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Abstract: Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or
adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human
counterpart, making it an invaluable translational model for uncovering the disease’s complexi-
ties and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses
significant challenges to effective treatment due to the evolution of diverse cell populations that
influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei
multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX
(Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This
comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously
capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these
results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same
tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented
level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity,
opening new avenues for therapeutic interventions in both human and canine patients. This study
pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the
context of a single individual’s tumor.

Keywords: osteosarcoma; single-nuclei; sequencing; multiome; tumor; heterogeneity; canine; dog;
oncology; 10× genomics

1. Introduction

Osteosarcoma (OSA) is a highly malignant bone tumor occurring most often in pedi-
atric and adolescent humans as well as large-breed dogs. It is extremely heterogeneous
and aggressive, with poor survival rates for both species. The median survival time for
dogs undergoing amputation of the affected limb in combination with chemotherapy is
approximately one year after diagnosis, with most dogs succumbing to metastases [1].
Comparative genetic and gene expression studies have demonstrated a high degree of
similarity between human and canine osteosarcoma [2]. Due to its similarities, canine OSA
represents a powerful translational model for understanding human disease as well as
designing and testing clinical therapeutics [2,3].

Tumor heterogeneity makes treatment difficult due to the evolution of cell subsets
that impact tumor growth, metastasis, and drug resistance [4]. Both intrinsic and extrinsic
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factors contribute to tumor heterogeneity, including the accumulation of genetic mutations,
epigenetic factors affecting cellular activity and identity, and microenvironmental influences
such as cell-cell interactions [4]. Single-cell sequencing is a powerful approach to evaluating
tumor heterogeneity by identifying various cell types and states within a tumor. Identifying
the relative proportion of cells with aberrant transcription patterns may provide critical
information regarding the potential effectiveness of therapies [5].

However, obtaining viable cells after tissue dissociation is a prerequisite for single-cell
sequencing and represents a major limitation of this technology, particularly for difficult
tissues such as osteosarcoma. Since OSA is derived from bone, it often contains bone matrix,
which is very rigid and difficult to homogenize. The dissociation procedure selects for cells
that survive this process, potentially excluding rare cell types, and may also result in RNA
degradation. Furthermore, enzymatic and/or mechanical tissue dissociation may alter the
cell’s phenotype by inducing a transcriptional stress response, resulting in artifacts upon
sequencing [6,7]. In our laboratory, efforts to isolate single-cell suspensions from primary
canine OSA, including various mechanical and enzymatic protocols, have resulted in poor
cell viability unsuitable for single-cell sequencing. Additionally, the removal of dead cells
to increase viability may not accurately reflect the true biology of the tumor due to the
selection of surviving cells.

In contrast, single-nuclei sequencing circumvents the cell viability challenge by lysing
the cells to obtain nuclei. However, nuclei quality is a critical factor to consider, and nuclear
membranes should appear intact and with minimal blebbing under high-power microscopy
after isolation. Importantly and in contradistinction to single-cell, single-nuclei sequencing
can be performed on frozen archived samples [8].

Gene expression sequencing of single-nuclei differs from single-cell in the information
it provides. Single-nuclei sequencing captures polyadenylated RNA transcripts that are
actively being transcribed in the nucleus, whereas single-cell sequencing captures all
polyadenylated RNA within the cell’s cytoplasm. Despite these differences, single-nuclei
sequencing has been shown to provide equivalent gene detection signatures and accurate
cell identification while minimizing bias compared to single-cell sequencing [6,7,9,10].

10× Genomics uses a microfluidic-based approach to partition single nuclei into gel
beads containing barcoded primers and enzymes. This technology allows single nuclei to
be captured and barcoded so that after sequencing, reads can be traced back to the corre-
sponding cell/nucleus. Identifying individual cell phenotypes and genotypes can reveal
the inherent intra-tumoral heterogeneity, including both malignant and non-malignant
cell populations, at high resolution. Furthermore, this approach provides insight into the
composition of the tumor microenvironment (TME), including interactions between tumor,
stromal, and immune cells [5].

Based on the capabilities of single-nuclei signaling, we tested the hypothesis that this
approach could be used to both identify heterogeneity between osteosarcoma cells within a
single canine tumor and that additional, tumor-associated cell types could also be identified
with this technique. To date, this is the first study to use single-nuclei multiome sequencing,
including ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression)
sequencing, of a treatment-naïve primary canine osteosarcoma, to simultaneously capture
the transcriptomic and epigenomic profiles in the same nucleus and to demonstrate both
the heterogeneity within the tumor and the associated cell populations.

2. Results

To explore the cellular heterogeneity and microenvironment of canine OSA, single-
nuclei multiome (ATAC + Gene Expression, GEX) sequencing was conducted on a primary
canine OSA tumor lesion obtained from a 7-year-old male Doberman Pinscher presenting to
the Wilford and Kate Bailey Small Animal Teaching Hospital at Auburn University College
of Veterinary Medicine. Samples taken for sequencing were obtained prior to chemotherapy
or the development of macro-metastatic lung disease. Histopathology confirmed the tumor
to be osteoblastic osteosarcoma.
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2.1. Quality and Dimensionality of the Single-Nuclei and Sequencing Data

After isolation and prior to library preparation, nuclei were assessed for quality and
quantity using high-power microscopy in combination with AO/PI fluorescent staining. The
majority of nuclear membranes appeared intact with minimal blebbing (Figure 1). The nuclei
were in sufficient quantity for library preparation, sequencing, and downstream analysis.
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Figure 1. High-power microscopy to evaluate single-nuclei quality. Phase contrast (A,C) and AO/PI-
stained nuclei under fluorescent microscopy (B,D) show that nuclear membranes are intact with
minimal blebbing.

Approximately 10,000 nuclei were used for multiome (ATAC + GEX) library prepara-
tion using 10× Genomics technology and sequenced (150 bp PE) on the Illumina NovaSeq
6000 platform. After classification of each barcode into cell and non-cell groups, there were
an estimated 5969 total nuclei sequenced with 8462 median ATAC high-quality fragments
per cell and 2603 median GEX genes per cell. To examine true nuclei, filtering parameters
(feature threshold 200–30,000 and count threshold 50–50,000) were applied to both ATAC
and GEX data to eliminate empty droplets and doublets. After filtering, 5849 total nuclei
and 23,784 covered gene models were included in the downstream analysis.

2.2. Unsupervised Clustering to Evaluate Cellular Heterogeneity of Primary Canine OSA Reveals
Nine Distinct Clusters

Based on unsupervised clustering using principal component analysis (PCA) and
graph-based dimensional reduction, we identified nine total cell clusters (c0–8) in the
GEX (Figure 2A) and ATAC data (Figure 2B). The weighted nearest neighbor (WNN)
procedure in Seurat v4 integrates multimodal data from the same cell to generate a uni-
fied representation of the dataset [11]. Using a weighted combination of the GEX and
ATAC data, a WNN UMAP plot was generated to elucidate additional structure in the
cellular clustering of canine osteosarcoma (Figure 2C). Clusters were numbered 0–8 and
contained decreasing numbers of cells. For example, cluster 0 contained the most cells
(1284/5849 cells, 21.9%), while cluster 8 contained the least number of cells
(162/5849 cells, 2.8%) (Table 1).
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Figure 2. Cellular heterogeneity in primary canine OSA reflected by nine cell clusters. UMAP plot
shows nine total clusters (c0–8) for GEX (A), ATAC (B), and weighted nearest neighbor (WNN) graph
which combines both modalities (C). Each dot represents a single nucleus, and the color corresponds
to the cluster.

Table 1. Cluster annotation using marker genes.

Cluster # of Cells % of Total # of
Cells

Bone/OSA/Immune
Markers (ScType Score)

Bulk RNAseq
Tumor/Normal Markers

(ScType Score)

0 1284 21.9% Osteoblast (992) Unknown (−471)

1 1249 21.3% Osteoblast (1452) Tumor cells (917)

2 1023 17.5% Fibroblast (1113) Unknown (160)

3 798 13.6% Endothelial cell (6914) Normal bone cells (931)

4 548 9.4% Myeloid cell (3622) Tumor cells (1017)

5 333 5.7% Osteoclast (5236) Normal bone cells (736)

6 272 4.6% Osteocyte (700) Normal bone cells (1403)

7 180 3.1% Osteoblast (325) Tumor cells (203)

8 162 2.8% Memory CD4+ T-cell (1364) Tumor cells (126)

Clusters 0, 1, and 2 were more closely grouped and less discrete in the ATAC data,
whereas the GEX data shows a more distinct relationship among these clusters (Figure 2A,B).
These results suggest a relationship in the epigenetic programming of clusters 0, 1, and
2, despite differences in gene expression patterns. Conversely, the ATAC UMAP plot
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shows more separation between clusters 1 and 7, while the GEX UMAP plot shows a closer
relationship and less clear distinction. This suggests that clusters 1 and 7 are closely related
based on RNA expression but display different accessible motifs.

2.3. Cluster Annotation in Primary Canine OSA

To identify clusters based on cell type, a reference set containing single-cell markers
for bone, osteosarcoma, and immune cells was used to annotate the clusters using ScType
(Figure 3A) [12]. Osteoblasts were associated with clusters 0, 1, and 7 (2713/5849 cells,
46.4%); Fibroblasts were associated with cluster 2 (1023/5849 cells, 17.5%); Endothelial cells
were associated with cluster 3 (798/5849 cells, 13.6%); myeloid cells were associated with
cluster 4 (548/5849 cells, 9.4%); Osteoclasts were associated with cluster 5 (333/5849 cells,
5.7%); Osteocytes were associated with cluster 6 (272/5859 cells, 4.6%); and Memory CD4+
T cells were associated with cluster 8 (162/5849 cells, 2.8%) (Figure 3A, Table 1).

To annotate the clusters based on “tumor” vs. “normal bone”, we generated an in-
house annotation set using significantly up-regulated genes and down-regulated genes
(adjusted p-value padj < 0.05 and fold-change FC <−2 and >2) derived from bulk RNA
sequencing of the same primary canine OSA tumor and patient-matched normal bone
generated in our previous study in Nance et al. (Figure 3B) [13]. Based on these re-
sults, tumor cells were related to clusters 1 (osteoblasts), 7 (osteoblasts), 4 (myeloid cells),
and 8 (memory CD4+ T cells) (1591/5849 cells, 36.6%), which is consistent with the di-
agnosis of osteoblastic OSA. Normal bone was related to clusters 3 (endothelial cells),
5 (osteoclasts), and 6 (osteocytes) (1403/5849 cells, 24%). Clusters 0 (osteoblasts) and 2
(fibroblasts) had unknown relation to the bulk RNA seq data (2307/5849 cells, 39.4%)
(Figure 3B, Table 1).

Since bulk RNAseq is derived from a mixed population of cells, it is likely the
sequenced tumor included tumor-initiating cells that drive tumor formation, tumor-
associated cells such as fibroblasts and immune infiltrates, and a small proportion of
normal bone cells such as osteoclasts and endothelial cells. Therefore, we cannot distin-
guish between tumor cells that drive tumorigenesis vs. those that are passengers in the
process based solely on these results. It is apparent, however, that bulk RNA sequenc-
ing captures less than 40% of the tumor’s total cell population compared to single-nuclei
RNA sequencing.

Cluster annotation for each cell type was further inspected by plotting the expression
of several marker genes derived from the CellMarker2.0 database that were used for
annotation with ScType (Supplemental Figure S1). Although this is not an exhaustive
list of markers used for annotation, osteoblast markers included RUNX2, CDH11, PCNA,
ACAN, MKI67, TOP2A, and COL1A1; Fibroblast markers included LUM, DCN, VIM, THY1,
FAP, PRRX1, and COL1A1; Endothelial markers included CDH5, PECAM1, EGFL7, CD93,
ENG, and EMCN; Myeloid markers included CD14 and CD74; Osteoclast markers included
ATP6V0D2, DCSTAMP, CTSK, OCSTAMP, MMP9, and ACP5; Osteocyte markers included
GBLAP (osteocalcin), SPP1 (osteopontin), CD86, and IBSP (bone sialoprotein); Memory
CD4+ T-cell markers included CD3E, CD3D, CTLA4, LCK, LTB, and CD2 (Supplemental
Figure S1). A full list of markers used for annotation is included in Supplemental Table S1.
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Figure 3. Cluster annotation with known cell markers and markers derived from differential analysis
of bulk RNA sequencing of the same OSA tumor and patient-matched normal bone. Cell cluster an-
notation based on known single-cell marker genes (A) and marker genes from bulk RNA sequencing
of the same primary OSA tumor and patient-matched normal bone (B). Each dot represents a single
nucleus, and the color corresponds to the annotated cell group name.

2.4. Copy Number Variation of Osteoblastic Clusters

OSA is characterized by significant genomic instability, resulting in large-scale chro-
mosomal copy number variations. To evaluate the chromosomal structure, large-scale CNV
analysis was inferred for the osteoblasts (clusters 0, 1, and 7) using the remaining clusters as
the normal reference. Significant amplifications were observed in chromosomes 12–14 and
deletions were present in chromosomes 5, 18, and 20 in the osteoblast clusters (Figure 4).
Cluster 7 cells contain more CNVs compared to clusters 0 and 1 and their hierarchical
relationship is reflected by the dendrogram. Compared to clusters 0 and 1, cluster 7 shows
a distinct amplification of chromosome 24 and deletion of chromosome 26.
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Figure 4. Heatmap of CNVs in osteoblastic clusters. Heatmap of the CNVs identified in the osteoblast
clusters 0, 1, and 7 using the remaining clusters as the reference (A). Expression values for the
normal cell clusters (depicted in the top heatmap) are subtracted from tumor cluster expression
data (depicted in the bottom heatmap) to visualize differences. Rows are individual nuclei, columns
are genes (ordered from left to right across the chromosomes); amplifications are colored red and
deletions are colored blue.

2.5. Differentially Expressed Genes Define Clusters

After normalizing the UMI counts using a regularized negative binomial regression,
highly variable features (genes) were identified to be used in downstream principal compo-
nent analysis. Using the FindAllMarkers function in Seurat, markers were identified for
every cluster compared to all remaining cells. The top 10 most highly variable genes accord-
ing to the GEX data were LDB2, PTPRG, ACP5, MMP9, CHRM3, CHAD, F13A1, SLC9B2,
GPC5, and SLIT2 (Figure 5A). The top 5 differentially expressed genes defining each cluster
were plotted on a heatmap (Figure 5B). Cluster 4 (myeloid), cluster 5 (osteoclasts), and
cluster 8 (memory CD4+ T cells) share similar patterns of differential gene expression on
the heatmap in Figure 5B, which is likely due to their related immunological functions
and origins.
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Figure 5. Differentially expressed genes define clusters in primary canine OSA. A plot of the top
3000 variable genes in the dataset with the top 20 most highly variable genes labeled. Red dots
indicate the differentially expressed genes (n = 3000), and black dots represent the non-variable
genes (n = 20,784) (A). Heatmap of the top 5 differentially expressed genes in each cluster. Clusters
are identified by color and number on the top x-axis, gene symbols are listed on the y-axis; yellow
indicates up-regulation and pink/purple indicates down-regulation (B).

2.6. Gene Set Enrichment Analysis Using Hallmark and Canonical Pathways

Using the markers identified for each cluster, gene set enrichment analysis was per-
formed using Hallmark and Canonical pathways to identify variation among clusters
(Figure 6A,B).

Interestingly, clusters 1 and 7 (tumorous osteoblasts) showed up-regulation of G2M
transition, E2F targets, MYC targets v2, and glycolysis, but cluster 0 (osteoblasts with
unknown relation to tumor/normal) showed down-regulation of these pathways. Cluster
0 also showed up-regulation of the hypoxia response. Collectively, these results suggest
that clusters 1 and 7 consist of actively dividing osteoblasts driving tumor expansion, while
cluster 0 may consist of necrotic and hypoxic osteoblasts.

Cluster 8 (memory CD4+ T cells) and cluster 4 (myeloid cells) share similar patterns
of Hallmark and Canonical pathway expression, likely due to shared immunological
functions (Figure 6A). Similarly, cluster 5 (osteoclasts) and cluster 4 (myeloid cells) display



Int. J. Mol. Sci. 2023, 24, 16365 9 of 17

similarities in Hallmark and Canonical pathways, which is explained by their shared
macrophage functions.

Cluster 2 (fibroblasts) shared patterns of enriched Canonical pathways with cluster 6
(normal osteocytes), with the exception of Regulation of the Actin Cytoskeleton by Rho
GTPases, G1 and S Phases, and Regulation Cascade of Cyclin Expression, which were all
down-regulated in osteocytes relative to fibroblasts (Figure 6B).

Collectively, the enriched Hallmark and Canonical pathway results support the clus-
tering and annotation results by confirming shared relationships and functions among com-
mon cell types and aid in the elucidation of osteoblast heterogeneity. Cluster 0 osteoblasts
show distinct down-regulation of cell cycle and up-regulation of hypoxia pathways in
comparison to osteoblasts in clusters 1 and 7, which suggests that the largest cell cluster
identified is perhaps responding to the body’s natural anti-tumor response. Furthermore,
targeting this cluster of cells alone would likely not produce an effective response because
these cells are not contributing to the active expansion of the tumor.
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2.7. Enriched Pathway Analysis Using GO Biological Processes

Using all genes in the canine genome database as a reference, a statistical overrepre-
sentation test was performed on the significantly up-regulated genes from each cluster to
identify enriched pathways based on GO Biological Processes. Using a false discovery rate
(FDR) cut-off of 0.05, the top five pathways based on fold enrichment for each cluster are
depicted in Figure 7.
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Figure 7. Enriched GO Biological Processes among clusters. The top 5 enriched GO Biological
Processes and their associated fold enrichment and false discovery rate (FDR) for each cluster. Dot
size correlates to the corresponding fold enrichment.

Enriched GO Biological Processes in cluster 0 osteoblasts included several pathways
involved in the regulation of cell adhesion. Cluster 1 osteoblasts were enriched for regula-
tion of PI3K signaling, skeletal system development, and transmembrane receptor protein
tyrosine kinase signaling. Up-regulated pathways in cluster 2 (fibroblasts) were related to



Int. J. Mol. Sci. 2023, 24, 16365 11 of 17

increased cellular activity and protein production, including ribosomal assembly, mitochon-
drial electron transport, and translation. Cluster 3 (normal endothelial cells) was enriched
for negative regulation of Rho-dependent protein serine/threonine kinase activity, regu-
lation of macrophage colony-stimulating factor production, and cell migration involved
in endocardial cushion formation (a specialized region of mesenchymal cells that give
rise to heart structures). The up-regulated GO Biological processes in cluster 4 (myeloid
cells) included membrane raft localization/distribution, synapse pruning, negative regula-
tion of granulocyte differentiation, and cell junction disassembly. Enriched pathways for
osteoclasts in cluster 5 included macrophage fusion, dendritic cell homeostasis, positive
regulation of CD8+ T cells, and glucuronoside metabolic/catabolic processes. Cluster 6
(normal osteocytes) up-regulated processes included regulation of negative chemotaxis
and cell-cell interactions and migration. Cluster 7 (tumor osteoblasts) was enriched for
pathways related to anatomical structure and system/organism development. Enriched
pathways for cluster 8 (memory CD4+ T cells) were related to antigen processing and pre-
sentation via MHC class I and positive regulation of T-cell-mediated cytotoxicity (Figure 7).

2.8. Sub-Clustering and Elucidation of the Immune Cell Population

Clusters 4 (myeloid cells) and 8 (memory CD4+ T cells) were jointly subclustered
to further characterize the immune population present in the tumor microenvironment
(710 nuclei total). Principal component analysis using multimodal data (ATAC + GEX)
revealed five subclusters of immune cells (Figure 8). The sub-clusters were annotated using
a reference set derived from Ammons et al., 2023, which established a single-cell RNA
sequencing atlas of circulating leukocytes in canine osteosarcoma and healthy controls [14].
The largest population was identified as CD4- Monocytes (262/710 cells, 36.9%). The
second most abundant immune subcluster was identified as CD8+ Effector cells (171/710
cells, 24.1%), followed by myeloid cDC2 cells (131/710, 18.4%), CD4+ TEM, Th17-like cells
(115/710, 16.2%), and CD4+ Naïve cells (31/710, 4.4%) (Figure 8).
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Figure 8. Annotation of the Immune Subclusters with Canine Leukocyte Markers. Sub-clustering
and annotation of the immune cells present in the tumor microenvironment using known canine
leukocyte markers reveals five distinct subclusters. Each dot represents a single nucleus, and the
color corresponds to the annotated cell group name.

2.9. Comparison to Bulk Transcriptomic Sequencing Including the Same Tumor

In addition to characterizing the single-nuclei sequencing results of this tumor, we
also sought to compare these results to bulk RNA sequencing of the same patient’s tumor.
Our lab has previously published bulk RNA sequencing results of the same patient’s tumor
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along with six additional canine OSA tumors and patient-matched normal bone. The
results, published by Nance et al., 2022, provide individual log2 fold-change values for
each dog, in addition to bulk differential gene expression analysis. The patient belonging
to the current study corresponds to patient C in the aforementioned manuscript [10].

The top up-regulated genes in OSA tumor compared to normal bone based on bulk
RNA sequencing included GTSE1, HELLS, SPAG5, RAD54L, IQGAP3, CIT, HOXC10, TOP2A,
and MKI67 (Figure 9A). The top up-regulated genes in this patient based on bulk RNA
sequencing of tumor and patient-matched normal bone included TFPI2, DDX60, OAS1,
CD5L, TERT, OAS2, RFGRIP1L, OAS3, and ANLN (Figure 9B). Based on these results, the
marker genes based on individual-level analysis capture more of the tumor’s heterogeneity
than marker genes derived from bulk RNA sequencing. These results serve to validate our
previously published approach to individual-level analysis using bulk RNA sequencing of
tumor and patient-matched normal.
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3. Discussion

To our knowledge, this is the first study to utilize single-nuclei multiome (ATAC +
GEX) sequencing to characterize the molecular landscape of a treatment-naïve primary
canine OSA tumor. Additionally, the results were compared to bulk RNA sequencing
including the same tumor and patient-matched normal bone to further evaluate intra-
tumoral heterogeneity.

Since osteosarcoma is a difficult tumor to homogenize, a modification was made to
the 10× Genomics nuclei isolation protocol which resulted in high-quality nuclei suitable
for sequencing. This protocol variation included the use of a bladed homogenizer in
0.5 strength Lysis buffer (included with the 10× Genomics kit). Upon observation with
fluorescent dye, the nuclear membranes appeared mostly intact with minimal blebbing.
Despite the recommendations from 10× Genomics to store the samples long-term in liquid
nitrogen, storing them at −85 ◦C did not appear to affect the quality of our results. While
approximately 10,000 nuclei were subjected to library preparation, only 5969 nuclei were
sequenced. This is expected due to the microfluidic partitioning process which relies on
dilution to prevent multiple nuclei in one droplet [15].

Unsupervised clustering and weighted nearest neighbor analysis identified nine cell
clusters in primary canine OSA. As expected, the most abundant cell type present was
osteoblasts, though these cells formed three distinct subclusters (clusters 0, 1, and 7). The
second most abundant cell cluster contained fibroblasts (cluster 2) followed by endothelial
cells (cluster 3). The tumor immune microenvironment included myeloid cells (cluster 4),
osteoclasts (cluster 5), and memory CD4+ T cells (cluster 8). Similarly, many studies using
single-cell RNA sequencing of primary and recurrent human OSA tissues identified nine
major cell types, including osteoblasts, osteoclasts, fibroblasts, endothelial cells, myeloid
cells, NK/T cells, B cells, and plasmocytes [16–18]. Our results are consistent with those
found in human OSA, suggesting strong similarities in the intra-tumoral heterogeneity
between canine and human OSA. However, caution should be exercised when making
direct comparisons as treatment for human OSA typically involves intervention such as
chemotherapy prior to sample acquisition and sequencing. In contrast, limb amputa-
tion usually occurs prior to any treatment in canine OSA, which may affect the cellular
composition within the microenvironment due to clonal evolution.

Cluster annotation using up-regulated genes from bulk RNA sequencing of primary
canine OSA and patient-matched normal bone resulted in the identification of cluster 1
(osteoblasts), cluster 7 (osteoblasts), and cluster 8 (memory CD4+ T cells) as OSA tumors
while cluster 3 (endothelial) and cluster 6 (osteocytes) were associated with normal bone.
Clusters 0 (osteoblasts), 2 (fibroblasts), 4 (myeloid), and 5 (osteoclasts) had unknown
relation to the tumor/normal bone annotation. The inability of the annotation package to
distinguish osteoclasts (cluster 5) and myeloid cells (cluster 4) as normal bone derivatives
could be due to the relatively low proportion of these cells in comparison to osteocytes
present in normal bone matrix. Markers for endothelial cells and myeloid cells are predicted
to be expressed at low levels in this RNA dataset due to the bone processing technique to
remove bone marrow, which contains the majority of myeloid cells and osteoclasts. It is
also plausible that normal, non-transformed cells have altered gene expression patterns
in response to the tumor microenvironment and signals from surrounding cells. The GEX
profile of a normal cell in a normal environment would likely differ from that of a normal,
non-neoplastic cell within the TME.

Second, while cluster 0 did not reflect the pattern of previously bulk-sequenced
OSA tumors, it is unlikely that cluster 0, which contains the most cells, contains normal
osteoblasts due to the small percentage of osteoblasts in normal bone. Osteoblasts also
undergo age-related decline, and these bone samples were obtained from geriatric dogs [19].
Furthermore, CNV analysis showed this cluster contains many large-scale chromosomal
rearrangements. Hallmark and Canonical pathway analysis suggest these cells are hypoxic,
necrotic, and not actively dividing. Therefore, we predict this cluster consists of dying
osteoblastic tumor cells in response to the body’s apoptotic immune signals and intrinsic
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anti-tumor response. Alternatively, or perhaps in conjunction, the tumor could simply be
outgrowing its blood and nutrient supply. On the other hand, the activities of clusters
1 and 7 indicate these cells are highly active and thus more likely to be contributing to
tumor growth and expansion.

Osteosarcoma has been predicted to be a poorly immunogenic tumor and therefore
immunotherapies have been ineffective at managing OSA [20]. Based on up-regulated
pathway analysis, immune cells in the TME (cluster 8) are actively participating in tumor
antigen presentation via MHC class Ib and stimulating T-cell mediated cytotoxicity. The
consequence of these actions is perhaps the dying osteoblasts in cluster 0. However, more
studies are needed to understand how and why some cells escape the immune response.

Despite their prevalence in the tumor microenvironment, the inability to distinguish
fibroblasts as tumors using the bulk data could be due to the low sample size (n = 7) of the
bulk RNA sequencing data. Fibroblasts are also present in a smaller proportion in com-
parison to osteoblastic OSA cells. This reflects a limitation in differential gene expression
analysis of bulk RNA sequencing data, where differences are obtained from averages across
the entire population. The top marker gene for cluster 2 fibroblasts was TMSB10, which
encodes a protein involved in cytoskeleton organization and cell migration. According
to The Human Protein Atlas (https://www.proteinatlas.org/ENSG00000034510-TMSB1
0/single+cell+type, accessed on 12 August 2023), TMSB10 is typically expressed at low
frequency in fibroblasts. Many of the other top marker genes for cluster 2 were involved
in ribosomal assembly and function, including RPS14, RPLP1, RPL36, RPS11, and RPS28.
These results suggest this cluster consists of highly active cells that are generating and
secreting a large number of products that modulate the surrounding tumor microenviron-
ment, consistent with the activities of cancer-associated fibroblasts (CAFs). As a major
component of the tumor microenvironment, CAFs secrete a variety of factors that play a
key role in tumorigenesis, and their activation is predicted to be controlled via epigenetic
regulation [21]. Factors secreted by fibroblasts have been shown to modulate osteoblasts
and their extracellular matrix remodeling functions [22]. This dynamic relationship is
reflected in the clustering of the ATAC data, where the osteoblast and fibroblast clusters are
less defined, closely interconnected, and show significant overlap. However, additional
analyses are needed to elucidate this relationship.

Compared to single-cell sequencing, bulk RNA sequencing of the same sample cap-
tures only about 28% of the tumor’s heterogeneity, highlighting one of the major limitations
of bulk sequencing. On the other hand, single-cell/nuclei sequencing is quite expensive and
remains a limiting factor in applying this technology. Nonetheless, single-nuclei multiome
sequencing provides an unparalleled view into the TME and intra-tumoral landscape. This
approach is critical to improving targeted therapies and patient outcomes. Although this
study consisted of a single primary tumor, the computational framework can be applied to
additional tumors and the data can be conveniently reanalyzed as novel computational
tools are developed.

In summary, we have successfully applied single-nuclei multiome sequencing to
characterize the intra-tumoral heterogeneity and immune landscape of a treatment-naïve
primary canine osteosarcoma.

4. Materials and Methods
4.1. Patient/Sample Description

Osteosarcoma tissue was obtained from a 7-year-old male Doberman Pinscher present-
ing to the Wilford and Kate Bailey Small Animal Teaching Hospital at Auburn University
for limb amputation. Importantly, the samples were obtained prior to chemotherapy, radia-
tion, or evidence of pulmonary macro-metastatic disease. A sample, adjacent to the sample
used for sequencing, was subjected to histopathology and confirmed to be osteoblastic os-
teosarcoma. The tumor specimen was diced into approximately 50 mg pieces, immediately
flash-frozen in liquid nitrogen, and stored at −80 ◦C. This sample was stored at −80 ◦C for
approximately 5 years prior to nuclei isolation.

https://www.proteinatlas.org/ENSG00000034510-TMSB10/single+cell+type
https://www.proteinatlas.org/ENSG00000034510-TMSB10/single+cell+type


Int. J. Mol. Sci. 2023, 24, 16365 15 of 17

4.2. Nuclei Isolation

Nuclei were isolated from 42 mg flash-frozen OSA tissue by following the nuclei
isolation kit protocol from 10× Genomics (Pleasanton, CA, USA, CG000505 Rev A) with
minor adjustments to enhance homogenization while retaining nuclear morphology. The
Lysis buffer provided with the kit was diluted with phosphate-buffered saline (PBS) to
0.5 strength and the sample was briefly homogenized (1–2 s) using a bladed homoge-
nizer on ice, followed by a 5-min incubation on ice. The nuclei isolation protocol from
10× Genomics was then followed according to the manufacturer’s directions. Nuclei were
visualized and counted using trypan blue (ThermoFisher Scientific, Waltham, MA, USA)
and ViaStain acridine orange/propidium iodide (AO/PI) (PerkinElmer, Waltham, MA,
USA) to determine quality and quantity using the Keyence BZ-X810 microscope with
100× oil-immersion objective. Nuclei were counted by hand using a hemocytometer in
addition to using the Biorad TC20 automated cell counter (Biorad, Hercules, CA, USA) to
determine the concentration for library preparation.

4.3. Library Preparation

Approximately 10,000 nuclei were used to generate ATAC and gene expression libraries.
Libraries were prepared according to the Chromium Next GEM single-cell multiome ATAC +
gene expression user guide (10× Genomics, Pleasanton, CA, USA, CG000338 Rev F). Briefly,
the single-nuclei along with a master mix, 10× barcoded gel beads, and partitioning oil are
loaded onto the Chromium Next GEM Chip J to generate single-nuclei gel bead-in-emulsions
(GEMs). Pre-amplification PCR was performed and the GEX and ATAC libraries were
split for further processing separately. The prepared libraries were shipped to Novogene
(Sacramento, CA, USA) for 150 bp paired-end sequencing on the Illumina NovaSeq 6000
platform using the sequencing parameters recommended by 10× Genomics.

4.4. Bioinformatic Processing, Dimensional Reduction, and Weighted Nearest Neighbor Analysis

The canine reference genome “canFam6”, also known as Dog_10K_Boxer_Tasha
(GCF_000002285.5), was used to align and count reads using Cell Ranger (v7.1.0). Analysis
was accomplished using the Cell Ranger ARC Count (v2.0.2) pipeline and the output was
loaded into Seurat (v4.3.0) for further processing. Seurat was used to filter the data using a
feature threshold (200 < n < 30,000) and counts threshold (50 < n < 50,000). The SCTransform
function in Seurat was used to normalize and transform the GEX data using a regularized
negative binomial regression model, as described previously [23]. Dimensionality reduction
was accomplished using PCA and UMAP embedding was used to visualize clusters using
Seurat. ATAC data were processed using latent semantic indexing (LSI), which combines
term frequency-inverse document frequency (TF-IDF) normalization followed by singular
value decomposition (SVD) of the top identified features. A weighted combination of the
GEX and ATAC data was used to construct a weighted nearest neighbor (WNN) graph and
clusters were identified using the SLM algorithm in Seurat.

4.5. Cell Cluster Annotation

ScType was used to annotate cell clusters based on a given reference set of up-
regulated/down-regulated markers and designated cell types [12]. A custom annotation
set was created using single-cell markers accessed from CellMarker2.0 and annotated
using ScType [24]. Annotation of “tumor” vs. “normal” clusters was based on differential
expression analysis of the bulk RNA sequencing results produced by Nance et al. [13].
This dataset included bulk RNA sequencing of 7 primary canine osteosarcoma tumors,
including the tumor in the current study, along with patient-matched normal bone. Using
this data, a custom annotation set was created to designate “tumor cells” from “normal
cells” based on up-regulated genes (log2 fold-change > 2 and padj < 0.05) in tumor and
bone, respectively. ScType was then used to annotate the cell clusters and overlay the results
on the weighted nearest neighbor UMAP plot. All markers used for cluster annotation are
listed in Supplemental Table S1.
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4.6. Copy Number Variation (CNV) Analysis

Large-scale chromosomal copy number was inferred based on gene expression for
the osteoblast clusters using the Bioconductor package inferCNV with cluster 2 (fibrob-
lasts), cluster 3 (endothelial cells), cluster 4 (myeloid cells), cluster 5 (osteoclasts), cluster 6
(osteocytes), and cluster 8 (memory CD4+ T cells) as the normal reference [25].

4.7. Differential Gene Expression for Identification of Cluster Markers

Using the variance-stabilized GEX data, the ‘FindAllMarkers’ function in Seurat was
used to identify positive markers for clusters compared to all remaining cells using the
roc/standard AUC classifier test (min.pct = 0.25 and logfc.threshold = 0.25). The positive
markers for each cluster were subjected to subsequent pathway analysis using all genes in
the canine database as the reference.

4.8. Enriched Pathway Analysis

Gene set enrichment analysis using Hallmark and Canonical pathways in the Canis
lupus familiaris genome was accomplished using the R package singleseqgset (v0.1.2.9000).
To identify enriched GO Biological Processes among clusters, PANTHER (v17.0) was used to
perform a statistical overrepresentation test (Fisher’s exact test with FDR correction) using
the GO Ontology database (DOI: 10.5281/zenodo.6799722 Released 1 July 2022) [26,27].
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