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Abstract: Precision medicine is revolutionizing health care, particularly by addressing patient variabil-
ity due to different biological profiles. As traditional treatments may not always be appropriate for
certain patient subsets, the rise of biomarker-stratified clinical trials has driven the need for innova-
tive methods. We introduced a Bayesian sequential scheme to evaluate therapeutic interventions in
an intensive care unit setting, focusing on complex endpoints characterized by an excess of zeros and
right truncation. By using a zero-inflated truncated Poisson model, we efficiently addressed this data
complexity. The posterior distribution of rankings and the surface under the cumulative ranking curve
(SUCRA) approach provided a comprehensive ranking of the subgroups studied. Different subsets
of subgroups were evaluated depending on the availability of biomarker data. Interim analyses,
accounting for early stopping for efficacy, were an integral aspect of our design. The simulation study
demonstrated a high proportion of correct identification of the subgroup which is the most predictive
of the treatment effect, as well as satisfactory false positive and true positive rates. As the role of
personalized medicine grows, especially in the intensive care setting, it is critical to have designs
that can manage complicated endpoints and that can control for decision error. Our method seems
promising in this challenging context.

Keywords: personalized medicine; biomarkers; Bayesian inference; identification of subset

1. Introduction

The main aim of controlled clinical trials is to evaluate the efficacy of an experimental
treatment over a control. However, there has been a growing interest in precision medicine,
a new paradigm motivated by the possibility that patient responses to a particular treat-
ment are heterogeneous, which may be due to patient biological profiles [1]. Even though
the one-size-fits-all strategy helps establish a new standard of care for the general popu-
lation, the identified treatment might not be the best option for some subsets of patients.
Several statistical methods and clinical trial designs have been proposed to democratize the
precision medicine approach, including biomarker-stratified clinical trial designs [2–5], as
reviewed by Simon [6]. Optimal individualized treatment rules built on biomarker further
aim to identify a subgroup of patients who benefit from the experimental treatment and
aid in determining personalized treatment decisions [7–11]. Likewise, fixed or adaptive
enrichment designs use biomarkers to restrict enrollment to patients who are expected to
benefit more from the experimental treatment than the control, which magnifies the signal
and improves the power to detect the treatment effect [12–16].

Researchers have recently proposed frequentist approaches to identifying subgroups
of interest. Lipkovich et al. [17] developed a frequentist nonparametric recursive parti-
tioning method to analyze subgroup treatment effects. Another nonparametric method,
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random forests of interaction trees (RFIT), was proposed by Su et al. [18] to estimate sub-
group treatment effects. Additionally, Foster et al. [19] created the virtual twins’ method,
and Altstein et al. [20] suggested a new computational method for parameter estimation
of an accelerated failure time (AFT) model with subgroups identified by a latent variable.
Bayesian designs have potential benefits over frequentist designs for prospective person-
alized randomized controlled trials (RCTs) since they naturally extend from simple [21]
to more complex but efficient models [22] while being highly flexible and thus facilitating
early decision-making via planned or unplanned interim analyses [23]. Bayesian inference
also provides the probability that a treatment is the best for a particular subgroup [24];
such probabilistic statements have a straightforward interpretation and are thus friendly
to scientific researchers with some statistical background. Bayesian adaptive designs are
naturally highly flexible and allow for direct probability computations at any trial point
while accounting for the uncertainty in the parameters of interest. Another advantage of
Bayesian analyses is the integration of prior knowledge about the treatment effect in each
subgroup. Finally, Bayesian adaptive designs can illustrate the effectiveness of a treatment
in the overall population or subpopulations with higher power when compared to that of
a fixed design of the same size [25].

This research focuses on a prospective study design aiming at defining which patient
subgroup benefits from the treatment among several subsets that have already been identi-
fied. Most proposed approaches used a binary or a continuous outcome measure, while
we focused on counting data with inflated zeros. Such data are frequently used in critical
care clinical studies of days without organ failure, including vasopressors or mechanical
ventilation [26–28]. They are commonly reported composite outcome measures in ran-
domized clinical trials conducted in intensive care patients, as ways of quantifying their
survival while accounting to their severity status, by defining “failure-free day” composite
outcomes. These outcomes are often used as primary or secondary outcomes in RCTs
or observational studies of critically ill patients, such as patients with sepsis shock [26]
or COVID-19 [29]. For instance, the vasopressor-free days in sepsis patients combines
survival and duration of vasopressors in a manner that summarizes the “net effect” of the
treatment on these two outcomes. Their values are usually nonnegative and have excessive
zeros and dispersion. Indeed, an excess of zero event-free days is usually observed due
to the high proportion of deaths in intensive care units (ICUs). In fact, a usual practice
in ICU studies is to assign zero to the count response outcome when the patient died
before a follow-up is completed [27]. Several statistical models have been proposed for
analysis to address these challenges, including zero-inflated models [30], two-part models,
and beta-binomial models [31]. A data truncation over the 28 first days is often performed,
due to the common length of stay in ICU of those patients, which should be further handled
using a Zero-Inflated Truncated model.

We developed a Bayesian sequential clinical trial design that evaluates the therapeutic
intervention and identifies the subset of patients who respond better to the experimental
therapy based on the surface under the cumulative ranking curve (SUCRA) method [32].
Although this method has been developed for network meta-analyses in order to rank
different drugs based on their estimated effects, it is useful for ranking subgroups of patients
in our context and thus for identifying the best responding and predictive subgroup of
interest. In each subpopulation and overall, the count outcome was modeled by a Bayesian
zero-inflated truncated Poisson model. The SUCRA method was then applied to the
posterior ranking distribution of subgroups according to their treatment effect.

The rest of this paper is organized as follows. In Section 2, we describe a motivating
trial for intensive care units and propose a design structure, probability model, and methods
to identify subsets in which the treatment is most effective. In Sections 3 and 4, we evaluate
the operating characteristics of the proposed design by using simulation studies. We
provide a discussion and conclusion in Sections 5 and 6.
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2. Method
2.1. Motivating Example

Rapid recognition of corticosteroid resistance or sensitive sepsis (RECORDS) is an ongoing
phase III trial study that started in February 2020 and should be completed by October
2024 (NCT04280497) [33]. This is a multicenter pragmatic double-blinded randomized
controlled trial with broad eligibility criteria that include all patients admitted to the ICU
with a primary diagnosis of sepsis. Patients are randomly assigned to hydrocortisone with
the addition of fludrocortisone or placebo for seven days, targeting 1800 patients with
complete follow-ups up to six months.

A sequential design was used that evaluates the therapeutic intervention of targeted
therapy and identifies among several predefined subsets those responding the best to the
experimental therapy. Sequential analyses use the number of vasopressor-free days out of
28 days as the measure of efficacy and the occurrence of severe adverse events within the
first 28 days as the measure of toxicity.

2.2. Design Structure

Motivated by the RECORDS study, we considered a group sequential clinical trial with
K analyses. Patients are individually randomized to experimental or control treatments.
Our design sequentially enrolls a maximum of N patients by cohorts of size n1, ..., nK with
N = ∑K

k=1 nk.
Let us consider a set of m biomarkers of interest that may or may not be measured for

each patient at study entry. For patient i, Xmi = [0, 1, NA] is the measurement of biomarker
m, where 0 and 1 denote the absence and presence of the characteristic m, respectively,
whereas NA denotes a missing value. The biomarker, denoted as Xm, divides the sample
into two subgroups of patients. These subgroups can overlap, as a patient may have multi-
ple biomarkers measured. To define subsets of patients based on biomarker measurements,
we can partition the set of all enrolled patients Ω into J partitions. Let Sj denote the subset
of patients corresponding to a specific combination of biomarker values, and it may contain
patients for whom some were not measured. We have J = 3m − 1 possible partitions, each
corresponding to a distinct combination of biomarker values, and the partition correspond-
ing to none of the biomarkers being measured is empty. By analyzing treatment effects for
each subset separately, we can investigate whether treatment efficacy varies across patient
subgroups based on the available biomarker measurements.

The trial begins by enrolling patients, whichever their subset, up to the interim sample
size of n1 patients randomly allocated to experimental or control treatments with equal
probabilities. For each interim analysis k = 1, ..., K − 1, performed when nk patients
have been enrolled and their outcomes are available, the superiority of the experimental
treatment against the control is evaluated marginally, and for each subset, by using all
accumulated data. The subsets are then ranked from the one benefiting the most from the
experimental treatment to the one for which it is the least likely to be efficient. If there is
some evidence that the experiment is superior to control for the global trial population,
the trial is terminated with the conclusion of the benefit of experimental treatment in the
whole population. Otherwise, if the maximum sample size N is not reached, the next cohort
of patients nk+1 is recruited. If the trial is not stopped early at an interim analysis, a final
analysis is performed with the maximum sample size N when the last patient outcome has
been evaluated.

2.3. Probability Model

For each patient i, let Yi be the number of event-free days out of G. Thus, the outcome is
continuous with an upper bound of G and depends on the biomarker statuses, the treatment,
and the interaction between the treatment and the biomarker profiles.

We modeled the outcome distribution, Yi, 0 ≤ Yi ≤ G, by using the zero-inflated
truncated Poisson (ZITP) regression model proposed by Tsai and Lin [34], with G as the
truncation parameter, where G > 0. The ZITP model assumes that two processes generate
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the count data. The first process is the truncated Poisson distribution, and the second is
a process that generates the excess zeros, that is, responses of zeros that cannot be explained
by the truncated Poisson distribution, with a zero-inflation rate φi. The ZITP model derived
from the zero-inflated Poisson (ZIP) regression model described by Lambert [30] can be
written as follows:

Yi ∼
indep.
i=1,..,n P(Yi = yi; λi, φi) = φi I{0}(yi) + (1− φi) f (yi)

=

{
φi + (1− φi) f (0) , yi = 0
(1− φi) f (yi) , yi ∈ [1, G]

(1)

where f is the truncated Poisson density:

f (yi) =
(λ

yi
i

yi!

)( G

∑
z=o

λz
i

z!

)−1
I{0,...,G}(yi), (2)

with λi, the mean of the standard Poisson distribution, which can be modeled as a linear
combination of the covariates:

log(λi) = β0 +
m

∑
j=1

βXj Xji + βTTi +
m

∑
j=1

βinterj XjiTi (3)

where β0 is the baseline log number of event-free days, Xi is the vector of m biomarkers, Ti
is the treatment indicator, with βX , βT , their associated vector of coefficients, respectively,
and βinter represents the interactions between the treatment and the biomarkers.

The probability that the outcome of patient i is generated by the excess zero mecha-
nism φi is assumed to be independent of the treatment, the biomarker statuses, and their
interactions (that is, φi = φ), although one can model it according to some chosen covariates.
Thus, the zero-inflation rate φ was defined from a logistic regression model as follows:

logit
(

φ

1− φ

)
= γ0 (4)

Here, γ0 is the baseline log odds of excess zeros.

2.4. Decisions Rules

Early stopping rules can be incorporated based on the probability of relevant clinical
events (e.g., [35]), for instance, if there is sufficient information to declare that one treatment
is more efficacious than the other. Let λT be the ZITP λ parameters estimated from the
whole sample in the treatment arm T, where T = 1 denotes the experimental arm and
T = 0 denotes the control arm. For such estimations, we placed ourselves in a Bayesian
framework, using noninformative priors with large variances to let most of the information
arise from the data. This further allowed us to define probabilistic statements regarding
treatment effects overall and in subsets from which stopping rules were derived. We
considered the efficacy stopping rule from Thall and Simon [35], thus stopping the trial
for efficacy if there is enough evidence of a meaningful difference in efficacy in favor of
the experimental treatment, based on the posterior probability Pr(λT=1 − λT=0 > δ|Data).
The clinically relevant threshold δ and the decision threshold ε were optimized based
on a desired false-positive rate close to 5–10% through a grid search with the maximum
sample size.

Action triggers for decision-making were derived from Harrell [36], Ohwada [37],
and Morita [38]:

• If Pr(λT=1 − λT=0 > δ|Data) > ε, the experimental treatment is reported to be
superior and stop the trial.

• If the trial has not yet reached its maximum sample size, it continues.
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3. Simulation Study

The statistical performances of the proposed design were evaluated through a series
of simulations.

3.1. Data Generation

Our simulations involved a maximum of 1800 patients, equally randomized to receive
either the control or the experimental treatment denoted as Ti = {0, 1}, where Ti = 1
denotes the experimental group.

We considered two binary biomarkers, x1 and x2, which take the value 0 (negative) or
1 (positive) and are independently generated from a Bernoulli distribution B(0.5). To em-
ulate real-world scenarios in clinical trials where not all biomarkers are always measured,
we introduced a missing data mechanism that is missing completely at random (MCAR).
Specifically, we randomly distinguished three equal-sized groups (terciles), one group with
both x1 and x2 measured, a second group with only x1 measured, and a third group with only
x2 measured. This approach allowed us to create a realistic dataset reflecting the different
scenarios of biomarker measurements in clinical trials. Given the different possible states of
the biomarkers (positive, negative, or missing) and considering that at least one biomarker is
measured in each individual, the study population may be divided into 32 − 1 = 8 different
subsets based on the x1 and x2 values, allowing a detailed analysis of the different patient
subgroups. These subsets were further categorized into “unmissed” and “missed” groups
to enhance the analysis. The “unmissed” groups represent the four combinations of the
biomarkers when both are measured (i.e., ++, +−, −+ and −−), while the “missed” groups
refer to the four scenarios where only one biomarker is measured (i.e., +?, −?, ?+, and ?−).

Responses Yi were generated from a zero-inflated truncated Poisson model. To this
end, for each patient i, we first generated a random variable Wi from a traditional Poisson
(λi) distribution. Then, let Ri be a random variable following a truncated Poisson distri-
bution with an upper bound G computed for each patient as Ri = min{Wi, G}. For each
patient i, Wi was generated from a Poisson distribution with parameter λi computed with
Equation (5). Finally, to mimic zero inflation in the motivating example data, we generated
a proportion φ of zero inflation with an auxiliary random variable Ui ∼ Uniform [0, 1]. If
0 < Ui < φ, then Yi = 0; if φ < Ui < 1, then Yi = Ri. φ was fixed at 30% for all scenarios,
as observed in previous studies in sepsis [39].

log(λi, x1i, x2i, Ti) = β0 + β1x1i + β2x2i + βTTi + βinter1 Tix1i + βinter2 Tix2i (5)

with β1 and βinter1 being set to 0 if x1 is missing and β2 and βinter2 being set to 0 if x2
is missing.

3.2. Data Analysis

One interim analysis was planned to occur when the 500th patient outcome was
recorded, with the final analysis performed after the last patient was enrolled and their
outcome was measured.

For each analysis, we considered only individuals with non-missing biomarker data,
either both x1 and x2, only x1 and only x2, separately. Zero-inflated Truncated Poisson models
were fitted. In the case of all the patients having measurements of both biomarkers, the model
included both x1 and x2 as well as the interaction term. In the case of missing data on either
biomarker, two situations were considered: either estimating the treatment effect in patients
with measures of x1, then of x2, separately, or estimating the treatment effect once in the subset
of patients with both measures of x1 and x2. In each of these three analyses, the difference in
the treatment effect was estimated, based on a Bayesian approach, with noninformative normal
priors with mean 0 and large standard deviation (104) for all regression coefficients. Posterior
distributions were computed by using a Markov chain Monte Carlo (MCMC) sampling
method. Three chains were implemented, with an initial burn-in of 10,000 samples followed
by an additional 30,000 samples retained for computing posterior distributions.
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Following on, the overall treatment effect was derived by computing a weighted
average of these three estimates, weighted by the observed prevalence of each case. The
stopping rule described above was then computed at the interim analysis.

Last, at the time of decision to stop (either at the time of interim analysis if the
stopping rule was fulfilled or at the time of terminal analysis), we applied the surface
under the cumulative ranking curve (SUCRA) approach, proposed by Salanti et al. [32].
It is a Bayesian approach that ranks treatment groups from a network meta-analysis
based on their estimated measure of efficacy. Instead of ranking treatments, we applied
SUCRA to rank the subgroups defined by their biomarker values based on their predictive
treatment effects.

We first considered all patients by ranking the subsets according to each biomarker
x1 or x2 separately (whichever the other was measured or not). Next, we only considered
the complete subset of patients who had both measurements (that is, one-third of the
whole sample).

3.3. Scenarios

We assessed the performance of the design under several distinct scenarios. These
scenarios were chosen to represent a range of potential real-world situations, from no
association between the biomarker and outcome to complex interactions, as described
in Table 1.

Table 1. Simulation scenarios: True model parameters.

Scenario β0 β1 β2 βT βinter1 βinter2

1: Null 2.60 0.00 0.00 0.14 0.00 0.00
2: Prognostic effect 2.60 0.20 0.00 0.14 0.00 0.00
3: Predictive effect 2.60 0.00 0.00 0.14 0.00 0.10
4: Both prognostic and predictive effect 2.60 0.10 0.10 0.14 0.05 0.10
5: Qualitative and quantitative interactions 2.60 0.10 0.15 0.14 −0.25 0.05
6: Qualitative and quantitative interactions II 2.60 0.10 0.15 0.20 −0.25 0.05

Scenario 1 represents the null scenario with no prognostic value of biomarker and
no treatment-by-subset interaction. Scenario 2 indicates a prognostic value of biomarker
x1 (β1 6= 0). Scenario 3 demonstrates a predictive value of biomarker x2 (βinter2 6= 0). In
Scenario 4, both biomarkers, x1 and x2, show similar prognostic values and significant
interactions with the treatment. This suggests that the treatment is more effective in patients
with positivity for either biomarker x1 or biomarker x2, as indicated by nonzero coefficients
(βinter2 6= 0 and βinter1 6= 0).

In scenario 5, both biomarkers have prognostic values, with a clear qualitative treatment-
by-subset interaction observed for biomarkers x1: Treatment proves detrimental for patients
testing positive for biomarkers x1 but proves beneficial for those testing negative. A quan-
titative treatment-by-subset interaction is observed for biomarkers x2 (βinter2 > 0 and
βinter1 > 0). Comparatively, scenario 6 mirrors the conditions and outcomes observed in
scenario 5 but shows an increased treatment effect.

3.4. Outputs

In the study, we investigated the operating characteristics of the design in each trial
through 1000 independent replications. The clinically relevant threshold δ was set at
a difference of 2 days without vasopressors out of 28 days. To control the false-positive
rate (that is, the proportion of simulations concluding in efficacy under the null Scenario 1)
between 5% and 10%, the decision threshold ε was set to 0.995 after a grid search.

Among the 1000 replications, to consider the performances of the proposed approach
as satisfactory, we computed the false positive rate and the true positive rate related to
treatment effect, regardless of the biomarker statuses under the null scenario or alternative,
respectively. We first considered the correct decisions regarding the treatment effect in
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the whole sample, as measured by the type I error of the test (defined as the rate of false
positive conclusions to a treatment effect under the null) and the power (defined as the rate
of true positive decisions of a treatment effect under the alternative). We then considered
the availability of the design to detect the subset of patients (as defined by their biomarker
values) who benefit the best from the treatment. This was measured on the proportion of
correct identification of the most predictive biomarker subset. We also reported the early
stopping rate with a conclusion of treatment efficacy and the average sample size. Following
that, based on the SUCRA obtained from each sample, we computed the distribution of
ranks of each subset.

Sensitivity analyses were finally conducted to assess the robustness of the approach
regarding the prevalence of x2 positivity (while that of x1 was set to 0.5). Five prevalence
rates for the positivity of the biomarker x2 (0.2, 0.4, 0.5, 0.6, 0.8) were used in those patients
with available measurements of x2.

All analyses were performed by using R version 4.0.1 [40]. The R2jags package was
used for MCMC [41]. All codes are available upon request.

4. Results

Table 2 reports the results of the approach regarding the overall treatment effect at
the time of treatment stopping in the different scenarios, for varying values of biomarker
positivity x2.

Table 2. Operating characteristics of the design.

Prevalence of Average False/True Early
Positive x2 Sample Size Positive Rate Stopping Rate

Scenario 1:
No prognostic and
predictive value of

biomarker

0.2 1754 0.066 0.035
0.4 1738 0.082 0.048
0.5 1728 0.088 0.055
0.6 1734 0.096 0.051
0.8 1730 0.087 0.054

Scenario 2:
Only prognostic

value of
biomarker x1

0.2 1692 0.212 0.083
0.4 1687 0.206 0.087
0.5 1686 0.204 0.088
0.6 1676 0.206 0.095
0.8 1690 0.183 0.085

Scenario 3:
Only predictive

value of
biomarker x2

0.2 1579 0.437 0.172
0.4 1384 0.693 0.328
0.5 1176 0.862 0.485
0.6 1072 0.989 0.561
0.8 734 0.999 0.824

Scenario 4:
Prognostic value of both

and quantitative
interaction with x1 and x2

0.2 1237 0.888 0.433
0.4 932 0.994 0.668
0.5 774 0.998 0.789
0.6 669 0.999 0.870
0.8 551 1.000 0.961

Scenario 5:
Qualitative and

quantitative interaction
in both biomarker

0.2 1799 0.001 0.001
0.4 1800 0.000 0.000
0.5 1800 0.000 0.000
0.6 1800 0.000 0.000
0.8 1799 0.001 0.001

Scenario 6:
Qualitative and

quantitative interaction
in both biomarker II

0.2 1786 0.015 0.011
0.4 1771 0.047 0.022
0.5 1738 0.088 0.048
0.6 1701 0.147 0.076
0.8 1622 0.334 0.137
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In null scenario 1, regardless of the prevalence of the positive biomarker x2, the false-
positive rate was below 10% with an average sample size of approximately 1730 patients
and an early stopping rate of approximately 5%, as expected. In scenario 2, the true positive
rate increased to approximately 20% regardless of the prevalence of the positive biomarker
x2. Indeed, the true positive rate did not vary between the different prevalence of the
positive biomarker x2 as there is only an effect of the positive biomarker x1 and therefore
had no impact on the results.

In both scenarios 3 and 4, the true positive rate was affected by the prevalence of
biomarkers x2. In scenario 3, due to the significant predictive power of the x2 biomarker,
the true positive rate increased from 0.437 to 0.999 as the prevalence of this biomarker
increased from 0.2 to 0.8, respectively. In scenario 4, even at a lower prevalence of 0.2 of
x2, the true positive rate was remarkably high at 0.888, underscoring the combined power
of both prognostic and predictive effects in determining outcomes. The average sample
size decreased over time in these scenarios, which is consistent with the increased early
discontinuation rate.

In Scenario 5, due to a pronounced qualitative interaction against biomarker x1, it
consistently pushes the overall treatment effect below the predetermined clinical threshold
of 2. This effectively suppresses the potential positive effect of treatment across varying
prevalence of biomarkers x2. Consequently, regardless of the prevalence dynamics of
biomarkers x2, the true positive rate remains stubbornly close to zero, suggesting that the
treatment effect is significantly influenced by the negative interaction with biomarkers x1.

In scenario 6, an increase in the prevalence of biomarker x2 leads to a rise in the true
positive rate, shifting from 0.015 to 0.334 with a prevalence of 0.2 and 0.8, respectively.
This was parallel to a growth in the early stopping rate, ranging from 0.011 to 0.137,
indicating quicker trial conclusions with higher prevalence. Moreover, the average sample
size decreased as the prevalence of biomarkers x2 escalated, revealing heightened trial
efficiency under these conditions. Thus, scenario 6 highlights the positive impact of higher
biomarker x2 prevalence on treatment success and trial efficacy.

Figure 1 displays the delineation of the predictive efficacy observed across different
subgroups, using the SUCRA approach. It stacks for each subset the estimated probability of
being ranked at the 1st, 2nd, 3rd, and 4th place by the SUCRA approach, in several situations
regarding the availability of both biomarker values. Actually, in Figure 1a, the four patient
subgroups were formed by only taking into account one biomarker, separately. Conversely,
the ranking probabilities displayed in Figure 1b were computed on the subset of patients
for which both biomarkers were measured. Thus, the four patient subgroups were formed
by taking into account the status of both biomarkers simultaneously.

Figure 1a shows a uniform distribution of rankings among subgroups in Scenario 1,
where each subgroup has an approximately 25% chance of achieving any given rank.
This distribution highlights the marginal influence of the biomarker in this context. In
Scenario 2, while there is a slight prognostic effect toward biomarker x1, the distribution
largely resembles that of Scenario 1. Scenario 3 highlights the dominance of the positive
x2 subgroup, which has a significant 96% chance of securing the top rank. In Scenario 4,
the data emphasize the superior predictive ability of the positive x2 subgroup, which
has a 70% probability of obtaining the highest rank. At the same time, the positive x1
subgroup is competitive, with a 50% probability of achieving the subsequent rank. Sce-
nario 5 illustrates the significant predictability of the x2 positive subgroup, which boasts
an impressive 96.7% probability of reaching the highest rank. Meanwhile, the x1 positive
subgroup is more likely to occupy the lowest rank, indicating its comparatively reduced
predictive ability. The patterns identified in Scenario 6 closely mirror those in Scenario 5,
demonstrating comparable predictive patterns in both scenarios.
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(a) Ranking derived from separate biomarker analysis.

(b) Ranking derived from combined biomarker analysis.

Figure 1. Comparative predictive rankings of patient subgroups using the SUCRA Approach.
(a) presents the ranking of patient subgroups for each biomarker, whether or not the other biomarker
was measured, based on separate modelling incorporating either biomarker. (b) examines the ranking
of subgroups in the subsample of patients with both measured biomarkers in a complete case analysis.

Figure 1b emphasizes the importance of considering both biomarkers measured.
In scenario 3, both the subgroup with both biomarker positivity and the subgroup with
x1 negativity and x2 positivity share the first two ranks, each having a probability of 50%.
Additionally, the remaining two subgroups also share the last two ranks with a probability
close to 50%. In scenario 4, the subgroup that has two positive biomarkers has a 63.3%
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chance of being ranked first. In Scenario 5, the subgroup that has been identified with
a negative x1 and a positive x2 biomarker showcases a 93.8% probability of securing the first
position. Conversely, the subgroup that displays positive biomarkers generally receives
a moderate rank, securing third place with a 76.8% probability, which indicates its fair
predictive capabilities. The patterns observed in Scenario 6 are consistent with those in
Scenario 5.

5. Discussion

In this paper, we introduce a new method for assessing experimental therapies and
for identifying effective patient subsets in the field of precision medicine. The suggested
Bayesian sequential design combines the advantages of the zero-inflated truncated Poisson
(ZITP) regression model with the surface under the cumulative ranking curve (SUCRA)
technique. The pressing need for establishing specialized techniques that identify effective
patient subgroups within a precision medicine context propelled this work [42,43]. There-
fore, there is an urgent need for effective methods to fully utilize the vast biomarker data
available. However, biomarker information measurement in current controlled clinical
trials occurs only occasionally, due to a host of factors. This inconsistency can lead to
conclusions that may misrepresent the identification of truly effective subgroups. Our
findings illustrate the numerous benefits of using the Bayesian sequential design in this
context. In particular, the ZITP regression model is effective in managing overdispersion in
count outcomes stemming from an excess of zero responses and truncation on the right
end of the data, ensuring precise and reliable results.

These results reveal the intricate roles that biomarkers play in predictive and prog-
nostic situations, particularly in terms of affecting true positive rates. As our research
delved deeper into more intricate scenarios, increasing the number of measured biomarkers
introduced unintended complexities. This increase inevitably resulted in smaller sample
sizes for the resulting “unmissed” subsets, which runs the risk of a higher false-negative
rate. Balancing precision in identifying effective subsets with the robustness of the findings
is essential.

The SUCRA method expertly identifies and categorizes populations into distinct sub-
sets based on the predictive effect. Importantly, SUCRA calculates the posterior probability
of ranking by directly accounting for uncertainty. As a result, it offers a perspective that
goes beyond a simple point estimate, providing a clear and intuitive classification of sub-
groups. This clarity is instrumental in precision medicine, where diverse patient subgroups
may react differently to the same treatments.

Several other methods have been proposed to identify patient subpopulations,
including decision tree algorithms, clustering, and regression-based methods. Decision
tree algorithms, such as the Bayesian additive regression tree (BART), identify subgroups
with differential treatment effects [44,45]. Although the BART approach can handle
multiple variable types of complex models and data, it requires more computational
resources and may be less easy to interpret for people unfamiliar with machine learning
techniques. Clustering methods, such as K-means and hierarchical clustering, are used
to group patients according to their similarities in covariates [46]. These methods can
be useful for identifying subgroups with similar characteristics but do not provide
any information on the treatment effect for each subgroup. Regression-based methods,
such as logistic and linear regression, are used to model the relationship between the
response variable and a set of predictor variables [38]. These methods can provide
useful information about the treatment effect for each subgroup. However, they may
be well suited to identifying subgroups with differential treatment effects only if the
predictor variables are carefully chosen. In comparison, the SUCRA method had the
advantage of being model agnostic. It may be used with any regression model to assess
the treatment effect, rendering this approach versatile for identifying subgroups with
differential treatment effects.
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However, some limitations of the study should be noted. First, we placed ourselves in
a clinical trial setting dealing with low size effects, requiring a large number of patients.
This was motivated by a real clinical trial conducted in ICU patients where mild treatment
effects are expected, but these could easily be adapted to larger effects in small trial samples.
Second, the lack of information provided by unmeasured biomarkers impacted the results,
and the proposed approach unveils its true potential when all predictive biomarkers are
accounted for in the analysis. Otherwise, it is more challenging to identify subgroups with
differential treatment effects, as shown by the results obtained in the simulation study.
However, the current biomarker measurements in the ICU lack consistency, which may
limit the ability to draw meaningful conclusions from the analysis. We placed ourselves in
a Bayesian framework for estimation purposes, but this could be performed in a frequentist
one. This would modify the computation of decision rules and the ranking of subsets
through the SUCRA, though the P-score, its frequentist version, has been proposed [47].
These limitations highlighted the importance of having all relevant information available,
including high-quality biomarker data, to achieve the most precise results when using the
SUCRA method for identifying subsets.

6. Conclusions

In conclusion, the proposed Bayesian sequential design offers various benefits for
assessing experimental treatments and identifying effective patient subgroups in precision
medicine. These benefits make the method potentially useful for researchers and practition-
ers. However, it is critical to note that the applicability of these results to broader clinical
or real-world scenarios is uncertain. Each study, including ours, has a unique context,
and findings from one context may not directly apply to another. This underscores the
significance of context when interpreting results and identifies potential opportunities for
future research.

Further research is necessary to validate our findings and to explore broader applica-
tions. This involves creating strong and expandable techniques for handling missing or
incomplete data and incorporating previous knowledge into statistical models. Given the
nuanced nature of clinical scenarios and the ever-evolving landscape of precision medicine,
ongoing exploration and refinement of methodologies are crucial.
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