences in
GRIA4 mRNA levels were found among the sensitive and resistant patients (Figure S2B);
however, high mRNA levels were significantly associated with worse prognoses (HR = 2.20
[1.10–4.37]; p = 0.022; Figure 3F).
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GLUR4 through immunohistochemistry (IHC) in normal colon tissue, utilized as a positive control.
Representative magnified image highlights staining along the epithelial cells. Scale bars: 500 µm
and 50 µm (zoomed in); (B) Representative images of tru-cut biopsies taken before neoadjuvant
chemotherapy from breast cancer patients, illustrating the presence of GLUR4 staining. The magnified
view highlights the staining within tumor cells. (C) Calculation of IHC scores by multiplying staining
intensity with the proportion of positivity. (D) Scatter plot of IHC scores demonstrating a significant
elevation in GLUR4 protein levels in chemoresistant tissues compared to chemosensitive tissues. Data
presented as median ± range and analyzed using the Mann–Whitney test. (E) Distant relapse-free
survival analysis (DRFS) of breast cancer patients based on low or high GLUR4 protein levels from
tissue microarrays. (F) DRFS analysis of luminal breast cancer patients based on low or high GRIA4
gene expression from microarray dataset GSE25066. * p < 0.05 was considered statistically significant.

2.6. GLUR4 Is a Potential Predictive Marker of Resistance to NAC in Breast Cancer

Our analysis of the IHC data using bivariate logistic regression revealed that a high pro-
tein abundance of GLUR4 is an independent predictor of response (OR = 9.00 [1.53–77.22],
p = 0.023; see Table 4). Moreover, ROC curve analysis demonstrated that GLUR4 protein
abundance could effectively identify the patients who were truly resistant to NAC, with
GLUR4 showing a sensitivity of 88.24%, specificity of 54.55%, and an AUC of 0.77 (Table 3).
These findings suggest that increased levels of GLUR4 protein could be indicative of
chemoresistance in luminal LABC. This potential association presents a novel opportunity
for developing targeted therapies to address and overcome resistance.

Table 4. Bivariate logistic regression analysis to identify the variables related to GLUR4 protein levels
(high vs. low, cutoff = 1.5) of patients resistant to neoadjuvant chemotherapy (n = 28).

OR 95% CI p-Value

Age (≥50 vs. <50) 2.46 [0.44–19.66] 0.335
Tumor size (T3/T4 vs. T1/T2) 0.21 [0.01–1.55] 0.185
Lymph nodes (N1, N2, N3 vs. N0) 11.40 [1.18–260.86] 0.053
Clinical stage (III vs. II) 0.57 [0.03–4.81] 0.643
Luminal A (positive vs. negative) 0.90 [0.17–5.43] 0.901
Luminal B HER2- (positive vs. negative) 1.50 [0.28–8.16] 0.630
Luminal B HER2+ (positive vs. negative) 0.37 [0.01–10.16] 0.500
Resistance (positive vs. negative) 9.00 [1.53–77.22] 0.023 *

* p < 0.05. Abbreviations: OR, odds ratio; CI, confidence interval.

3. Discussion

Resistance to NAC is commonly observed in Luminal A subtype tumors, which are
defined by their ER+/HER2- characteristics [21]. Our study supports this observation
and further demonstrates a significant correlation between NAC resistance and advanced
clinical stages, as shown in Table 1.

We utilized RNA-seq to identify potential biomarkers linked to NAC resistance in
12 locally advanced luminal-like breast tumors. The selection for RNA sequencing was
based on high RNA integrity numbers (>8.0) and budget considerations. Overcoming
this limitation through future collaborative endeavors could enable the analysis of a more
extensive sample pool.

Our RNA-seq analysis identified 269 DEGs, with the majority (83.6%) showing down-
regulation in resistant patients. These DEGs were linked to membrane transport processes,
deregulating pathways, and stemness-associated genes, including NODAL [22], POU5F [23],
SOX2 [24], and NANOG [25]. These genes are known contributors to chemoresistance,
particularly through ATP-binding cassette (ABC) transporters—a widely recognized mech-
anism of multidrug resistance [26]. We found eight DEGs that were highly correlated with
RCB and then validated them using qPCR and an external database. We focused on the
gene SLC12A1, because it was the only one that was significantly differentially expressed
in both validation databases. We also selected GRIA4, because, similar to SLC12A1, it is
associated with the transport of ions across cell membranes.
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SLC12A1 encodes a sodium–potassium–chloride co-transporter, known as NKCC2,
which belongs to the solute carrier (SLC) 12 family of transporters and mediates NaCl
reabsorption in the kidney [27]. SLC12A1 has been implicated in tumors, acting as an onco-
gene in hepatocellular carcinoma [28] or as a tumor suppressor in renal cell carcinoma [29].
It has also been suggested to play a role in chemoresistance in ovarian cancer [30]. SLC
transporter members are associated with prognosis in breast cancer [31–33] and chemore-
sistance in tumors [30,34,35]. For instance, a study found that the organic cation transporter
SLC22A16 mediates doxorubicin influx and conferred sensitivity in leukemic cells [36]. In
another study, SLC22A16 upregulation was associated with poor overall survival in gastric
cancer [37]. For these reasons, SLC transporters significantly impact cancer biology and
chemoresistance.

In our study of breast cancer patients, we observed a decrease in SLC12A1 expression
among the resistant patients compared to the sensitive patients. This finding suggests a
potential role for SLC12A1 in mediating drug influx in cancer cells, with its downregulation
possibly conferring resistance to chemotherapy, similar to what has been observed with
other SLC transporters such as SLC22A16 [36]. However, we were unable to detect this
change in expression at the protein level in the tissues of either sensitive or resistant patients,
possibly due to the sensitivity of the test and/or the small number of samples analyzed.
The limited sample size may have contributed to the lack of significant statistical results for
SLC12A1 in Figure 2D,E. In addition, due to the limited amount of tissue obtained from the
tru-cut biopsies, we were unable to definitively validate the specificity of the polyclonal
antibodies used in our experiments using other techniques, such as Western blotting or
ELISAs. However, our experiments included positive controls that demonstrated specificity
in the evaluated tissues, as shown in Figure S1A and Figure 3B. Despite these limitations,
our findings provide valuable insights into the potential role of SLC12A1 mRNA expression
in the response to NAC in breast cancer. To the best of our knowledge, this is the first
study in which a member of the SLC12 family of inorganic ion transporters is potentially
associated with chemoresistance in breast cancer, giving insights into another possible
mechanism underlying drug resistance.

Building upon our previous results, which showed a significant downregulation of
genes involved in import and transmembrane transport (Figure 1C) and a strong association
between the ion transporter SLC12A1 and chemoresistance (Figure 2A–C), we further
investigated another gene, GRIA4, which is involved in ion transport and was found to be
differentially expressed in the RNA-seq analysis. GRIA4 encodes a subunit of the AMPA
tetrameric receptor complex, known as GLUR4, which belongs to the ionotropic glutamate
receptors (iGluRs). iGluRs are quaternary ligand-gated ion channels that allow cation
influx upon glutamate binding and play an important role in the synaptic transition in the
central nervous system [38]. Interestingly, iGluRs have been involved in chemotherapy
response across various cancers. They have been found to be upregulated in hepatocellular
carcinoma [39], as well as in chemosensitive ovarian serous adenocarcinoma [40] and
chemoresistant glioma [41].

In our validation analyses of the breast cancer cohorts, we did not observe significant
differences in GRIA4 transcript levels between the sensitive and resistant patients. However,
we found that higher GLUR4 protein levels correlated with a worse prognosis and were
more prevalent in the resistant patients. Interestingly, similar contrasting results regarding
GRIA4 mRNA and protein levels have been reported in other studies conducted in colorectal
cancer [20,42]. These studies propose that post-transcriptional mechanisms and variations
in the half-lives of GRIA4 transcript variants might potentially explain this phenomenon.
Although our study did not specifically investigate different GRIA4 isoforms, it is worth
highlighting that the antibody employed in our research detects both long and short
isoforms. To achieve a more comprehensive understanding of GRIA4’s role in breast cancer
biology and its potential connection to chemoresistance, it will be crucial to explore these
isoforms in future investigations.
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In conclusion, our study revealed that breast cancer patients resistant to chemotherapy
had decreased levels of SLC12A1 mRNA and increased levels of GLUR4 protein. Our
multivariate analysis showed that SLC12A1 expression was significantly associated with
age, menopause, and chemoresistance, while GLUR4 correlated with chemoresistance
and predicted worse outcomes for breast cancer patients. These findings suggest that
SLC12A1 and GLUR4 may play a crucial role in breast cancer chemoresistance, as they
are involved in ion transport into cells. However, additional studies involving larger
patient cohorts are necessary to validate our findings, confirm the accuracy of the proposed
potential biomarkers, and elucidate the molecular mechanisms underlying resistance.
This will also help to establish whether SLC12A1 and GLUR4 could serve as potential
clinically relevant targets for therapeutic interventions across diverse breast cancer subtypes.
Understanding the roles of ion transporters and channels is crucial to gaining insight into
drug resistance mechanisms and developing new treatment strategies. Our study highlights
the potential for SLC12A1 and GLUR4 to be used as therapeutic targets in breast cancer
patients, providing valuable insights into the mechanisms underlying chemoresistance. By
targeting these transporters and channels, novel treatment approaches could be developed
that may improve patient outcomes.

4. Materials and Methods
4.1. Patients and Collection of Tissue Samples

In this study, we performed RNA-seq analysis on RNA samples obtained from 12 fe-
male patients with luminal breast cancer (Table S1). The DEGs identified in these samples
were validated in a larger cohort of 62 patients, which included the initial 12 RNA samples.
All the patients were female, with ages ranging from 34 to 68 years, and were with LABC
at stages IIB to IIIC at the National Cancer Institute of Mexico between January 2012 and
December 2015. Furthermore, all the patients had hormone receptor-positive tumors con-
firmed by an estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+)
status. The patients were further classified into subtypes based on their receptor status,
including luminal A (ER/PR+, HER2-, KI67 < 20%), luminal B HER2- (ER/PR+, HER2-,
KI67 ≥ 20%), or luminal B HER2+ (ER/PR+, HER2+, any KI67%).

Tissue samples were collected prior to treatment, with all the patients receiving an
NAC regimen of anthracyclines and taxanes in a sequential schedule, as described in a
previous study by Contreras-Espinosa L. et al. [43]. After NAC completion, the patients
underwent surgery, and the response to NAC was assessed by a pathologist in the surgical
resection specimens. The response was stratified according to the RCB [7] using the
MD Anderson Cancer Center’s online calculator (http://www3.mdanderson.org/app/
medcalc/index.cfm?pagename=jsconvert3 accessed on 1 December 2017). Chemosensitive
patients were classified as RCB-0/I, while non-responders or chemoresistant patients were
classified as RCB-II/III. Informed consent was obtained, and this study was approved by
the ethical and research committee of the National Cancer Institute of Mexico (018055DII
CEI130218).

4.2. RNA Extraction and RT-qPCR

Total RNA extraction from the patient samples was performed using the AllPrep
kit (QIAGEN, Germantown, MD, USA), and the RNA concentration and quality analysis
(RIN value) were evaluated using a Tape Station 2200 bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). Subsequently, 300 ng of RNA was transcribed into cDNA using
the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham,
MA, USA), and real-time PCR was carried out using SYBR Green/ROX qPCR master mix
(2×) (Thermo Fisher Scientific, Waltham, MA, USA) on a QuantStudio 3 real-time PCR
system (Thermo Fisher Scientific, Waltham, MA, USA). The levels of gene expression were
measured using the 2−∆∆Ct method [44]. Ct values were normalized to the expression
levels of HPRT1 as a housekeeping gene and then subtracted from the expression of the
sensitive patients as a reference group. The following primers were used:

http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3
http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3
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Forward primer (HPRT1): 5′-AGGGTGTTTATTCCTCATGG-3′;
Reverse primer (HPRT1): 5′-CACAGAGGGCTACAATGTG-3′.
Forward primer (SLC12A1): 5′-CTTGCTGGTGCCAATATCTC-3′;
Reverse primer (SLC12A1): 5′-CTAAGTAGGCAACAGTGGTG-3′.
Forward primer (GRIA4): 5′-CTCATCACACCAAGTTTCCC-3′;
Reverse primer (GRIA4): 5′-CGTAGTGATCCAGCAAACTC-3′.

4.3. RNA-Seq and Data Analysis

Total RNA sequencing was performed as described in a previous study [43]. Twelve
patients (four sensitive and eight resistant) were selected for RNA sequencing. The RNA-
seq data are available from the NCBI Gene Expression Omnibus (GEO) at https://www.
ncbi.nlm.nih.gov/geo/ (accessed on 5 September 2018), accession number GSE159448 [43].

Sequence quality was checked in FastQC (v0.11.7), and data filtering and adapter
trimming were performed using Trimmomatic (v0.38). Subsequently, the data were pseudo-
aligned to the reference transcriptome using the Salmon software [45] (v0.11.3). Reference
sequences and annotations were downloaded from GENECODE (v31) from the ENSEMBL
website (UCSC, NCBI, ENSEMBL). PCA analysis was performed to check for bias and
covariates. A batch effect was detected for ER status and was added as a covariate in
the DEseq2 design (~ER status + response). To obtain DEGs between the sensitive and
resistant patients, DEseq2 [46] (v1.24) from the Bioconductor package was used. A gene set
analysis using the clusterProfiler and DOSE packages was performed to explore the role
of the DEGs across human diseases, biological processes, and molecular pathways within
ConsensusPathDB [47]. p < 0.05 was set as the cut-off for the minimum overlap criterion.
To obtain the genes most significantly associated with resistance for further validation,
extra filtering of the genes was implemented using a Pearson correlation analysis with the
RCB classes, considering those with an absolute value of seven to be highly correlated.
A p-adjusted threshold of <0.05 and log2 fold change < −1.5 or >1.5 were set to detect
significantly expressed genes.

4.4. External Breast Cancer Datasets

The expressions of the genes that correlated with RCB were validated in a dataset
containing 336 patients enrolled in the TransNEO cohort from the University of Cambridge,
UK [14]. The data were deposited at the European Genome–Phenome Archive under
accession number EGAS00001004582 (Dataset ID: EGAD00001008269). This study only
recorded the status of estrogen receptors, excluding progesterone receptors. Therefore, for
our analysis, we included 102 ER+ patients for whom there were RNA-seq data and who
received NAC (66 resistant and 36 sensitive). To identify a set of upregulated or downregu-
lated genes in the resistant patients, a differential expression analysis was performed on
the gene raw counts using the DESeq2 package (v1.24).

The prognostic significance of the biomarkers was assessed in a second external
dataset, as the TransNEO dataset had no record of the prognosis. A dataset comprising
508 patients from different cohorts [15] was used to assess survival. This dataset is available
via the GEO repository (http://www.ncbi.nlm.nih.gov/geo/ accessed on 2 June 2021) with
accession ID: GSE25066. Distant relapse-free survival (DRFS) for high or low levels of
gene expression was estimated from 297 selected ER+ patients using the Cancer Target
Gene Screening (CTGS) web application, available at http://ctgs.biohackers.net/GSE25066
/survival-quantities/ (accessed on 1 April 2021).

4.5. Tissue Microarrays and Immunohistochemical Assay

A tissue microarray was constructed to analyze the presence of NKCC2 and GLUR4
proteins in breast cancer tissues using IHC. First, a pathologist selected the tumoral area
from FFPE tissue samples obtained from core needle biopsies prior to chemotherapy. Then,
the extracted tissue cores were re-embedded into a recipient block (microarray). Paraffin
blocks from the tissue microarrays were cut into 5 µm slices. Positive controls from adjacent

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://ctgs.biohackers.net/GSE25066/survival-quantities/
http://ctgs.biohackers.net/GSE25066/survival-quantities/
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healthy tumor tissue were included in each TMA, displaying 13 cases of sensitive breast
cancer patients and 18 cases of resistant breast cancer patients.

The primary antibody for SLC12A1 was purchased from Sigma-Aldrich (St. Louis,
MO, USA), specified as a rabbit polyclonal, anti-human antibody under catalog number
HPA018107. The primary antibody for GRIA4 was purchased from Thermo Fisher Scientific
(Waltham, MA, USA), identified as a rabbit polyclonal, anti-human antibody with catalog
number PA5-24217. The IHC staining was performed using a Ventana BenchMark LT
automated immunostainer (Roche Diagnostics, Indianapolis, IN, USA) following the man-
ufacturer’s instructions. The slides were counter-stained with hematoxylin and mounted
in non-aqueous mounting media. The slides were then imaged using an AxioScan.Z1
microscope and the ZEN 2.6 Slidescan software (Zeiss AG, Oberkochen, Germany), using
an objective Plan-Apochromat 20×/0.8 M27. The images were magnified to 20× and 400×.
An experienced pathologist evaluated the images, providing the percentage of tumor cells
with at least 1% staining and the intensity of staining as 0 (−), none; 1 (+), weak; and 2 (++),
medium. The data provided by the pathologist were used to derive an overall IHC staining
score criterion by multiplying the scores for the intensity and percentage of tumor cells
stained, as described in a previous study by Wang et al. [48].

4.6. Statistical Analyses

All the analyses were performed using the R software (v4.2.1). The baseline charac-
teristics of the included breast cancer patients are presented as numbers (percentages) for
nominal variables and means (ranges) for continuous variables. To determine the associa-
tion between the clinicopathologic data and the response, the Mann–Whitney U test was
used for continuous variables, and Yate’s Chi-squared test was used for nominal variables.
The distribution of the RT-qPCR and IHC data was explored using the Shapiro–Wilk and
Kolmogorov–Smirnov tests. Because the data did not present a normal distribution, the
Mann–Whitney U test for non-parametric data was used to determine whether the medians
of the sensitive and resistant data were equal.

To evaluate the performance of the chemoresistance-associated genes as potential
predictive markers, the sensitivity and specificity were determined using ROC curves. A
cut-off point was selected from the ROC curves, which could predict the patients with the
worst prognosis. The Kaplan–Meier method was employed for a survival analysis of DRFS,
measured from the start of the NAC treatment to distant recurrence or death from any
cause within a 6-year period. The log-rank test was used for statistical analysis. Patients
without an event were censored at the date of last follow-up. p < 0.05 was considered
statistically significant for all the tests.
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