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Abstract: Spatial ability is important for success in STEM fields but is typically measured using a
small number of tests that were not developed in the STEM context, have not been normed with
recent samples, or have not been subjected to modern psychometric analyses. Here, an approach
to developing valid, reliable, and efficient computer-based tests of spatial skills is proposed and
illustrated via the development of an efficient test of the ability to visualize cross-sections of three-
dimensional (3D) objects. After pilot testing, three measures of this ability were administered online
to 498 participants (256 females, aged 18–20). Two of the measures, the Santa Barbara Solids and
Planes of Reference tests had good psychometric properties and measured a domain-general ability
to visualize cross-sections, with sub-factors related to item difficulty. Item-level statistics informed
the development of the refined versions of these tests and a combined measure composed of the
most informative test items. Sex and ethnicity had no significant effects on the combined measure
after controlling for mathematics education, verbal ability, and age. The measures ofcross-sectioning
ability developed in the context of geology education were found to be too difficult, likely because
they measured domain knowledge in addition to cross-sectioning ability. Recommendations are
made for the use of cross-section tests in selection and training and for the more general development
of spatial ability measures.
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1. Introduction

Since the early 20th century, measures of spatial intelligence have been used in se-
lection for technically demanding jobs, such as mechanic and pilot (Smith 1964). More
recently, studies have shown that spatial intelligence is predictive of success in science,
technology, engineering, and mathematics (STEM) education, even after controlling for
individual differences in verbal and mathematical ability (Shea et al. 2001; Wai et al. 2009),
and that spatial skills can be improved with various types of training (Uttal et al. 2013). As
a result of these developments, there has been a groundswell of interest among educators
and psychologists in the possibility of improving STEM outcomes by fostering the devel-
opment of spatial skills. To study this prospect, we need valid and reliable assessments
of STEM-relevant spatial abilities and skills, which are normed for the relevant student
and professional populations. However, many existing tests of spatial ability were not
informed by STEM education and have not been adequately validated or normed. Here,
we describe an approach to developing valid, reliable, and efficient computer-based tests
of spatial skills and norming them on representative samples of the population using
modern psychometric techniques, including Item Response Theory (IRT). We illustrate
this approach by developing an efficient test of the STEM-relevant ability to visualize a
cross-section of a three-dimensional (3D) object, examining possible sub-components of
this ability and assessing how demographic variables affect performance on this measure.

There is no shortage of spatial ability tests. In their International Directory of Spatial
Tests, Eliot and Smith (1983) listed 392 different spatial tests. Unfortunately, no agreement
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has been reached on the classification of these tests. Historically, approaches to classifying
spatial tests relied on exploratory factor analysis (e.g., Michael et al. 1957; McGee 1979;
Lohman 1988; Carroll 1993) or on task analysis (Linn and Petersen 1985). However, the fac-
tor analysis results differed, depending on the specific tests included in the battery and the
statistical techniques used, and the field never arrived at a consensus based on these studies.
In fact, only a handful of the many tests, notably tests of mental rotation, spatial visual-
ization, and perspective taking, are in common use (Hegarty 2018; Malanchini et al. 2020),
likely because they are more openly available for research use.

Existing tests of spatial ability were developed in the early-to-mid 20th century to select
personnel for technical occupations (Smith 1964; Hegarty and Waller 2005). However, as
they were not developed in the context of STEM education, it is not clear that they measure
the most relevant spatial skills for STEM learning. For example, recent studies have
identified the importance of spatial cognitive tasks that are important for success in STEM,
such as imagining non-rigid transformations (Atit et al. 2013) and cross-sections of three-
dimensional structures (Kali and Orion 1996), but were not measured using existing tests
or included in classic factor analytic studies. Researchers have developed their own tests of
these abilities but, in most cases, have not subjected them to full psychometric analyses.

There are a number of methodological limitations to the current state of spatial ability
testing. First, even the classic tests of spatial ability that are commonly in use have not been
normed on recent cohorts, while more recently developed tests have typically been normed
on small convenience samples of college students, if at all. Second, most spatial tests have
not been subjected to modern psychometric analyses such as Item Response Theory (IRT),
which allows for examining the reliability and validity of individual test items, enabling
the identification of the most informative items for measuring the relevant ability. Third,
researchers have adapted existing tests by shortening them for efficient measurement
or converting them to online measures without any examination of the psychometric
properties of the adapted tests. As a result, we currently have many tests that purportedly
measure the same cognitive process (e.g., mental rotation, cross-sectioning, perspective
taking) but may actually tap different capabilities, whereas tests with different names may
tap the same ability (Brucato et al. 2022). For all of these reasons, we do not know enough
about what current tests measure to make effective recommendations regarding which
students might need educational interventions to succeed in STEM education or technical
careers or to evaluate the effects of interventions that aim to improve spatial thinking.

Here, we propose and demonstrate an approach to address these problems (see
Figure 1) by developing robust and efficient measures of STEM-relevant spatial abilities.
The first step is to identify spatial skills that we know are related to STEM success and to
review existing measures of each skill.
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Figure 1. Schematic of our approach to developing and standardizing measures of spatial ability.

The second step is to adapt these measures for online testing, which, in turn, enables
the collection of large samples of data representing the population at large. Most current
tests exist only in paper-and-pencil forms. Because many of these tests have a time limit,
individuals with lower spatial abilities typically do not complete all of the items on these
tests, which has hampered the application of modern psychometric analyses, such as
IRT, to these tests. Applying these techniques requires large data sets (typically of 500 or
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more participants), in addition to requiring responses to all test items for all participants.
Adapting these tests for computer-based administration facilitates the collection of large
data sets and can enable us to impose a time limit per item rather than for a whole test or
subtest so that we collect data on all items from all participants.

The third step is to collect data on these tests from large samples that are representative
of the general population. As noted, existing tests of spatial abilities have not been normed,
or if they have, it has typically been on convenience samples of college students. Many
technical careers require more practical experience or technical training rather than a college
education, so it is important to examine skills across the whole adult population, and not
just those who go to college. It is also important to ensure that our samples reflect the
ethnic and socio-economic diversity of the population.

The fourth and final step is to subject the data to statistical analyses. First, we need
to examine the internal consistency and correlations between the tests, as measures of
reliability and validity. As some measures were developed for specific populations, it is
also important to examine the relative difficulty of their items for the general population.
Item Response Theory (IRT, Hambleton et al. 1991) can be valuable in accomplishing these
goals. IRT analysis involves fitting a model to observed responses on each item of a test
based on the probability of a test taker at a given ability level getting that item correct. It
offers several advantages over the classical test theory (Hambleton and Jones 1993). First,
estimated item parameters are sample independent so that the results of an IRT analysis are
more accurate when generalizing to larger populations. Second, IRT provides a measure
of precision, which allows the researcher to examine how precisely a test can measure the
construct at different levels of ability. For example, a test item may offer a precise measure
at a high level of ability but be less precise at lower ability levels. Using IRT, we can identify
the most discriminating and precise items from different tests, enabling the development
of efficient tests.

Our approach was informed by a recent study on the spatial perspective-taking ability.
Brucato et al. (2022) conducted an analysis of four measures in common use to measure
this ability. Correlational and IRT analyses revealed that although the four measures
ostensibly measure the same ability, one test was not significantly correlated with the other
three, suggesting that it measured a somewhat different ability. The other tests differed in
characteristics, such as whether the display included a human figure or three-dimensional
cues, but the tests measured a common ability. Item Response Theory analysis was used to
identify the most discriminating items on these tests and also indicated that they differed
in discriminability across the range of ability. This analysis was used to recommend a
set of items that could be used to create efficient and reliable measures of perspective-
taking ability. This study shows the promise of aspects of our approach but used existing
paper-and-pencil measures and was limited by a relatively small sample and a college
student sample. Here, we use the same approach to examine cross-sectioning tests, first
adapting them for online administration. This enabled us to recruit a national sample
of 18–20-year-olds, including high school students, college students, and individuals not
currently in an educational institution.

1.1. Cross-Sectioning

We focus on the spatial task of inferring the cross-sections of a 3D object. While
this task was not included in classic factor analyses of spatial ability measures (e.g.,
Michael et al. 1957; McGee 1979; Lohman 1988; Carroll 1993), it has been identified as
a spatial skill that is central to spatial thinking in science, technology, engineering, and
mathematics. A cross-section is the resulting plane or flat surface after a three-dimensional
object is cut using a two-dimensional plane, that is, a 2D slice of a 3D object. Cross-
sections are often used in science and technology to show the internal structure of a
three-dimensional object, such as a complex mechanical system or a part of the human
anatomy. They are also observed in everyday activities such as cooking (slicing fruits
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and vegetables), and as a result, the development of cross-sectioning skills might not be
dependent on formal education.

Tests of cross-sectioning have been related to achievement in biology, medicine, ge-
ology, engineering, and geometry. In biology, they are commonly used to mentally rep-
resent cross-sections of anatomical structures, and this skill is also important in inter-
preting medical images, such as X-rays, ultrasounds, and magnetic resonance imaging
(Hegarty et al. 2007). Rochford (1985) found that medical students who performed poorly
on sectioning geometric solids also performed poorly (compared to high-spatial students)
on practical anatomy exams. Russell-Gebbett (1985) found a similar pattern with younger
students (age 11 to 14); specifically, students’ science ability (as rated by their teachers)
correlated positively with their performance on Biology test items that required them to
imagine a cross-section of a three-dimensional structure. In geology, students need to be
able to visualize the internal structure of a geological formation (Kali and Orion 1996).
Engineering also draws heavily on this skill, specifically when working with blueprints
and making orthographic projections (Duesbury and O’Neil 1996; Gerson et al. 2001;
Hsi et al. 1997). Finally, Pittalis and Christou (2010) identified skills such as the under-
standing of 2D representations of 3D objects as being a predictive factor of 3D geometric
reasoning abilities. Overall, the ability to visualize cross-sections is important for success in
a range of STEM fields.

Several tests are currently in use to measure cross-sectioning ability with no agreed-
upon standard. The earliest test of this ability is the Mental Cutting Test (MCT, College
Entrance Examination Board 1939), which has 25 items that show a representation of a 3D
shape with a plane cutting through it and requires test takers to choose the answer that
shows the shape of the cutting plane (see Figure 2B for an example). This test is very similar
to another commonly used cross-section test called the Planes of Reference test (PRT, Titus
and Horsman 2009), a 15-item test with the same instructions as the MCT but with distinct
items. In both of these, the figures are shown as line drawings with limited depth cues.
Another test, also referred to as the Mental Cutting Test or “Schnitte” (Quaiser-Pohl 2003),
shows similar figures to the MCT but uses a different method of responding (“select all
that apply” rather than choosing one correct answer out of five choices). These tests likely
involve similar spatial visualization processes but afford different analytic strategies due to
the response formats.

Cohen and Hegarty (2007) developed the Santa Barbara Solids Test (SBST), with the
same multiple-choice format as the original Mental Cutting Test and Planes of Reference test
but different stimuli that were rendered with 3D imaging software and included shading
to provide depth cues (see Figure 2A). The items were designed to vary in difficulty
based on two aspects: the geometric complexity of the solid and the orientation of the
cutting plane. Finally, a number of tests of cross-sectioning ability were designed for
studies of specific STEM disciplines. Some examples include the Crystal Slicing Test (CST,
Ormand et al. 2017), the Geologic Block Cross-Sectioning test (GBCST, Ormand et al. 2014)
designed for testing Geology students, and the tooth cross-section test (Hegarty et al. 2009)
designed for testing dental students. The Crystal Slicing Test (see Figure 2C) shows 3D
crystals found in mineralogy, while the Geologic Block Cross-Sectioning Test (See Figure 2D)
shows sections via geological structures. The tooth cross-section task uses 3D figures of
a tooth with roots inside and, like the Geologic Block Cross-Sectioning test, involves
visualizing internal structure, so these tests are often referred to as tests of penetrative
thinking (Kali and Orion 1996).
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1.2. This Present Study

This present study began by comparing performance on four of the existing cross-
section tests: the Santa Barbara Solids Test (Cohen and Hegarty 2007), the Planes of
Reference Test (Titus and Horsman 2009), the Crystal Slicing Test (Ormand et al. 2017),
and the Geologic Block Cross-Sectioning test (Ormand et al. 2014; see examples of test
items in Figure 1)1. First, these tests were adapted for online administration via Qualtrics.
After piloting the online tests with a college sample, we removed the Geologic Block
Cross-Sectioning test from further analysis due to its difficulty and time constraints and
administered the remaining three tests in an online study. This enabled us to collect a large
data set necessary to conduct Item Response Theory analyses from a sample that is more
representative of the US population.

One goal of the research was to examine the psychometric properties of existing tests. We
first examined the internal consistency of these tests and their inter-correlations to assess their
reliability and validity and whether they measure a common ability despite the differences
between the tests (e.g., 3D depth cues, type of structure to be sectioned, etc.). Next, we applied
IRT analysis to establish whether items on each test measure a common ability or capture
unique variance and to assess the difficulty and discriminability of the items on each test.
This enabled us to construct an efficient measure of cross-sectioning, made up of the most
discriminating items on the existing tests, a second goal of this research.

Using this refined test, we then considered different models of the cognitive processes
underlying the cross-sectioning ability by examining possible subcomponents of this ability
and aspects of items that affect their relative difficulty. First, we considered the orientation
of the cutting plane. Previous research with the Santa Barbara Solids Test indicated that
people scored lower on items with cutting planes that are oblique to the reference frame
of the object than for orthogonal cutting planes (Cohen and Hegarty 2007, 2012), possibly
because people have more experience with near-orthogonal cuts in everyday life (e.g., when
slicing vegetables). Although it is unlikely that these everyday cross-sections are perfectly
orthogonal, they are generally close to shapes created by an exact 90◦ cut. Oblique cuts
might also be more difficult to identify correctly because of a tendency to infer that a 2D
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shape would extend orthogonally into 3D space, not obliquely, and so we might tend to
visualize a rectangle as an orthogonal cut of a rectangular prism instead of an oblique cut of
a cube (Gagnier and Shipley 2016). Similarly, using the Mental Cutting Test, Tsutsumi (2004,
p. 117) identified two types of items: “pattern” problems, which only require recognizing
the shape of the cut to solve it (e.g., a rectangle), and “quantity” problems, which also
require identifying metric properties of the shape (e.g., the aspect ratio of the correct shape).
Second, we considered the complexity of the solid, including the number of parts making
up the solid, which has also been found to affect difficulty (Cohen and Hegarty 2007, 2012).
Therefore, we also considered models that took complexity into account.

Finally, we examined how demographic variables (including sex, age, ethnicity,
and mathematics education) are related to cross-sectioning performance. Sex differ-
ences are found in some but not all spatial ability measures (Linn and Petersen 1985;
Voyer et al. 1995), so it is important to establish whether these differences exist (and the
size of any differences) for different spatial measures. To our knowledge, this is the first
study to examine sex differences in cross-section tests with a large sample. In contrast
to sex differences, there has been relatively little research on the relationship between
ethnicity and spatial performance. Here, we compared the performance of Hispanic and
non-Hispanic participants. Because cross-sections are studied to some extent in geometry
and cross-section diagrams are prevalent in scientific textbooks, it is also possible that
this spatial skill is affected by education, so we compared the performance of individuals
with different levels of education (e.g., high school vs. college) and explored the effects of
parental education and taking math courses.

1.3. Study 1: Pilot with University Students

A pilot study was conducted with university students to assess the feasibility of
administering cross-section tests online, to measure the average time taken to respond to
items in the cross-section tests, and to establish basic levels of performance for a general
college population on the four tests.

2. Materials and Methods
2.1. Participants

Participants were 45 students in introductory psychology courses who received course
credit for participation. Data from two participants were removed because they took a very
long time to complete the test (more than 100 min; the mean time for other subjects was
26.53 min, SD = 13.12 min). Sex of students was not recorded.

2.2. Materials

The following four tests were adapted from their original paper and pencil versions
and administered online via Qualtrics.

2.2.1. Santa Barbara Solids Test (SBST, Cohen and Hegarty 2012)

The Santa Barbara Solids Test is a multiple-choice test on the ability to imagine cross-
sections of solid objects. It contains 30 items varying in complexity of the solids, from
simple solids (e.g., a cube) to objects made up of connected solids or embedded solids (see
sample item in Figure 1). With respect to complexity, 10 items present a geometric primitive
(cone, cube, cylinder, prism, or pyramid) as the solid, 10 items show objects made up of
two geometric primitives joined at an edge, and 10 items are made up of two primitives,
with one embedded inside the other. The orientation of the cutting planes is varied, with
half of the cutting planes being orthogonal to the main axis of the solid while the others are
oblique. There are 4 possible answer choices for each item, so chance performance (30/4)
is 7.5.
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2.2.2. Planes of Reference Test (PRT, Titus and Horsman 2009)

In this test, participants are asked to choose the shape of the intersection of a slicing
plane with a geometric solid. The solids are represented as line drawings with no shading
(see Figure 1). There are 15 items on the test, and each item is worth one point, with no
penalty for incorrect answers. There are 5 possible answer choices for each item, so chance
performance (15/5) is 3.0.

2.2.3. Crystal Slicing Test (CST, Ormand et al. 2017)

In the Crystal Slicing Test, participants choose which shape would be made by slicing
a geometric solid with a plane from five answer choices. The solids are symmetrical across
the x (lateral) and z (depth) axes and have shading to provide depth cues (see Figure 1).
The solids are the shapes of common crystals in mineralogy. There are 15 items on the
test. Each item is worth one point, and there is no penalty for incorrect answers. There are
5 possible answer choices for each item, so chance performance (15/5) is 3.0.

2.2.4. Geologic Block Cross-Sectioning Test (GBCST, Ormand et al. 2014)

This multiple-choice test requires students to select the cross-section produced using a
pictured cut through a Geologic Block Diagram (see example stimulus in Figure 1 below).
This test was developed for geology majors and has been used primarily in studies related
to spatial ability in geosciences (Gold et al. 2018; Hannula 2019; Ormand et al. 2014). It has
16 items; each item is worth one point, and there is no penalty for incorrect answers. There
are 4 possible answer choices for each item, so chance performance (16/4) is 4.0.

2.3. Procedure

This study was implemented online via Qualtrics. After giving informed consent,
students were administered the four tests, which were preceded by standard instructions for
these tests. Both the order of tests and the order of items within the tests were randomized.
Test items were presented one at a time. Response time was measured for each item, and
there was no time limit.

3. Results

Descriptive statistics and measures of reliability for the four tests are presented in
Table 1. McDonald’s Omega measures general factor saturation. Internal consistency was
calculated using Spearman–Brown (Spearman 1904) corrected split-half reliability using the
‘splithalf’ package in R (Parsons et al. 2019) and Cronbach’s Alpha. Mean performance on
the Santa Barbara Solids Test was well above chance (95% CI [17.26, 21.39], chance = 7.5),
and this test also showed good reliability. The performance of the Planes of Reference
(95% CI [6.38, 8.23], chance = 3) and Crystal Slicing (95% CI [7.39, 9.12], chance = 3) tests
were also well above chance, but these tests showed only moderate reliability. The mean
performance of the Geologic Block Cross-Sectioning Test was significantly above but close
to chance (95% CI [4.87, 6.66], chance = 4), and this test also showed moderate reliability.

Table 1. Descriptive statistics for the four measures included in the pilot study.

Test Possible
Range Score Response

Time
McDonald’s

Omega
Spearman-

Brown
Cronbach’s

Alpha

M SD M SD
Santa Barbara Solids 0–30 19.32 6.71 11.49 6.04 0.91 0.88 0.89
Planes of Reference 0–15 7.30 3.00 13.76 11.41 0.74 0.63 0.66

Crystal Slicing 0–15 8.26 2.82 12.13 7.50 0.73 0.57 0.64
Geologic Block

Cross-Sectioning 0–16 5.77 2.90 16.63 10.77 0.74 0.60 0.64
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Response times per item were similar for the SBST, PRT, and CST (see Table 1). The
median response times for these tests were 10.46, 10.78, and 11.43, respectively, and only
five participants had median response times of more than 20 s per item on any of these tests.
In contrast, the mean (see Table 1) and median (16.88) response times for the GBCST were
substantially longer, and 31.1% of response times were more than 20 s. As shown in Table 2,
correlations between the tests were high, especially after correcting for the reliability of the
measures, suggesting that they share considerable variance.

Table 2. Correlation matrix for the measures used in the pilot study. Disattenuated correlations
(corrected for reliability of each measure) are shown in parentheses; 95% confidence intervals of the
correlations are shown above the diagonal.

Santa Barbara Solids Planes of Reference Crystal Slicing Geologic Block
Cross-Sectioning

Santa Barbara Solids Test 1 [0.60, 0.87] [0.69, 0.90] [0.31, 0.74]
Planes of Reference Test 0.76 (1) 1 [0.52, 0.83] [0.31, 0.74]

Crystal Slicing Test 0.82 (1) 0.71 (1) 1 [0.24, 0.70]
Geologic Block

Cross-Sectioning Test 0.56 (0.77) 0.56 (0.91) 0.50 (0.86) 1

4. Discussion

The pilot study indicated that the Santa Barbara Solids Test, the Planes of Reference
Test, and the Crystal Slicing Test were of appropriate difficulty for college students, while
the Geologic Block Cross-Sectioning test was more difficult and also took more time per
item. While these results should be interpreted with caution, due to the small sample
size in this study, it is notable that performance on the SBST was tested close to chance,
although significantly greater than chance, when administered without a time limit. In
particular, 37.2% of college students were at or below chance performance on the GBCST,
while the percentage of students at or below chance on the other tests was below 12%.
It is likely that the GBCST test depends on geology knowledge in addition to the ability
to imagine cross-sections. Ormand et al. (2014) describe the test as “. . .a geoscience-
specific test of penetrative thinking. . .” (p. 149), and previous research indicates that expert
geologists score better on this test than college students (Tarampi et al. 2016) and that
students perform better on this test after a geology course (Hannula 2019). It is also the
only test of the four that involves complex internal structures, as the stimuli in the other
tests are made up of regular solids. Because of its possible reliance on geology knowledge,
we anticipated that it might be more difficult for the general population, who are less
likely to have this knowledge. For these reasons and the need to keep the overall time
requirement manageable for online administration, the GBCST was not included in the large
online study. Instead, it would be valuable to compare the GBCST to other tests involving
internal structures or geology-specific knowledge in future research, as it possibly captures
a somewhat separable component of cross-section ability. Based on the response times
observed in the pilot study, participants were given a time limit of 20 sec for each item in
the large online study.

Study 2: Large Representative Sample

In Study 2, we administered the Santa Barbara Solids, Planes of Reference, and Crystal
Slicing tests online to a large sample representative of the US population. This enabled us
to use the IRT analyses to examine whether these tests measure one unitary construct and
test for item-specific factors. To first examine the psychometric properties of the individual
tests, we fit a unidimensional, two-parameter logistic model (2PL) to each of the three
tests to assess the model fit and the difficulty and discriminability of test items. Then,
we developed an efficient, hybrid test of cross-sectioning ability that functions well over
a wide range of abilities. This included items from the SBST and PRT tests. We then fit
another unidimensional, 2PL model to this test (Model A, See Figure 3) and compared it to a
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multidimensional 2PL model (Model B) in which the SBST and PRT items were assumed to
measure distinct abilities in order to investigate whether these tests measure the same ability
or separate, correlated abilities. A series of hierarchical bifactor models were evaluated in
order to examine if the tests measure a general cross-section ability with correlated sub-
abilities that explain the variance between different types of items. Different combinations
of sub-abilities were tested (Models C, D, and E) based on previously observed difficulty
factors, i.e., the angle of the cutting plane (orthogonal vs. oblique) and complexity of
the solid to be sectioned (Cohen and Hegarty 2007, 2012). Finally, the relations between
demographic variables (sex, race, ethnicity, and education) and performance on this refined
measure were examined.
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5. Materials and Methods
5.1. Participants

Five hundred and twelve participants (260 female) aged 18–20 were recruited from
Qualtrics Panels, met Qualtrics’ automatic screening process, and were paid for their time.
Twelve participants’ data were removed due to timing out (leading to missing data on
at least 20% of the items), one participant was removed for answering ‘C’ to all but one
item, and one was removed for scoring zero on two of three cross-section tests, leaving a
total of 498 participants in the analysis. Samples of 500 have been suggested to accurately
estimate IRT parameters for a test with 20 items, and the minimum recommended sample
decreases with more test items (Şahin and Anıl 2017). The demographics of the sample,
which were chosen to match the racial breakdown of Navy recruits2, are presented in
Table 3. Participants were drawn from all geographic regions (n = 132 Northeast, n = 88
Southwest, n = 80 West, n = 116 Southeast, and n = 82 Midwest) and environment (n = 181
cities, n = 202 suburbs, and n = 115 small town/rural) to ensure that data were collected
from all areas of the US. The majority of the participants were native English speakers
(n = 472).
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Table 3. Participant demographics.

Race Ethnicity Education Status Parents’ Education

White 334 Hispanic 132 In High School 78 High School Diploma 226
Black/African American 106 Not Hispanic 366 In 2Year College 129 Associate’s Degree 52
Asian/Asian American 13 In 4-Year College 151 College Degree 110

American
Indian/Alaska Native 7 Not in an Educational

Institution 140
Graduate/

Professional
Degree

90

Not Stated 38

5.2. Materials

Participants were administered the Santa Barbara Solids Test (Cohen and Hegarty 2012),
Crystal Slicing Test (Ormand et al. 2017), and the Planes of Reference Test (Titus and
Horsman 2009). The tests were identical to those used in the pilot study except that the
instructions included a sample item that participants were required to answer correctly
before proceeding to the test items, were required to spend at least five seconds on each item,
and were given a time limit of 20 s for each item. Participants also completed the Wordsum
Plus Vocabulary Test of the General Social Survey (Cor et al. 2012), a 14-item version of the
General Social Survey’s vocabulary test (Word Sum), which added 4 additional items to the
original 10-item test. The added words were chosen to provide more information in the
moderate ability range based on IRT analysis.

5.3. Procedure

All tests were completed online either using a desktop computer or a mobile phone.
They were completed in one session, which took approximately 25 min. Participants first
provided informed consent, followed by a warning message explaining that the tests would
require attention and effort and that their data would be unusable if they did not try their
best. The warning was used as an attempt to improve data quality by making an appeal
to conscience as well as preventing attrition due to the difficulty of the tests (Zhou and
Fishbach 2016).

Participants completed the three cross-section tests in a random order. Each test was
preceded by standard instructions that could not be advanced until a certain amount of
time had expired (10–15 s, depending on the length of the page) to encourage participants
to read the instructions completely. Then, each test included one sample problem, which
participants had to answer correctly before proceeding to the test items (they were given
multiple attempts at this item if necessary). The order of items in each test was randomized.
Participants were required to spend a minimum of 5 s on each item and were allowed a
maximum of 20 s. After completing all three cross-section tests, participants completed the
Word Sum test. Lastly, participants were given an attention check (Aust et al. 2013) asking
if they had made a serious attempt.

6. Results
6.1. Scoring

Correct answers were coded as 1, and incorrect answers were coded as 0. If a partici-
pant reached the time limit of 20 s for a problem without selecting an answer choice, they
were assigned a score of 0 for that problem. The time limit was reached with no answer
selected on a mean of 3.2% of items.

6.2. Descriptive Statistics

Descriptive statistics for the measures are shown in Table 4, and histograms showing
their distributions are in Figure 4. The average scores on the three cross-section tests
were above chance levels (chance was 7.5 for the SBST and 3.0 for both the PRT and CST).
However, they were closer to chance than for the college student sample in Study 1. The
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average scores were 12.10 on the SBST, 5.24 on the PRT, and 5.28 on the CST. The average
response times for the cross-section tests (see Table 4) were well within the imposed time
limit of 20 s. The performance of the Word Sum test was also above the chance level (2.8)
and was not timed in this administration.

Table 4. Descriptive statistics for the tests in Study 2.

Test
Possible
Range

Score Response Time McDonald’s
Omega

Spearman-
Brown

Cronbach’s
AlphaM SD M SD

Santa Barbara Solids Test 0–30 12.11 5.53 9.42 1.96 0.84 0.79 0.82
Planes of Reference Test 0–15 5.24 2.44 9.96 2.65 0.55 0.46 0.50

Crystal Slicing Test 0–15 5.28 2.55 9.16 2.45 0.63 0.51 0.56
Word Sum Test 0–14 6.21 2.87 - - 0.74 0.63 0.72
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6.3. Reliability and Correlations

Internal consistency and general factor saturation (McDonald’s Omega) for the four
measures are shown in Table 4. Internal consistency was calculated using Spearman–
Brown (Spearman 1904) corrected split-half reliability using the ‘splithalf’ package in R
(Parsons et al. 2019) and Cronbach’s Alpha. Like in Study 1, the Santa Barbara Solids Test
showed good reliability, while the reliability of the Planes of Reference and Crystal Slicing
Tests was moderate. As shown in Table 5, correlations between the tests were moderate and
remained significant after controlling for verbal ability (Word Sum test), indicating that,
as expected, the cross-section tests shared common variance related to spatial processing
and not just motivation or general intelligence (providing evidence for divergent validity).
The disattenuated correlations between the measures were also calculated, taking their
reliabilities (i.e., permutation-based split-half estimation) into account (Parsons et al. 2019).
The disattenuated correlations between the cross-section measures were high (0.90 or
greater), indicating considerable common variance. Disattenuated correlations are reported
above the diagonal in Table 5.

Table 5. Correlations between the measures. Numbers in parentheses indicate partial correlations
between the cross-section tests after controlling for the Word Sum test. Above the diagonal (in italics)
are disattenuated correlations.

Test SBST PRT CST WST

Santa Barbara Solids Test (SBST) 1 0.90 0.92 0.48
Planes of Reference Test (PRT) 0.54 * (0.48 *) 1 1 0.67

Crystal Slicing Test (CST) 0.58 * (0.53 *) 0.50 * (0.43 *) 1 0.61
Word Sum Test (WST) 0.34 * 0.36 * 0.35 * 1

* p < .001.
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6.4. Unidimensionality and Local Independence

We conducted an exploratory factor analysis from the tetrachoric correlation matrices
to assess whether each of the cross-section tests measured a unidimensional ability, using
two criteria to assess the number of factors (dimensions) underlying performance, the
number of factors with Eigenvalues greater than 1, and the Scree test (Cattell 1966). The
first factor in the SBST had an Eigenvalue of 7.52, while the second and third Eigenvalues
were just over 1 (1.29 and 1.05, respectively). The first factor was clearly dominant, and the
scree plot suggested one factor (see Figure 5). The PRT also showed a dominant first factor
(first Eigenvalue = 2.45, second Eigenvalue = 0.49), as did the CST (first Eigenvalue = 2.76,
second Eigenvalue = 0.95), and for these tests, only Eigenvalues of the first factor exceeded
1, again suggesting unidimensionality.
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The tests were also assessed for local independence of items. If a person’s score on one
item predicts their score on another item after accounting for the main factor of cross-section
ability, the pair of items is said to be locally dependent and likely share a common feature
separate from cross-sectioning. To test for local dependence, the G2 statistic (Chen and
Thissen 1997) and the Jackknife Slope Index (JSI; Edwards et al. 2018) were calculated for
each possible combination of items in each individual test using the residuals function in
the R package mirt (Chalmers 2012). In order to examine each model for possible locally
dependent item pairs, the distribution of the standardized values of G2 and JSI for all item
pairs was inspected (see the range for each diagnostic in Table 6). There was no evidence of
local dependent item pairs.

Table 6. Standardized local dependence diagnostics for all models. Extreme values falling far outside
the normal distribution indicate possible item pairs showing local dependence.

Model G2 JSI
Min Max Min Max

Santa Barbara Solids Test −0.13 0.14 −1.39 1.39
Planes of Reference Test −0.08 0.13 −1.41 1.93

Crystal Slicing Test −0.11 0.16 −1.36 2.28

6.5. Within Task Item Response Theory Analyses

We tested the fit of the data for each test to the single-factor, two-parameter logistic
model (2PL), which includes estimated parameters for discriminability and difficulty for
the test items. All models were fit using the “mirt” package in R (Chalmers 2012) using
the Expectation Maximization (EM) algorithm (Bock and Aitkin 1981). Table 7 presents the
model fit for each test. The overall model fit for each test was assessed using the M2 statistic,
which has been demonstrated to be less influenced by the sparsity of the contingency table
of response patterns than chi-square (Maydeu-Olivares 2014), as well as Root Mean Square
Error of Approximation (RMSEA), Comparative Fit Index (CFI), Tucker–Lewis Index (TLI),
and Standardized Root Mean Squared Residual (SRMR). Acceptable fit was determined



J. Intell. 2023, 11, 205 13 of 23

based on the following criteria: Root Mean Square Error of Approximation (RMSEA) below
0.05 (Maydeu-Olivares 2013), Comparative Fit Index (CFI) above 0.95, Tucker–Lewis Index
(TLI) above 0.953, and SRMR less than 0.05 (Maydeu-Olivares 2013). While a significant
M2 indicates that we should reject the null hypothesis of the fitted model being true, this
statistic was small relative to the degrees of freedom ( M2

d f < 3), indicating an acceptable
model fit.

Table 7. Fit of 2PL unidimensional model for the Santa Barbara Solids Test, Planes of Reference Test,
and Crystal Slicing Test.

Test M2 Statistic df(M2) p RMSEA TLI CFI SRMR

Santa Barbara Solids Test 697.52 405 <.001 0.04 0.93 0.94 0.05
Planes of Reference Test 111.21 90 =.06 0.02 0.94 0.95 0.04

Crystal Slicing Test 220.13 90 <.001 0.05 0.78 0.81 0.06

6.6. Santa Barbara Solids Test

For the SBST, the unidimensional 2PL model is not a good fit based on all model
fit diagnostics, but most were close to the cutoffs. The individual items of SBST were
also examined to check for sources of model misfit. A well-fitting item will have a non-
significant p-value in a test of chi-square, indicating that the model’s generated data were
not significantly different from the observed data. Item 8 showed marginally significant
misfit (p = .025). However, the RMSEA of this item is 0.038, which is still well within the
acceptable range (<0.05). Removing item 8 and re-running the model results in another
item being significantly misfit, and this repeats if the next item is also removed. As such,
the overall model fit does not improve by removing item 8, and it was maintained.

Item characteristic curves (ICC) shown in Figure 6 visualize the estimated parameters
of discriminability and difficulty for each item of the tests (See Supplementary Table S1 for
all SBST item parameters). The slope of each ICC represents the discriminability of one item.
If an ICC for a given item is flat (i.e., has a low slope), this indicates low discriminability
such that at low levels of ability (x-axis), the probability of getting the item correct (y-axis) is
not much lower than at high levels of ability. The location of an ICC on the x-axis indicates
its difficulty, with items to the right indicating more difficulty.

The mean discriminability coefficient for all 30 SBST items was 0.98 (moderate), and
they ranged from 0.25 (very low) to 2.58 (very high). As seen in Figure 4, items 16 and
30 do not discriminate well between high and low levels of ability. The discriminability
coefficients of these items were less than or equal to 0.26. In both of these items, there
were two answer choices that were very similar. These items were removed to improve the
efficiency of the test. The mean discriminability coefficient for the remaining 28 items was
1.04 and ranged from 0.67 to 2.59.

The mean of the difficulty coefficients for the SBST was −0.49, meaning the items were
somewhat difficult (a test-taker with average ability would have a less than 50% chance of
getting an item correct on average). The item difficulties ranged from −2.12 (very difficult)
to 1.73 (very easy). After removing items 16 and 30, the average difficulty coefficient was
−0.46, and the range did not change.

The Test Information Function (TIF, Figure 7) shows how much information the overall
tests capture at a given level of ability. For SBST, the curve of the TIF was highest around
average to slightly above-average ability (theta = 0 to 0.5), meaning the test is more precise
when measuring test takers in this ability range. Overall, the test should perform well on
test takers between moderately low (theta = −1) and high (theta = 1.5) ability levels, with
the most precision around average (theta = 0) ability.
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Figure 6. Item characteristic curves for the Santa Barbara Solids Test (SBST), Planes of Reference
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correct at a given ability level (Theta). Items with low discriminability are labeled for SBST, PRT, and
CST. The combined test is the refined SBST and PRT.
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6.7. Planes of Reference Test

For the Planes of Reference Test, the unidimensional 2PL model fits acceptably by all
criteria (see Table 7). The fit of individual items was assessed using a signed chi-square,
and there were two marginally misfit items (item 2, p = 0.022, and item 9, p = 0.039). As
with the SBST, these items had acceptable RMSEAs at 0.05 or less. The model fit did not
improve with the removal of these items, and they were maintained in the refined version
of the test.

The average discriminability for all PRT items was 0.68, and it ranged from −0.08
(very low) to 2.45 (very high). The average difficulty was −0.78 (moderately difficult)
and ranged from −2.45 (very difficult) to 0.29 (average). All items with a discriminability
coefficient less than 0.26 (items 5, 6, 7, 9, and 12) were removed in order to improve test
efficiency, leaving 10 items. The discriminability coefficients of these 10 items ranged from
0.35 to 2.45. The TIF of the overall PRT test (Figure 4) shows the most precision for test
takers of average to above-average ability (thetas from 0 to 1). See Supplementary Table S2
for all PRT item parameters.

6.8. Crystal Slicing

Overall, the Crystal Slicing Test did not show an acceptable model fit. The RMSEA
of the model was acceptable, but the CFI, TLI, and M2 significance tests indicated a poor
fit (see Table 7). The consideration of individual items indicated that items 2, 10, and 14
showed significant misfits (p < .05). Item 10 had the highest RMSEA (0.081), while the other
two were within acceptable bounds (≤0.05). While there were not any obvious problems
with these items upon inspection, one possible source of error for non-geology students
might have misinterpreted the symmetry of the shapes as they are unlikely to be familiar
with these shapes.

After removing items 2, 10, and 14 and fitting a new 2PL model, the model fit improved
but still did not fit acceptably (p < .001, RMSEA = 0.049, CFI 0.85, TLI 0.82). The removal of
three more items (1, 6, 9) that have significant misfits in the new model (p < .05) indicated
a poorer fit of the overall model. The remaining nine items did not show any individual
misfits. Thus, removing any more items would not improve fit. In sum, the 2PL model does
not fit the observed data for the Crystal Slicing Test, and as a result, it was not included in
the analysis of the combined tests.

6.9. Combined Task Item Response Theory Analysis: Model Comparisons

A refined 38-item cross-section test was created comprising the 28 SBST and 10 PRT
items that showed good discriminability. The SBST images of the solids to be sliced
had depth cues, including shading, while the PRT items showed line drawings with
limited depth cues (see Figure 2) and, therefore, may have depended more on familiarity
with graphical conventions (Bartlett and Camba 2023b). To examine whether the items
from these two tests measured distinct abilities, we compared a unidimensional 2PL
model (Model A, Figure 3), indicating that all 38 items measure a common dimension of
ability, to a non-hierarchical multidimensional 2PL model (Model B, Figure 3), indicating
that the two tests measure distinct but correlated constructs. In the non-hierarchical
multidimensional (two-factor) 2PL model (Model B) items from the SBST were constrained
to load on one factor, and items from the PRT were constrained to load on a second
factor. The unidimensional 2PL model (Model A) showed an acceptable fit to the observed
responses (see Table 8). The overall fit of the two-factor model (Model B) was poorer
than for Model A (see Table 8), supporting the idea that the tests were measuring the
same, rather than distinct abilities, despite the differences in depth cues provided. In the
unidimensional model, all items showed a good fit (p > .06). The least discriminable
items were PRT 11 (discriminability = 0.298) and PRT 10 (discriminability = 0.410). Items
functioned well over a wide range of abilities (thetas = −2 to 2). The overall test captured
the most information around average to just above average ability but also captured a
good amount from moderately low ability (theta = −1) to high ability (theta = 2) levels (see
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Figure 5). This test showed high factor saturation (McDonald’s Omega = 0.86) and high
reliability (split-half reliability = 0.83; Cronbach’s Alpha = 0.85).

Table 8. Model fit indices for Models A, B, C, D, E, and 20-D.

Model M2 df(M2) p RMSEA TLI CFI SRMR AIC BIC

A (Unidimensional 2PL) 1104.01 665 <.001 0.036 0.937 0.941 0.051 21,153.29 21,473.29
B (Multidimensional 2PL) 1275.63 663 <.001 0.043 0.912 0.917 0.094 21,359.02 21,687.45
C (Hierarchical Bifactor,

4 Sub-factors) 860.90 627 <.001 0.027 0.965 0.968 0.046 21,047.96 21,527.97

D (Hierarchical Bifactor,
2 Sub-factors, Orientation) 775.37 627 <.001 0.022 0.978 0.980 0.042 20,967.59 21,447.60

E (Hierarchical Bifactor,
2 Sub-factors, Complexity) 923.84 627 <.001 0.031 0.955 0.960 0.047 21,073.25 21,553.25

20-D (20-item version of D) 207.49 150 =.001 0.028 0.981 0.985 0.039 10,810.84 11,063.47

Previous research indicated that both the orientation of the cutting plane and the
complexity of the solid to be sliced affect the difficulty of items on the SBST (Cohen and
Hegarty 2007). To examine whether these item characteristics defined sub-factors, we
evaluated a hierarchical bifactor model (Model C, see Figure 2). Sometimes referred to
as a two-tier model, ‘bifactor’ refers to the general factor g that all items are assumed
to load on (i.e., the second tier) and the first tier, which can contain any number of sub-
factors, up to the number of items on the test (Gibbons and Hedeker 1992; Chalmers 2012).
Model C assumed each item to load on a general factor (cross-section ability) but was also
constrained to load on one of four sub-factors, identified based on Cohen and Hegarty’s
(2007) classification. Figures were classified as either simple or complex, and the orientation
of the intersecting plane was classified as either orthogonal or oblique (relative to the x, y, or
z-axis of the figure), resulting in four possible sub-factors (7 simple orthogonal; 11 complex
orthogonal; 8 simple oblique; and 12 complex oblique). The bifactor model showed a very good
fit to the observed data (see Table 8), with a better fit than Model A or B, indicating that the
38-item hybrid test is measuring one general factor of cross-section ability, but responses
are also influenced by sub-factors of each item.

Finally, we considered more parsimonious bifactor models that specified only the ori-
entation of the intersecting plane (Model D) and only the complexity of the figure (Model E)
as sub-factors. As shown in Table 8, Model D fit the observed data significantly better than
Model C (AIC and BIC decreased by 80.37, chi-square = 80.37, p < .001). In contrast, Model E
was a poorer fit than Model C (AIC and BIC increased by 25.28, chi-square = 25.28, p < .001)
and Model D (p < .001, Vuong’s test of non-nested models). Model D fits significantly better
than Model A, p < .001, using Vuong’s test of non-nested models. These analyses and the
principle of parsimony indicate that the best-fitting model was one with a general factor for
cross-sectioning reflecting items from both the SBST and the PR, with sub-factors for items
with oblique and orthogonal cutting planes. See Supplementary Table S3 for all Model D
item parameters4.

6.10. Individual Differences

The 38-item refined test was used to examine the effect of demographic variables on
cross-sectioning ability (see Figure 7). We examined this using both the summed score
of the 38 items and Theta estimates (ability scores) from Model D. As shown in Table 9,
correlations with the demographic variables were almost identical for the two measures,
so we used summed scores for these analyses (the significance of the correlations with sex
were marginal, reaching significance in one case). There was no significant sex difference
in the score (males’ mean score = 15.73, SD = 7.14, females’ mean score = 14.53, SD = 6.47;
p = .05, Cohen’s d = 0.18). There was no significant ethnicity difference (Hispanics’ mean
score = 14.96, non-Hispanics’ mean score = 15.17; p = .76). A one-way ANOVA tested
for differences between educational status groups (in high school, graduated from high
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school, in college), but no difference was found (F (1,496) = 0.31, p = .58). Participants
whose parents’ education was higher (college degree or above) had significantly higher
scores (M = 16.52, SD = 7.31) than those whose parents’ education was lower (M = 14.17,
SD = 6.31; p < .001, d = 0.35), and there was a significant, positive correlation between score
and reported number of math courses taken (r = 0.24, p < .001) and Word Sum score (r = 0.39,
p < .001). Age (18–20) was not significantly correlated with score but was correlated with
educational level (r = 0.11, p < 0.01), probably because older participants were more likely
to have more education.

Table 9. Correlation between demographic variables, education, verbal ability, total score on the
38-item test, and theta scores from Model D.

Sex Age Education Parents’
Education

Math
Courses

Word
Sum

Total Test
Score

Age 0.07
Education 0.09 0.11 **

Parents’ Education −0.03 0.02 0.36 **
Math Courses −0.01 0.01 0.17 ** 0.20 **

Word Sum −0.02 0.02 0.09 * 0.17 ** 0.28 **
Total Test Score −0.09 −0.07 0.07 0.16 ** 0.24 ** 0.39 **

Theta −0.09* −0.08 0.07 0.16 ** 0.25 ** 0.39 ** 0.96 **

Note: * p < 0.05, ** p < 0.01.

As the demographic variables were somewhat correlated (see Table 9), we conducted a
regression analysis with performance (total score) as the outcome variable and the following
predictors: sex (male = 0, female = 1), age (18–20), number of math courses taken (1–10),
parents’ education (1–5, 1 = did not finish high school, 5 = graduate or professional degree),
current education status (1–3, 1 = in high school, 2 = graduated from high school, 3 = in
college), and verbal ability (Word Sum score). All predictors except sex were standardized.
The results of the regression model using summed scores as the measure of ability are shown
in Table 10 (results of the model using theta as the ability measure are in supplementary
materials). When accounting for all demographic variables, only the number of math
courses and Word Sum score significantly explain variance in performance. The total
variance explained using the model is R2 = 0.19, F(6, 491) = 18.79, p < 0.01.

Table 10. Regression coefficients for linear model with demographic variables as predictors of score.

Estimate SE t Value p Value

Intercept 16.60 0.89 18.61 <0.01
Sex −0.98 0.56 −1.75 0.08
Age −0.50 0.28 −1.78 0.08

Math Courses 0.90 0.29 3.04 <0.01
Parents’

Education 0.48 0.30 1.58 0.12

Education Status 0.04 0.30 0.15 0.88
Word Sum Score 2.32 0.29 7.94 <0.01

6.11. Creating A Refined, Efficient Test

In order to create an efficient test of cross-section ability, 20 items were selected from
the combined 38-item based on item discrimination and difficulty coefficients in Model
D. Of the 20 items, 15 were from SBST, and 5 were from PRT, with 14 orthogonal-plane
items and 6 obliques. Since test information on the 38-item test was more precise for
higher-ability than lower-ability participants, items with the lowest discrimination (range:
0.392–0.909) that also had average to high difficulty (range: −1.748 to 0.190) were removed.
There were four items that had lower discriminability (range: 0.630–0.807) but were not
removed in order to balance the number of lower difficulty items (range: 0.325–1.305). The
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average discriminability of the items in the 20-item test was 1.39 (moderately high), and the
average difficulty was 0.04 (average). The range of discriminability of the 20 items was 0.538
(low) to 2.802 (very high), and the difficulty ranged from −2.183 (very difficult) to 3.110
(very easy). The internal reliability of the 20 items was high (split-half reliability = 0.78,
McDonald’s Omega = 0.84). The Bifactor model with just the refined 20 items using two
factors (orthogonal plane or oblique plane, referred to as model 20-D in the table) showed a
very good fit to the observed data (see Table 8).

7. Discussion

The goals of this study were to evaluate current tests of crossing section ability using
modern psychometric techniques, create an efficient test of this ability that is usable across
the ability range of the general population, examine possible subcomponents of this ability,
and conduct preliminary analyses of how it is related to demographic variables, including
sex, ethnicity, and education.

First, in order to collect data from a large sample, several commonly used paper-and-
pencil tests of cross-section ability were adapted for online administration. This involved
adapting the tests so that one item was shown at a time and time limits were per item
(based on piloting in Study 1) rather than for the whole test. This also ensured that we
collected data on all (or most) items from all participants, as is necessary for Item Response
Theory analyses. Online administration (via Qualtrics Panels) also allowed us to collect
a sample that is more representative of the broader population than typical convenience
samples of college students. Participants were 18-to−20-year-olds, recruited to match the
demographics of Naval recruits, and included participants still in high school, enrolled in
college, and graduated from high school without being enrolled in further education. This
enabled us to develop a test that can be used to identify individuals who have the potential
to excel in both technical careers and STEM education.

One goal of our analyses was to provide information on the psychometric properties
of existing tests. Our analyses indicated that while the tests were correlated, the Santa
Barbara Solids Test (SBST) and the Planes of Reference Test (PRT) had good psychometric
properties, while the Crystal Slicing Test (CST) did not. Moreover, the CST test was difficult,
and another test, the Geological Block Cross-Section Test (GBCST), was eliminated from
consideration after Study 1 as it was deemed too difficult for college students. Both the
CST and the GBST were developed for studies involving Geology students (Ormand
et al. 2014, 2017), so it is likely that they measure geology knowledge in addition to
cross-sectioning ability (analogous to other domain-specific tests such as the Tooth Cross-
Section test, Hegarty et al. 2009). However, their correlations with the SBST and PRT
indicate that they also measure a more general ability to imagine cross-sections of three-
dimensional structures in addition to domain knowledge. The domain-general cross-section
test developed here can be used to identify students who are likely to benefit from specific
training on cross-sectioning before taking advanced classes in STEM-related disciplines
such as geology and anatomy that depend on this skill. More domain-specific cross-section
tests might then be used to evaluate their performance in the relevant classes.

The Planes of Reference and Santa Barbara Solids Tests differed in the provision of
depth cues to depict the structure of three-dimensional solids in the two dimensions of the
printed page. Our analyses indicated that they appeared to measure the same construct,
such that a model indicating a single ability underlying these two tests (Model A) was a
better fit to the data than a model (Model B), assuming that they measured distinct abilities.
Although it has recently been argued that the interpretation of impoverished graphics (with
limited depth cues) may be a source of difficulty in spatial ability measures (Bartlett and
Camba 2023b), it appears that the difference in depth cues provided by these two tests is
not a major source of variance. That is, although these two tests differ in the depth cues
provided, they measure a common ability.

Cohen and Hegarty (2007) proposed two characteristics of cross-section items that
might affect their difficulty: the orientation of the cutting plane and the complexity of the
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figure. But, they found that only the orientation of the cutting plane had an effect. Here, we
examined whether these characteristics defined different sub-factors of the cross-sectioning
ability and found that the data were best fit by a hierarchical model (Model D) that assumes
a general factor and sub-factors reflecting the orientation of the cutting plane (orthogonal
or oblique). Consistent with previous research (Cohen and Hegarty 2007) participants
made fewer errors on items on orthogonal sections (mean correct = 0.46, SD = 0.20) than
oblique (mean correct = 0.32, SD = 0.19; t = 19.37, p < 0.001). We speculate that these items
were easier because people have more experience viewing near-orthogonal cross-sections
in everyday life (e.g., when slicing vegetables) because they tend to assume that a 2D shape
extends orthogonally into 3D space, even for oblique sections (Gagnier and Shipley 2016)
or because orthogonal sections often require just recognizing the shape of the resulting
cross-section (e.g., a square) rather than identifying metric properties of a shape (e.g., a
more or less eccentric rectangle), as suggested by Tsutsumi (2004). Interventions to train
cross-sectioning ability might use orthogonal cross-sections to scaffold the ability to imagine
more difficult oblique cross-sections.

Sex differences are found in some spatial tests (e.g., mental rotation) but not others
(Linn and Petersen 1985; Voyer et al. 1995). Because mental rotation is the most commonly
used measure of spatial ability (Hegarty 2018; Bartlett and Camba 2023a), this may overem-
phasize the existence and size of sex differences in spatial ability, and it is important to
document the size of any sex differences when validating measures. Although close to
significance, there was no sex difference in ability found in this study, and the effect size
was small (d = 0.18) compared to the effects commonly found in tests of mental rotation
(d = 0.67, Voyer et al. 1995). More generally, a moderate effect of parental education level
(d = 0.35) and a small correlation (r = 0.24) with the number of math courses taken suggest
that cross-section ability is somewhat influenced by educational opportunities and other
socioeconomic-related experiences. In contrast, ethnicity and current educational status
(high school, graduated from high school, or in college) had no effects on performance.
When all demographic variables were entered in the same linear model, only math courses
and verbal ability predicted performance in the refined measure of cross-sectioning. Im-
portantly, there was no significant effect of sex in this model, indicating no appreciable sex
differences in this spatial thinking task.

We set out to create an efficient cross-section measure that provides accurate and
precise measurement across a wide range of abilities. Using the discriminability and
difficulty estimates of each item in the best-fitting IRT model (see Model D above), we
eliminated items that contributed less information, resulting in a 20-item hybrid test
containing items from Santa Barbara Solids and Planes of Reference. Based on the response
times in this study, participants should be able to complete the shortened test in under
10 min, including instructions. The test was most accurate for assessing participants close
to average ability and within two standard deviations above or below average. As such,
this test should be useful for assessing the cross-section ability of most of the population.

Limitations and Future Directions

Online data collection presents a series of challenges for maintaining a high level of
data quality. Several steps were taken to ensure that participants were making a good
effort on the tests; however, as they were administered online, there is no way to know
if less well-performing participants understood the instructions or made their best effort.
With paid survey-takers, there was concern that some participants would quickly skip
through the tests, indicating a lack of effort. It is a known problem that online panels
include “superworkers” who make up a very small percentage of all workers but complete
a large percentage of available tasks (Robinson et al. 2019), and Qualtrics Panels does not
make it possible to select only naïve participants. We identified a subset of participants who
responded very quickly on most tests and had close-to-chance performance, but rerunning
the analyses without these participants did not change the models appreciably. These
issues might be mitigated in future studies by including more manipulation checks to
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detect unmotivated participants, by giving participants feedback on their performance,
which may motivate them to try their best (Condon and Revelle 2014), or by gamifying
the tests (Malanchini et al. 2020). Time limits were determined using pilot data. However,
response times were not analyzed for each item. Likely, more difficult items would require
more time, and an item-level analysis of response times could serve to further refine these
tests, but that is beyond the scope of this study. In future research, it will also be important
to validate this measure against success in both technical occupations and STEM disciplines.

8. Conclusions

This paper introduces and illustrates an approach to developing efficient and robust
measures of spatial ability that are normed for the general population. Using this method,
we determined that current tests of cross-sectioning were valid in the sense that they
explained common variance and that the model assuming a general cross-section factor was
a good fit. The Item Response Theory also enabled us to identify the most discriminating
and informative items on these measures, enabling us to construct a shorter efficient test
that measures performance across the ability range of US high school graduates. This
approach can be applied to developing robust measures of other STEM-relevant spatial
skills for selection and measuring the effects of educational and training interventions.
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Notes
1 We did not include the original Mental Cutting test, because it is identical in format to the Planes of Reference test, or the Tooth

tion test, as a previous study indicated that it depended on dentistry expertise (Hegarty et al. 2007).
2 The research was funded by the Office of Naval Research, which is interested in the spatial abilities of potential Navy recruits. The

demographics of the US Navy are similar to that of the whole country, cf. Census Bereau (2022) and Department of Defense (2017).
3 Although Hu and Bentler’s (1999) recommended cutoffs for these indices may be too low for IRT, they are used as a rough

heuristic here as there is not a universally agreed upon value. Cai et al. (2023) recommend 0.97 for the TLI.

https://www.mdpi.com/article/10.3390/jintelligence11110205/s1
https://www.mdpi.com/article/10.3390/jintelligence11110205/s1
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4 Analysis of local independence diagnostics indicated no locally dependent item pairs for any of the models except for Model B
(which had a right-skewed distribution of the standardized G2 statistic; min = −0.12, max = 0.40). It is possible that removing one
item from each of the item pairs with an extreme G2 would improve model fit; however, other models having good fit without
removing further items was taken as sufficient evidence that Model B was not the best fit.
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