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Abstract: Bacterial diseases caused by Vibrio spp. are prevalent in aquaculture and can lead to high
mortality rates among aquatic species and significant economic losses. With the increasing emergence
of multidrug-resistant Vibrio strains, phage therapy is being explored as a potential alternative to antibi-
otics for biocontrol of infectious diseases. Here, a new lytic phage named vB_VhaS_R21Y (R21Y) was
isolated against Vibrio harveyi BVH1 obtained from seawater from a scallop-farming area in Rongcheng,
China. Its morphology, infection cycle, lytic profile, phage stability, and genetic features were char-
acterized. Transmission electronic microscopy indicated that R21Y is siphovirus-like, comprising an
icosahedral head (diameter 73.31 ± 2.09 nm) and long noncontractile tail (205.55 ± 0.75 nm). In a
one-step growth experiment, R21Y had a 40-min latent period and a burst size of 35 phage particles
per infected cell. R21Y was highly species-specific in the host range test and was relatively stable at
pH 4–10 and 4–55 ◦C. Genomic analysis showed that R21Y is a double-stranded DNA virus with a
genome size of 82,795 bp and GC content of 47.48%. Its high tolerance and lytic activity indicated that
R21Y may be a candidate for phage therapy in controlling vibriosis in aquacultural systems.

Keywords: Vibrio phage; siphovirus; biological characteristics; genomic analysis; phage therapy

1. Introduction

Vibrio spp. are Gram-negative, curved bacilli that occur naturally in marine, estuar-
ine, and freshwater systems [1,2]. Vibrio harveyi (family Vibrionaceae, class Gammapro-
teobacteria) is a bacterial pathogen that seriously threatens marine fish and invertebrates,
particularly penaeid shrimps, in the warmer waters of Asia, southern Europe, and South
America [3,4]. This bacterium is notorious for causing a range of diseases, including lu-
minous vibriosis in shrimp and eye lesions, blindness, gastroenteritis, muscle necrosis,
skin ulcers, and tail rot disease in fish [4]. Diseases caused by V. harveyi have led to mass
mortalities in both vertebrates and invertebrates, resulting in significant aquacultural losses.
To minimize losses from bacterial infections, antibiotics are widely used in many countries.
However, common use of these medications has led to the development of antibiotic-
resistant bacteria, resulting in reduced effectiveness of these treatments over time [5,6].
Thus, shifting toward natural and probiotic treatments rather than antibiotic treatment is
crucial [7,8]. As an effective alternative treatment, bacteriophages (phages) have been used
as biocontrol agents to combat V. harveyi infections [8].

Phages are viruses that infect specific species or strains of bacteria. Contrary to the
negative physiological effects of antibiotics on the host and the emergence of bacterial
resistance, phages are eco-friendly and highly specific to their host bacterial strains [9,10].
Phages are categorized as lytic or temperate (lysogenic) based on their life strategies. Once
a phage inserts its nucleic acid into the bacterial cytoplasm, the lytic phages highjack the
host’s cellular machinery and consume its resources. The host is then killed when the
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phages release their progeny [11] Alternatively, a temperate phage can become a prophage
by inserting its genetic information into the genome of the host bacterium in the lysogenic
cycle. The prophage’s genetic material is then passed to each daughter cell through cell
division [12]. However, at some point, this passage of genetic material may be induced by
chemicals, radiation, or carcinogens [13]. During excision of the phage DNA from the host
chromosome, the host DNA may become incorporated into the phage DNA. Thus, lysogenic
phages can facilitate the horizontal transfer of bacterial genes from one bacterium to another
to enhance bacterial virulence, such as with the Vibrio temperate phage VHML [14,15].
Therefore, lytic phages are more suitable for phage therapy than are lysogenic phages.
Furthermore, phages efficiently use lytic enzymes (endolysins) to directly target the bacterial
cell wall [16,17] and are ubiquitous in all saltwater and freshwater environments, providing
virtually unlimited sources of phages and lytic enzymes [18].

Both lytic and lysogenic bacteriophages have been isolated from China, India, Aus-
tralia, Thailand, and many other countries to control V. harveyi infections in aquacultural
products [19–22]. Several patents have been filed to use the phages VP4B, RDP-VP-19012,
vB_KaS_PK22, vB_KaS_PK08, vB_VhaS-yong 1/2/3, VhaM_PcB-1G, and V-YDF132 to
combat V. harveyi infections in China [23–31]. Despite the increasing number of isolated
Vibrio phages, there is still much to learn about their genomes, ecology, evolution, and
potential roles in bacteriophage therapy. In this study, we isolated and characterized the
V. harveyi phage, vB_VhaS_R21Y (R21Y), and analyzed its morphology, infection kinet-
ics, lytic profile, phage stability, and genetic content to identify its potential for future
therapeutic applications.

2. Results
2.1. Biological Characterization of R21Y

Phage R21Y infecting V. harveyi BVH1 was isolated from seawater samples collected
from the scallop-farming area of Ellen Bay in Rongcheng, Shandong, China (122◦34′14.54′′W,
37◦10′15.58′′ E). R21Y produced clear and pinhole-type plaques with diameters of
0.69 ± 0.15 mm after incubation for 12 h at 28 ◦C (Figure 1A). Transmission electron
microscopy showed that R21Y has an icosahedral capsid (diameter 73.31 ± 2.09 nm) and
a long tail (205.55 ± 0.75 nm; Figure 1B), suggesting that R21Y belongs to the siphovirus
morphotype.
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Figure 1. Isolation and biological features of Vibrio phage vB_VhaS_R21Y. (A) Plaques of vB_VhaS_R21Y
formed on a lawn of Vibrio harveyi BVH1. (B) Transmission electron micrograph of vB_VhaS_R21Y.
(C) One-step growth curve of vB_VhaS_R21Y. Error bars indicate standard deviations among triplicate
samples.

The one-step growth curve (Figure 1C) shows that R21Y exhibited a latent period,
defined as the duration between the irreversible binding of R21Y to the host cell and the
onset of phage bursts, lasting for approximately 40 min. This was followed by a rise period
lasting ~20 min, signifying the rapid release of phages from the infected host. The burst
size of R21Y (i.e., the number of newly infectious phage particles produced per infected
bacterial cell) was estimated to be approximately 35 phages.
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Phage R21Y failed to infect any of the 40 tested Vibrio bacterial strains (including six
pathogenic and 34 nonpathogenic strains), except for the original host V. harveyi BVH1
(Table 1). Thus, R21Y is likely a strain-specific phage with a high degree of specificity for its
host strain.

Table 1. Host range of phage vB_VhaS_R21Y.

Species Strain Strain Type Infectivity

V. harveyi

BVH1 Pathogenic +

20150916-2 Pathogenic −

Chan01 Nonpathogenic −

CGMCC 1.1593 T Nonpathogenic −

LMG 4044 T Nonpathogenic −

V. alginolyticus

ATCC 17749 T Pathogenic −

HJ-1 Nonpathogenic −

JL2674 Nonpathogenic −

ZWCM4003 Nonpathogenic −

V. azureus

JL1214 Nonpathogenic −

JL3560 Nonpathogenic −

JL3577 Nonpathogenic −

V. campbellii

HJ-2 Nonpathogenic −

JL2671 Nonpathogenic −

JL3506 Nonpathogenic −

JL3507 Nonpathogenic −

V. chagasic JL3518 Nonpathogenic −

V. diazotrophicus JCM 21185 Pathogenic −

V. fortis

JL3515 Nonpathogenic −

JL3565 Nonpathogenic −

JL3678 Nonpathogenic −

V. hyugaensis JL3710 Nonpathogenic −

V. inhibens JL3707 Nonpathogenic −

V. mytili JL3548 Nonpathogenic −

V. natriegens WPAGA4 Nonpathogenic −

V. neocaledonicus

JL3539 Nonpathogenic −

JL3558 Nonpathogenic −

JL3563 Nonpathogenic −

JL3703 Nonpathogenic −

V. owens

JL2663 Nonpathogenic −

JL3650 Nonpathogenic −

JL2918 Nonpathogenic −

V. parahemolyticus
Chan02 Nonpathogenic −

ATCC 17802 T Pathogenic −

V. plantisponsor DSM 21026 Pathogenic −

V. ponticus JL4287 Nonpathogenic −

V. rotiferianus JL3557 Nonpathogenic −

V. tubiashii JL3833 Nonpathogenic −

V. variabilis JL3468 Nonpathogenic −

V. xiii JL2919 Nonpathogenic −

V. ziniensis ZWAL4003 Nonpathogenic −
“+” indicates infected; “−” indicates uninfected; the superscript letter “T” represents type strain.
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2.2. Genomic Features of R21Y

R21Y has a circular double-stranded DNA genome of 82,795 bp and a G + C content
of 47.48%. Analysis of the termini revealed that R21Y uses a headful (pac) packaging mech-
anism and contains redundant ends for circularizing the phage genome by recombination
(Figure S1). Sequence analysis yielded 126 putative open reading frames (ORFs) with a
total length of 82,325 bp (99.43% encoding percentage). BlastP analysis with amino acid se-
quences showed that 70 ORFs (55.56%) were the best matches to phage vB_VcaS_HC, which
infects V. campbellii, with identities ranging from 84.2 to 100%. Forty-six ORFs (36.51%) had
high identity with phage D4 (Virtus), matching 93.3–100%, and 8 ORFs (6.35%) showed
similarities (40.3–98.5%) to other vibriophages, including 1, vB_ValS_PJ32, vB_VhaS-VHB1,
29Fa.3, and 1.215.A._10N.222.54.F7. The remaining ORFs (1.59%) were homologous to
bacteria (Table S1).

The phage R21Y genes were categorized into six main modules: structural and pack-
aging proteins, DNA replication and nucleotide metabolism, auxiliary metabolic genes,
lysogeny-related genes, other functions, and hypothetical proteins (Figure 2). The phage
structural and packaging proteins cluster contained nine ORFs, eight of which encoded
typical structural proteins, including the major capsid protein (MCP; ORF 58), head com-
pletion adaptor (ORF 60), neck protein (ORF 61), tail completion protein (ORF 62), major
tail protein (ORF 63), tail length tape measure protein (ORF 65), portal protein (ORF 105),
putative head morphogenesis protein (ORF 106), and a gene encoding the terminase large
subunit (TerL, ORF 94) of the phage-packaging protein. Among the 39 functional genes,
nine were related to DNA replication and nucleotide metabolism: the winged helix-turn-
helix DNA-binding domain protein (ORF 76), replicative DNA helicase (ORF 78), DNA
primase (ORF 80), putative DNA helicase (ORF 82), putative DNA-binding domain protein
(ORF 83), ribonuclease H-like domain protein (ORF 88), DNA polymerase I (ORF 104),
DNA methyltransferase (ORF 107), and putative DNA polymerase I (ORF 110). Three
genes were identified as auxiliary metabolic genes (AMGs): rubredoxin-type fold protein
(ORF 87), pyruvate phosphate dikinase (PPDK; ORF 99), and a transporter (ORF 103). The
lysogeny-related gene was recombinase A (recA; ORF 85). Seventeen ORFs were involved
in other functions, including coil-containing proteins (ORF 4, ORF 28, ORF 41, ORF 53,
ORF 59, ORF 93, and ORF 98), transmembrane helix-containing proteins (ORF 15, ORF 74,
and ORF 108), DUF550 domain-containing protein (ORF 7), XkdF (ORF 56), K+-dependent
Na+/Ca+ exchanger (ORF 57), DUF5675 domain-containing protein (ORF 73), AAA family
ATPase (ORF 75), putative protein-tyrosine phosphatase (ORF 101), and putative zinc- or
iron-chelating domain-containing proteins (ORF 123). Eighty-seven ORFs were identified
as hypothetical proteins. No tRNA, virulence, or resistance genes were detected in R21Y.
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2.3. Taxonomy and Phylogeny of R21Y

vConTACT2 detected 20 phages with similarity scores greater than one. Most of
these phages (17) were isolated using Vibrio strains, while a few infected Pseudomonas,
Rhizobium, and Stenotrophomonas. A gene content-based network using an edge-weighted
spring-embedded layout confirmed that R21Y was most closely related to phages Virtus,
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vB_VcaS_HC, and 1 (Figure 3A, Table S2). Intergenomic similarities among the 20 phages
showed that R21Y was closely related to vibriophages Virtus and vB_VcaS_HC, with
similarities of 96.0% and 95.2%, respectively, suggesting that R21Y belongs to the same
species as that of Virtus and vB_VcaS_HC (Figure 3B).
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Figure 3. Evidence supporting the taxonomy and phylogeny of vB_VhaS_R21Y. (A) Protein-sharing
network indicating evolutionary affinity among vB_VhaS_R21Y and its related phages sharing pair-
wise similarity scores of >1. Each node represents a phage genome and is colored according to its host
taxonomy. Edges connecting pairwise phages from the same viral cluster determined by vConTACT2
are displayed. Thicker edges indicate a strong connection between the two phages. The valid names
of existing phage genera are displayed. (B) Pairwise intergenomic distances/similarities among viral
genomes for 20 phages as per the Virus Intergenomic Distance Calculator. (C) GBDP tree based on
complete or partial genomes of compared phages using the web tool, VICTOR. (D) Neighbor-joining
tree (1000 bootstraps) of vB_VhaS_R21Y and similar phages based on the amino acid sequences of major
capsid protein as per MEGA 7. The asterisk indicates that the protein sequence has been manually
annotated as the major capsid protein. (E) Neighbor-joining tree (1000 bootstraps) of vB_VhaS_R21Y
and similar phages based on amino acid sequences of the terminase large subunit as per MEGA 7.

A phylogenetic tree was constructed based on pairwise comparisons of the amino acid
sequences of R21Y and related phages detected by BLASTn and vConTACT2. Phages R21Y,
Virtus, and vB_VcaS_HC formed a separate clade (Figure 3C), and phylogenetic trees based
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on the MCP and TerL proteins of these phages suggested that R21Y is most closely related
to vB_VhaS_HC and Virtus (Figure 3D,E).

2.4. Lytic Ability of R21Y

PhageAI analysis provided strong evidence of R21Y’s virulence, with 97.85% proba-
bility. A PCR assay was conducted using the MCP of phage R21Y as a hallmark gene to
ascertain the likelihood and stability of phage genome integration into the bacterial chromo-
some. Comparison with the positive and negative controls showed that six colonies were
positive for the presence of lysogenic or pseudo-lysogenic bacteria (Figure S2B). However,
the bacteria could not grow stably enough to be subcultured.

The killing curve showed that phages at multiplicities of infection (MOIs) of 0.00001 and
0.0001 did not significantly inhibit bacterial growth (Figure 4A). However, R21Y effectively
infected and lysed the host within the first 2 h of incubation at MOIs of 0.1, 1.0, and 10,
although phage R21Y did not significantly affect host growth after 24 h of incubation.
Conversely, phage lysis negatively affected host growth at MOIs of 0.001 and 0.01 within
2–4 h of infection, whereas R21Y at MOIs of 0.001 (p < 0.001) and 0.01 (p < 0.01) significantly
inhibited host growth compared with the control after 24 h of incubation (Figure 4B).
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V. harveyi BVH1 infected by vB_VhaS_R21Y. (B) Absorbance (OD600) of the host at 24 h. Error bars
indicate standard deviation among triplicate samples. Statistical significance is indicated by ** and
*** at p < 0.01 and p < 0.001, respectively, compared with the control.

2.5. Thermal and pH Stability of R21Y

Stability tests showed that R21Y remained robust within 4–45 ◦C and pH 4–9 (Figure 5).
However, when incubated at 55 ◦C and pH 10, the phage titer dropped significantly by
several orders of magnitude. The phage titer rapidly decreased to zero when R21Y was
incubated at temperatures >65 ◦C. R21Y was entirely inactive when incubated under
extreme pHs of 2, 3, 11, 12, and 13.
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3. Discussion

To date, 62 bacteriophages have been isolated against V. harveyi, including 33 siphoviruses,
15 myoviruses, and four podoviruses. Ten phages remain unknown (Table S3) [15,19–22,32–54].
Of these phages, only five vibriophages, VHML [15], 1 (VHS1) [19], VhCCS-19, VhCCS-21 [36],
and VH-P [38], have been identified as temperate, while the rest are considered lytic. In this
study, a novel V. harveyi phage, named R21Y, was isolated and characterized. The plaque
diameter and burst size of R21Y were 0.69± 0.15 mm and 35 plaque-forming units (PFU) per
cell, respectively. From a comparative analysis of phage R21Y with vibriophages VB_VhaS-
R18L (2.0 mm, 54 PFU/cell) [53] and vB_VpS_PG28 (1.5–2.0 mm, 103 PFU/cell) [55], it is
intuitively apparent that a larger burst size would result in a larger plaque size. i.e., the
plaque size of Vibrio phages is positively correlated with burst size, which concurs with
the classical model [56]. The latent periods of these phages ranged from 10 to 60 min, and
the burst sizes were between 20 and 298 phage particles per cell. The latent period and
burst size of R21Y were within the documented ranges for vibriophages. Lytic phages
that rapidly lyse their hosts and release new phages are particularly valuable for phage
therapy, and their swift action can potentially lead to the rapid recovery of aquatic animals
infected with Vibrio. Therefore, phage R21Y has been proposed as a candidate for phage
therapy because of its infection cycle. Additionally, R21Y has a distinct kinetic curve from
vB_VcaS_HC [57], although they share similar genomic information (95.2% similarities)
and the closest evolutionary distance. Phage R21Y has a shorter latent period (40 min vs.
1.5 h) and a smaller burst size (35 PFU/cell vs. 172 PFU/cell) than does vB_VcaS_HC.
Several factors are suggested to influence burst size, such as the host metabolic activity and
bacterial protein synthesis machinery [58,59]. The different physiological traits of these two
phages with highly similar genomes may be due to different host organisms and phage–
host interactions. More research is needed to understand the molecular mechanisms behind
the substantial burst size. Compared with the most similar phages Virtus and vB_VcaS_HC,
R21Y has a smaller burst size and weaker infectivity, indicating a positive correlation
between burst size and infectivity. Moreover, Stenotrophomonas phage vB_SmaS_DLP_5 [60]
was clustered together with R21Y in the protein-sharing network. This indicates that R21Y
may share similar protein functions with virus vB_SmaS_DLP_5 which belongs to the genus
Delepquintavirus. vB_VcaS_HC is considered a new species of the genus Delepquintavirus.
These finding suggest that R21Y may be a member of the genus Delepquintavirus.
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The phage’s tail fiber “tip” domain or receptor-binding domain mediates the interaction
between bacteriophages and their host. The host range of a phage is primarily determined by
phage tail fibers, which initially mediate specific recognition and adsorption by susceptible
bacteria [61]. However, no genes exist in the R21Y genome that correspond to the “tail
fiber”, despite R21Y’s narrow spectrum and highly specific host range. Regarding their
application, phages with broad host ranges can more effectively control diverse bacterial
strains. However, phages with narrow host ranges can be added to phage cocktails to combat
a wide range of bacteria and reduce the development of resistance [62]. Additionally, phages
with narrower host ranges can help protect the host’s local microbiota during treatment,
where specific Vibrio are prevalent in the environment.

R21Y exhibited two AMGs: rubredoxin-type fold protein and PPDK. Rubredoxin-type
fold protein is a common iron–sulfur protein in many living systems. It serves as a small
electron transfer protein in various biological reactions that produce energy and can act
as an oxygen oxidoreductase, safeguarding bacterial cells by blocking creation of reactive
oxygen species (ROS) in microaerophilic environments [63]. In aquaculture, environmental
hypoxia and hyperoxia and the use of ozonization lead to increased oxidative stress [64].
Expression of rubredoxin-type fold protein may protect the host from external ROS, which
is more conducive to phage reproduction. PPDK is responsible for the reversible conver-
sion of phosphoenolpyruvate to pyruvate, a crucial step in the Embden–Meyerhof–Parnas
pathway. This pathway is the primary pathway for glucose degradation and energy pro-
duction. PPDK exists in bacteria, protists, and plants but has been found in only a few
Vibrio siphoviruses [35,48,53,57]. When R21Y infects host cells, expression of the PPDK
gene may aid the host’s carbohydrate metabolism, resulting in more energy for the phage
progeny. Additionally, 16 uncategorized ORFs showed a wide range of functions, includ-
ing serine protease XkdF, which is frequently found in phage genomes. The function of
virally encoded serine proteases remains unknown, but they are strongly expressed dur-
ing the late stage of viral infection, suggesting their potential role in virion assembly or
maturation [65]. The K+-dependent Na+/Ca+ exchanger gene is a key determinant of Ca2+

signaling and homeostasis, especially in environments in which ion concentrations undergo
large changes [66]. A putative protein-tyrosine phosphatase gene is highly conserved in the
Orthopoxvirus family, suggesting its importance in viral replication or pathogenesis [67].
Expression of these genes may be useful for phage replication assembly in phage therapy.

R21Y has a potential lysogeny-related gene, recA (ORF 85). Through cleaved CI molecules,
recA induced phage λ to switch from the lysogenic to the lytic state in an Escherichia coli host in
response to DNA damage (via ultraviolet irradiation) [68]. recA has also been found in phages
VHS1 [41], vB_VcaS_HC, and Virtus. VHS1 can integrate into its host, V. harveyi (VH)1114, to
form lysogenic bacteria with superinfection immunity on the lysogenic test. However, VHS1
lysogens of VH1114 were unstable and spontaneously released VHS1 in liquid cultures. Li
et al. found that vB_VcaS_HC did not form lysogen in its host, V. campbellii 18, according to
the lysogeny test and PCR assay. Virtus has not been studied in this way; hence, its lysogenic
capacity is unknown. In our study, R21Y could lysogenize or pseudo-lysogenize only 6.38%
of host bacterial colonies; however, these bacteria could not be stably passaged, likely owing
to spontaneous induction of R21Y, which can reproduce, lyse, and kill the host bacteria,
as can VHS1. Multiple sequence alignments of the recA proteins of four bacteriophages
showed a high sequence identity of 98.88% (Figure S3). Thus, the lysogenic capacities of the
phages differ, likely because of differences in other genes with unknown functions. Therefore,
R21Y is a lytic phage and cannot undergo stable lysogenization, which is consistent with the
requirements of phage therapy.

In vitro lysis test results showed that phage R21Y was ineffective in eliminating host
bacteria V. harveyi BVH1 at an MOI < 0.001. This may be due to a lack of phages capable of
lysing a substantial amount of Vibrio in a short period; however, host bacteria can become re-
sistant to phage R21Y over time. MOIs of 0.001 and 0.01 were the best phage/bacteria ratios
and had the best lysis effect on the host; thus, these doses are recommended for practical
applications of phage therapy. The dose may become less effective if large phages (MOIs 1.0



Int. J. Mol. Sci. 2023, 24, 16202 9 of 15

and 10) are injected into Vibrio outbreak ponds; therefore, the phage should be injected at an
appropriate level during phage therapy. In the future, rigorous testing is still indispensable
for practical applications. Additionally, R21Y maintained high lytic activity over varying
environmental conditions (4–55 ◦C and pH 4–10). R21Y showed better thermal tolerance
than vB_VhaM_pir03 (45 ◦C) [21], VPMCC5 (45 ◦C) [50], vB_VhaS_MAG7 (45 ◦C) [54],
V-YDF132 (50 ◦C) [49], and vB_VhaS-R18L (50 ◦C) [53] and greater acid tolerance than
V-YDF132 (pH 5–11) and vB_VhaS-R18L (pH 6–11). Thus, R21Y can remain stable and exert
bactericidal activity in practical applications, suggesting that it is a promising candidate for
biological control of V. harveyi disease.

In this study, we clarified the physiological, genomic, and phylogenetic characteris-
tics of lytic Vibrio phage R21Y. R21Y specifically infected host bacteria, and no antibiotic
resistance or virulence genes were detected in the R21Y genome. These results suggest
that R21Y may be a safe biocontrol agent for controlling vibriosis. Furthermore, R21Y may
be a candidate for phage therapy owing to its stability over a wide range of temperatures
(up to 55 ◦C) and pHs of 4–10. Some AMGs have been identified in R21Y, including a
rubredoxin-type fold protein and PPDK, which may be beneficial for assembling and re-
leasing progeny phages. More research is needed to advance the applications of R21Y in
actual phage therapy.

4. Materials and Methods
4.1. Phage Isolation and Purification

The host strain V. harveyi BVH1 was purchased from the National Pathogen Collection
Center for Aquatic Animals, Shanghai Ocean University (Shanghai, China). V. harveyi
BVH1 was grown in a seawater-based liquid medium amended with 30 g/L sea salts,
10 g/L peptone, and 3 g/L yeast extract and then incubated at 28 ◦C with agitation at
160 rpm/min. Phage-containing water samples were collected from a scallop farm at the
Bay of Ellen, Rongcheng, Shandong Province, China (122◦34′14.54′′ W, 37◦10′15.58′′ E)
and filtered through 0.22-µm sterile filters (Millipore, Bedford, MA, USA). To increase
the probability of isolating phages, the filtered water was inoculated with exponentially
growing host culture and incubated overnight. After incubation, the mixed culture solution
was centrifuged (10,000× g, 10 min, 4 ◦C) and filtered through 0.22-µm sterile filters to
remove residual cells and impurities. The filtered culture was used for phage isolation,
using the double-agar layer method as per Clokie et al. [69]. After plaques emerged, an
individual plaque was collected, dissolved in SM buffer (5.8 g/L NaCl, 2 g/L MgSO4,
50 mL 1M Tris-HCl pH 7.5 and 2% gelatin, 1 L deionized H2O) and purified through at
least five cycles.

4.2. Preparation of High-Titer Phage Suspensions

To obtain high-titer phages, purified phages were inoculated into exponentially grow-
ing host culture and amplified to 1 L. After cell lysis, the culture was treated with 2 mg/L
DNase, 2 mg/L RNase, and 20 g/L NaCl to separate the phage particles from host cell
debris and then centrifuged at 10,000× g for 10 min at 4 ◦C. The supernatant was filtered
through 0.22-µm membranes and precipitated with polyethylene glycol 8000 (10% [wt/vol])
overnight at 4 ◦C. After centrifugation at 10,000× g for 60 min at 4 ◦C, the phage precipitate
was resuspended in SM buffer and further purified via CsCl equilibrium gradient centrifu-
gation (200,000× g, 4 ◦C, 24 h) using an Optima L-100 XP ultracentrifuge (Beckman Coulter,
Brea, CA, USA). The visible phage band was extracted and desalted through 30-kDa super
filters (Millipore, Bedford, MA, USA).

4.3. Transmission Electron Microscopy

Phage morphology was examined using the single-negative staining method via
transmission electron microscopy. Briefly, 10 µL of high-titer phage was adsorbed onto a
carbon-coated formvar grid for 30 min in the dark. Then the phage sample was stained with
1% phosphotungstic acid for 1 min and air dried. The grids were examined with a JEM-2100
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transmission electron microscope (JEOL Ltd., Akishima, Tokyo, Japan) at 80 kV. Images
were collected using the CCD image transmission system (Gatan Inc., Pleasanton, CA, USA).
Phage head and tail dimensions were measured using ImageJ v2.35 (http://imagej.net/
[accessed on 17 March 2023]) for at least five individual phage particles [70].

4.4. One-Step Growth Curve

A one-step growth experiment was performed to determine the phage’s life cycle [71].
Briefly, 1 mL of early-phase host culture was infected with the phage at an MOI of 0.01
and allowed to adsorb for 15 min at room temperature in the dark. Mixtures were then
centrifuged at 8000× g for 10 min to remove unabsorbed phage particles. After discarding
the supernatant, the pellet was washed and resuspended twice in 1 mL of SM buffer,
transferred to 50 mL of 2216E medium, and then incubated at 28 ◦C in the dark with
shaking at 160 rpm/min. Subsamples for the phage titer were taken at 20-min intervals for
140 min with three biological replicates and determined by the double-layer agar method.

4.5. Host Range

The host range of the phage was determined using a spot assay [72]. Briefly, 41 Vibrio
strains from 21 Vibrio species (V. harveyi, V. alginolyticus, V. azureus, V. campbellii, V. chagasic,
V. diazotrophicus, V. fortis, V. hyugaensis, V. inhibens, V. mytili, V. natriegens, V. neocaledonicus, V.
owens, V. parahaemolyticus, V. plantisponsor, V. ponticus, V. rotiferianus, V. tubiashii, V. variabilis,
V. xiii, and V. ziniensis) were purchased from the National Pathogen Collection Center for
Aquatic Animals, Shanghai Ocean University (Shanghai, China) and the Institute of Marine
Microbes and Ecospheres, Xiamen University (Xiamen, China). Each exponentially growing
bacterial culture was mixed with molten soft agar (0.5% [wt/vol]), then immediately poured
onto a solid agar plate (1.5% [wt/vol]). After solidification of the agarose plates, 5 µL of
phage lysate was spotted onto the bacterial lawn, and the agar plates were incubated
at 28 ◦C for >24 h. The presence of plaques within the bacterial lawn was assessed to
determine whether the phage had infected the host bacterium.

4.6. Lysogeny Test

The phage’s ability to lysogenize its trapping host was tested by isolating bacterial cells
from the plaque [73]. Approximately 5 µL of the phage solution was spotted onto the host
lawn to allow plaque formation. The phage plaque was then removed and stored in 1 mL
phosphate-buffered saline (PBS). The suspension was centrifuged at 8000× g for 10 min,
and the resulting cell pellets were washed twice with PBS to eliminate extracellular phages
and then resuspended in 1 mL of freshly prepared 2216E medium. Growing colonies were
obtained by plating aliquots (100 µL) of 1:1000 cell suspensions on 1.5% 2216E agar plates
and assessed for lysogeny via colony PCR with primers targeting the phage gene encoding
MCP (Table S4). PCR reactions were performed with a 25-µL reaction mixture containing
12.5 µL Premix Taq (Takara Bio Inc., Kusatsu, Shiga, Japan), 1 µL of each primer (10 mM),
1.0 µL template DNA, and 9.5 µL DNase/RNase-free distilled water. Cycling conditions
were preheating at 95 ◦C for 10 min, followed by 30 cycles of denaturation at 95 ◦C for
30 s, annealing at 57 ◦C for 30 s, and extension at 72 ◦C for 1 min, with a final elongation
step at 72 ◦C for 5 min. The phage DNA served as the template for the positive control,
and wild-type V. harveyi BVH1 was used as the negative control. The PCR amplification
products were detected via 1.0% agarose gel electrophoresis, and positive colonies were
further passaged three times to verify the stability of the lysogeny.

4.7. Lytic Efficacy

In vitro lysis assays of the phage against V. harveyi BVH1 were conducted in a sterile
96-well plate using a Synergy H1 microplate reader (BioTek Instruments Inc., Winooski, VT,
USA). Briefly, early-log-phase host bacterial culture was loaded into a well and infected
with the phage at MOIs of 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, and 10. Host bacteria without
phages served as the control. The plate was placed in the microplate reader and incubated

http://imagej.net/
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at 28 ◦C with orbital shaking. The OD600 of the cultures was measured every 10 min for
24 h. The assay was performed six times per treatment, and the data from each group at
24 h were compared with those of the control group using an independent sample t-test
performed with SPSS software (IBM SPSS Statistics 25, IBM, Armonk, NY, USA).

4.8. Thermal and pH Stability

To test the effect of environmental factors on the phage, thermal and pH stability tests
were conducted as previously reported by Kim et al. with minor modifications [74]. For the
thermal stability test, 1 mL of phage solution (105 PFU/mL) was incubated statically at 4,
25, 35, 45, 55, 65, and 75 ◦C for 1 h. After incubation, the phage titer was determined using
the double-layer plate method. To evaluate pH stability, phage samples at 107 PFU/mL
were inoculated into SM buffer with gradient pH values (2–13) achieved by adjustment
with 1 M NaOH and 1 M HCl. The solutions were statically incubated for 1 h at room
temperature, and the phage titers were determined using the double-layer agar technique.
The experiment was conducted in triplicate, and statistical differences were assessed using
one-way analysis of variance followed by Duncan’s multiple range test at p < 0.05.

4.9. DNA Extraction

Phage genomic DNA was extracted using a standard phenol-chloroform extraction pro-
tocol [75]. To eliminate the potential for free host DNA and RNA contaminants, the purified
phages were treated with protease K (100 mg/mL), sodium dodecyl sulfate (10% [wt/vol]),
and EDTA (0.5 mol/mL; pH 8.0) for 3 h at 55 ◦C. The phage sample was then extracted
and purified using phenol-chloroform-isoamyl alcohol (25:24:1 [vol/vol]) and chloroform-
isoamyl alcohol (24:1 [vol/vol]) to remove any impurities. The phage DNA from the
resulting supernatant was sequentially precipitated with isopropanol and stored overnight
at −20 ◦C. The precipitate was washed twice with 70% ethanol, air dried, dissolved in
sterile Tris-EDTA buffer (10 mM Tris-HCl and 1 mM EDTA [pH 8.0]), and stored at −80 ◦C
before sequencing.

4.10. Genome Sequencing and Annotation

The phage genome was paired-end sequenced using high-throughput Illumina No-
vaSeq. Velvet software (v1.2.03) was used for genome assembly after removing low-quality
reads [76]. Phage termini and packaging mechanisms were predicted with the PhageTerm
tool (v3.0.1) [77]. GeneMarkS (v4.32) was used to identify ORFs within the genome [78].
The tRNA genes were searched using tRNAScan-SE v2.0 [79]. The Eeayfig tool was used for
genome visualization [80]. Predicted genes were annotated manually using BLASTp [81],
CD-search [82], and RAST [83]. The absence of potentially toxic genes and antibiotic-
resistance determinants was confirmed via comparison with the Virulence Factors of
Pathogenic Bacteria [84] and Comprehensive Antibiotic Resistance Databases [85]. To de-
termine the life strategy of the phage, genome-based life cycle classification was performed
using an AI-driven software platform (https://phage.ai/ [accessed on 17 June 2023]) and
PCR assay (MCP gene of phage R21Y). The annotated genome sequence of the phage was
deposited in the NCBI GenBank database (accession number OR147960).

4.11. Taxonomic Network and Phylogenetic Analysis

The dataset comprising 4516 genomes (containing 468,105 proteins) of prokaryotic
viruses from NCBI Refseq (v207) and phage genomes similar to R21Y from the NCBI
nucleotide database were downloaded and compared with the phage using vConTACT2,
which identifies viral clusters [86]. For clarity, viruses showing similarity scores of >1 to the
phage were exported for subsequent analysis. A visual representation of the protein-sharing
network was generated using Cytoscape (v3.9.1) [87]. The edge-weighted spring-embedded
model was selected, with viral similarity scores serving as the weight. This arrangement
ensured that viral genomes sharing more viral protein clusters would be positioned closer
together. Intergenomic similarities between the phage and related phages were calculated

https://phage.ai/
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based on nucleotide data using the Virus Intergenomic Distance Calculator [88]. Finally, the
phage was taxonomically classified using the traditional algorithm used by the International
Committee on Taxonomy of Viruses through this tool.

To gain insight into the phylogenetic relationships among phages, complete genomes
were submitted to the VICTOR server (https://ggdc.dsmz.de/victor.php [accessed on
15 September 2023]), and the genome BLAST distance phylogeny method was applied,
using settings recommended for prokaryotic viruses [89]. The resulting tree was rooted
at the midpoint with branch support inferred from 100 pseudo-bootstrap replicates. The
phage MCP and TerL sequences were used to construct the neighbor-joining phylogenetic
trees using MEGA 7 with 1000 bootstraps [90].
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