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Abstract: There is substantial experimental and clinical interest in providing effective ways to both
prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar
membrane of the cochlea, often lose functionality due to age-related biological alterations, as well
as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity.
Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell
destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells
prior to injury and throughout aging. Within this context, it was proposed that cochlea neural
stem cells may be protected from such aging and environmental/noise insults via the ingestion of
protective dietary supplements. Of particular importance is that these studies typically display a
hormetic-like biphasic dose–response pattern that prevents the occurrence of auditory cell damage
induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose–response
also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation.
These findings are particularly important since they confirmed a strong dose dependency of the
significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas
extensive exposures may become ineffective and/or potentially harmful. According to hormesis,
phytochemicals including polyphenols exhibit biphasic dose–response effects activating low-dose
antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved
in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network
through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder
pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2)
pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and
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inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration.
Furthermore, we explored techniques to enhance their bioavailability and efficacy.

Keywords: polyphenols; hormesis; vitagenes; HSPs neuroprotection; Nrf2

1. Introduction

There is substantial experimental and clinical interest in providing effective ways
to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur
along the basilar membrane of the cochlea, often lose functionality due to age-related
biological alterations, exposure to high-decibel sounds, or genetic disorders affecting
the inner and middle ear. These conditions can manifest as various types of hearing
loss, including sensorineural, conductive, or mixed hearing loss, for instance, Pendred or
Usher Syndrome [1,2]. Hearing loss is also seen as consequence of neuronal degeneration
occurring before or following hair cell destruction/loss. A strategy is therefore necessary
to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout the
aging process.

Within this context, it has been proposed that cochlea neural stem cells may be pro-
tected from such age-related and/or environmental/noise insults via the ingestion of
protective dietary supplements. In fact, protection of auditory cells was reported with
phytochemicals, including ginkgo biloba [3–6], ginseng [7], and alpha lipoic acid [8]. Of
particular importance is that these studies typically display a hormetic-like biphasic dose–
response pattern that prevents the occurrence of auditory cell damage induced by various
model chemical toxins, such as cisplatin. In these experimental settings the hormetic
dose–response also enhances cochlear neural cell viability, proliferation, and differenti-
ation [5]. The cochlear nerve transmits signals from the inner ear to the cochlear nuclei
within the brainstem and ultimately to the primary auditory cortex within the temporal
lobe. These beneficial activities of the xenobiotics in plants are particularly important since
they confirm a strong dose dependency for significant beneficial effects (which is biphasic),
whilst having a low-dose beneficial response, whereas extensive exposures may become
ineffective and/or potentially harmful. On the other hand, it is known that polyphenols,
which were suggested to prevent hearing loss, have very low bioavailability when ingested
orally [9] and are extremely unlikely to reach effective high concentrations in hair cells or
auditory nerves. Consistently, they are beneficial in preventing hearing loss.

This review explores natural inducers, such as polyphenols, targeting the Nrf2 path-
way and its dependent vitagenes, which include also heat shock protein (HSP) system, to
develop neuroprotective and therapeutic strategies that can potentially reduce oxidative
stress and inflammation, and thus, prevent auditory hair cell and XIII cranial/auditory
nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavail-
ability and efficacy.

2. Nrf2 and Neuroprotection

In the central nervous system (CNS), hair cells and XIII cranial/auditory nerve cells,
functional redox signaling and low levels of reactive oxygen species (ROS) are thought to
play an essential role in neurogenesis and synaptic plasticity [10,11]. These cells possess
a low buffering capacity against ROS accumulation, rendering them highly vulnerable
to oxidative stress-induced damage, as one major cause of neurodegeneration [12]. NF-
E2-related factor 2 (Nrf2) is a master regulator of stress maintenance pathways in sev-
eral pathological conditions. These include major neurodegenerative diseases such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD) [13] along with hearing loss. Under
normal circumstances, Nrf2 is located in the cytosol, where its inhibition is modulated
by Keap-like ECH-associated protein 1 (KEAP1). Nrf2 is ubiquitously expressed [14] and
has a critical role in the defense against toxic insults in the neuron, glial, and astrocytic
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cells in the brain [15,16]. Specific natural activators of Nrf2 are neuroprotective, making
them effective preventive and therapeutic agents for neurodegenerative diseases [17]. In
particular, several studies showed that polyphenols have the potential to act as antioxi-
dants, anti-inflammatories, anti-amyloidogenic agents, anti-α-synuclein aggregators, and
antidepressants by modulating the Nrf2 pathways and molecular antioxidant biomarkers
to prevent the onset and progression of various chronic inflammatory diseases, especially
neurodegenerative diseases, both in vitro and in vivo (see Figure 1) [18–26].
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Figure 1. Canonical and non-canonical activation of Nrf2. Nrf2 is localized in the cytosol and
interacts with KEAP1 for ubiquitination and proteasomal degradation, under basal conditions.
Oxidative stress causes conformational changes of KEAP1-C151, leading to Nrf2 dissociation. Free
Nrf2 enters into the nucleus where it forms dimers with MAF proteins and binds to the antioxidant
response element (ARE) regulatory sequences of target genes, inducing their expression. In the
non-canonical Nrf2 activation, polyphenol-dependent inhibition of autophagy results in increased
p62, which competitively binds with KEAP1 and thus contributes to Nrf2 activation in a KEAP1-
C151-independent manner. The relationship with hormesis is inferred.

The activation of Nrf2 is the molecular mechanism by which polyphenols induce
neuroprotective effects against oxidative stress and inflammation. Nrf2 accumulates,
translocates into the nucleus, and binds to the antioxidant response element (ARE), causing
the transcription of multiple target genes, including phase II detoxification enzymes such
as NAD(P)H-Quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), thioredoxin
(Trx), γ-glutamylcysteine synthetase, and glutathione S-transferase (GST). These have
been identified as contributors to the antioxidant pathway regulated by Nrf2, protecting
against various forms of stress, such as mitochondrial dysfunction, oxidative damage
and environmental stress [27,28]. Vitagenes, such as Hsp 70, HO-1, γ-GCs, Trx, and
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SIRTs were identified by various studies [29–34] as biomarkers for stress adaptation, cross-
tolerance, and cellular resilience, which are relevant for hormesis or preconditioning [35,36].
Increasing evidence suggests that dysfunction to the Nrf2 pathway significantly contributes
to neurodegeneration [37–40].

Specifically, cellular senescence may contribute to the dysfunction of the Nrf2 pathway
and the progression of neuroinflammation and cognitive decline [41]. Furthermore, it is
well-documented that Nrf2 is downregulated during times of oxidative stress, inflamma-
tion, and neurodegeneration [42,43]. Conversely, the activation of the Nrf2 pathway and
related antioxidant vitagenes by polyphenols reduces cognitive decline and neuronal death
in animal models of Alzheimer’s disease (AD) and Parkinson’s disease (PD), as well as
in humans (Figure 2) [43,44]. Importantly, Nrf2 is crucial for mitochondrial function as it
helps to maintain mitochondrial homeostasis, which affects the mitochondrial membrane
potential, respiration, oxidative phosphorylation, ATP synthesis, mitochondrial biogen-
esis and integrity [45,46]. Thus, deregulation of Nrf2 and damage to mitochondria are
essential factors causing the development of neurodegenerative diseases since neurons
are highly susceptible to oxidative stress [47,48]. Activation of Nrf2 occurs endogenously
in response to elevated levels of oxidative stress and inflammation, and can be bursted
by nutritional agents administered exogenously. In recent years, researchers have shown
interest in the effects of nutritional polyphenols on the prevention and treatment of AD
and PD. This was demonstrated by many preclinical and clinical studies focusing on the
neuropharmacological activity of these compounds [49–53].
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Figure 2. Schematic representation of hormetic neuroprotection. Polyphenols modulate Nrf2-related
vitagenes in the low range of hormetic dose–response. On the other hand, at higher stimulation,
detrimental effects are observed and neurodegeneration occurs.

3. Heat Shock Response and Neuroprotection

Cellular and organismal functions rely on properly synthesized and folded proteins.
The quality of the proteome becomes especially important during disease and the exposure
to endogenous and environmental stresses when cells experience physical and chemical
fluctuations that they have to adapt to. The homeostasis of protein synthesis, folding, and
degradation is called protein homeostasis or proteostasis [54]. Due to its central role in
aging and decline of nervous function, proteostasis in neural tissues has become an intense
field of research [55].
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Many components of the cellular network that ensure protein homeostasis are under
the control of the transcription factor Heat shock factor (HSF) 1 and its relatives HSF2,
HSF3 and HSF4. This ancient family of gene regulators is involved in the induction of a
number of molecular chaperones under stress conditions [56]. Together with Nrf2, HSFs
represent a strong defense line against a very broad spectrum of stress inducers and are
indispensable components of stress response in human cells. However, the complementar-
ity and interchangeability of the two systems remain less well understood. Specifically, it
is not clear which HSF-induced components could replace the Nrf2-induced proteins in
protecting the cell from different stressors. HSF1 is the best understood member of the HSF
family. In mammalian cells, HSF1 rests in a monomeric inactive state in the cytosol. Upon
different stress stimuli, including heat shock, HSF1 trimerizes and acquires DNA-binding
capacity [56]. The widely accepted model of HSF1 activation suggests that the transcription
factor is kept inactive by association with molecular chaperones. According to the model,
the titration of chaperones during stress to other, more affine and abundant targets releases
HSF1 for oligomerization [57]. However, oligomerization of HSF1 might not be sufficient
for its full activity, and a number of post-translational modifications are known to influence
HSF1 function [58]. The known modifications include phosphorylation, acetylation, and
sumoylation. Yet another factor to be considered is the role of HSF stability, which in turn
affects the cellular levels of the transcription factor. Neurodegeneration is often accompa-
nied by decreased levels of HSF1, which then impairs the capacity of cells to react to stress
and induces a protective stress response [58–60].

The defects in HSF1 function during aging and neurodegeneration are numerous and
are extensively documented [61]. The insufficient activity of HSF1 affects the upregula-
tion of molecular chaperones that otherwise would help protect cellular proteins from
misfolding or dissolving already aggregated species. As a consequence, the progression
of neurodegeneration is increased, and its clinical manifestations are exaggerated. In a
murine model of Huntington’s disease, a lack of HSF1 enhanced mutant huntingtin aggre-
gation [62]. Conversely, overexpression of active HSF1 significantly suppressed huntingtin
aggregate formation [63]. Interestingly, HSF2 knock-outs also displayed an increased
huntingtin aggregation in the striatum, which caused a reduced lifespan for the experi-
mental animals [64]. Similarly, several Parkinson’s disease models support the protective
role of the heat shock response in neurodegeneration. For example, overexpression of
a dominant-positive version of HSF1 in human cells decreased a-synuclein levels and
ameliorated a-synuclein-induced toxicity [65]. α-Synuclein was found to induce aberrant
HSF1 degradation in cell lines and in vivo, which was linked to the activity of the E3 ligase
neural precursor cell expressed developmentally downregulated protein (NEDD) 4 that
is increased in Parkinson’s [59]. Overexpression of HSF1 in the cerebellum reversed the
deficiency of Purkinje cells in Alzheimer’s disease [66], and activation of HSF1 using the
HSP90 inhibitor tanespimycin (17-AAG) attenuated Aβ-induced synaptic toxicity and
memory impairment [67]. The motor neuron disease amyotrophic lateral sclerosis (ALS)
is characterized by aggregates of the superoxide dismutase superoxide dismutase (SOD)
1. Low activity of HSF1 in ALS neurons was linked with their susceptibility to SOD1 ag-
gregation [68]. The neuroprotective effects of HSF1 as exemplified above can be attributed
to the induction and action of a number of molecular chaperones. In this regard, HSP70
and HSP90 are the members of the chaperone family that are analyzed most and whose
neuroprotective activity is understood best [69]. Chaperones counteract the toxicity of
aggregates using at least three mechanisms: (1) preventing amyloid formation, (2) disag-
gregating misfolded proteins, and (3) sequestering aggregates to specialized subcellular
structures [54].

Prevention of amyloid formation is the first strategy of molecular chaperone action.
One of the first mechanistic explanations of the protective function of chaperones came
with the analyses of huntingtin aggregation in vitro and in vivo. It was shown that HSP70,
with the help of its cofactor HSP40, can interfere with the conformational change in mutant
huntingtin and thus prevent its aberrant interaction and inactivation of the transcription
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factor TBP [70]. In these models, induction of HSPs, especially HSP70, is observed in hair
cells, accompanied by elevated blood glucocorticoids [71]. It was also reported that in rats,
HSP70 (induced by sound conditioning) decreased susceptibility to noise-induced trauma,
suggesting the result of enhancement of vitagene through the HSP70/Bmi1–FoxO1–SOD
signaling pathway [72].

The neuroprotective effects of HSF1 as exemplified above can be attributed to the
induction and action of a number of molecular chaperones. In this regard, HSP70 and
HSP90 are the members of the chaperone family, which are analyzed most and whose
neuroprotective activity is understood best [69]. Chaperones counteract the toxicity of
aggregates by preventing amyloid formation, disaggregating misfolded proteins, and se-
questering aggregates to specialized subcellular structures [54]. One of the first mechanistic
explanations of the protective function of chaperones came with the analyses of huntingtin
aggregation in vitro and in vivo. It was shown that HSP70 with the help of it cofactor
HSP40 can interfere with the conformational change in mutant huntingtin and thus prevent
its aberrant interaction and inactivation of the transcription factor TBP [73]. The role of the
HSP70–HSP40 system in preventing primary nucleation of fibrils and their elongation was
demonstrated for different aggregation-prone disease proteins and thus can be considered
as the general feature of these molecular chaperones [74,75].

Disaggregation is another mechanism of how chaperones contribute to the neuropro-
tective effect of the HSF1-mediated stress response. It has been known for a long time that
fungi contain the HSP100 family of chaperones that are specialized in dissolving already
formed aggregates in an ATP-dependent manner [76,77]. Mammals lack HSP100 chaper-
ones, and their disaggregating function is performed by HSP70 supported by the HSP70
homologue nucleotide exchange factor HSP110 [78–80]. Here, proteasomal degradation
becomes critical to prevent toxic effects of dissolved species that may exist in potentially
dangerous intermediate states [81]. An imbalance of the disaggregating activity of chap-
erones and the cellular protein degradation capacity would contribute to the paradoxical
toxicity of the chaperone overexpression, an example of a complex dose–response relation-
ship in cellular biochemistry.

The third neuroprotective strategy used by cells is to sequester aggregates in dedicated
subcellular structures. Molecular chaperones also actively participate in the aggregate
sequestration. Specifically, the small Heat shock protein (sHSP) family was shown to be
critically involved in this process [82]. Mechanistically, sHSP oligomerization underlies
the sHSP-aggregate interactions, which, in contrast to the classical mechanisms of other
chaperones, is ATP-independent. In cells exposed to increased temperature, the small
heat shock protein sHSP42 concentrates misfolded proteins into small foci, its function
mediated by a prion-like domain [83–85]. The sequestration activity of sHSPs reduces the
substrate burden for other components of the proteostasis machinery and thus contributes
to the cellular survival during stress [86]. The concentration of aggregates in mammalian
cells lead to the formation of large inclusion bodies, called aggresomes, at the microtubule-
organizing center [87]. The sequestration of misfolded species in inclusion bodies has a
protective role in a cell. It was shown that inclusion body formation improves survival and
leads to decreased levels of mutant huntingtin elsewhere in neurons [88].

In addition to mutant protein-driven aggregation that underlies the pathogenesis of
a number of neurodegenerative disorders, there is overwhelming evidence of a general
decrease in proteome solubility and an increase in protein aggregation during the aging
process, especially in the nervous system. It is believed that the amount of oxidatively dam-
aged proteins increases with age, especially in non-dividing and long-lived cells, such as
neurons, which increases the substrate load for the proteostasis machinery probably above
manageable levels [54,89,90]. To make things worse, the expression of ATP-dependent
molecular chaperones in the aging human brain is repressed significantly [91]. These
findings emphasize the need for nutritional and pharmaceutical approaches to boost the
heat shock response via HSF1 or support the function of individual chaperones, not only in
the clinical setting, but also in the general population to support healthy aging; however,
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the relationships of molecular chaperones with antioxidative nutrients are complex and
not yet well understood. Specifically, polyphenols are known to induce the expression of a
number of heat shock proteins and, at the same time, can act as potent inhibitors of their
action [92,93]. Furthermore, several polyphenols were reported to increase HSP expression
in various organs, reduce oxidative stress, and suppress the exacerbation of symptoms in
rodent models of inflammation [94,95]. However, it is still not well understood whether
these changes occur in neurons and exhibit a hormetic dose–response, and future research
is expected.

4. Polyphenols

It is well known that polyphenols are the most diverse of all secondary plant metabo-
lites, with more than 8000 of them identified to date [96], They are divided into subclasses
based on their chemical structures, flavonoids (flavonol, flavanol, flavone, anthocyanidin,
isoflavonoid, and so on), stilbenes, hydrolyzed tannins, phlorotannins, and phenolic acids.
Polyphenols are known to chemically interact strongly with ROS and reactive nitrogen
species (RNS) and exert anti-inflammatory effects in vitro and in vivo [97]. Recent studies
have reported that some polyphenols reduce damage to cochlear auditory hair cells induced
by noise, antibiotics, and anticancer drugs [98,99].

On the other hand, polyphenols are generally less bioavailable [100] and have a limited
increase in concentration in the brain. Polyphenol and their associated compound levels
can differ significantly in terms of quantity and quality. Clinical studies show that after
consuming 10 to 100 mg of a single phenolic compound, plasma concentrations normally
do not surpass 1 µM [101]. Aglycones are removed from polyphenol glycosides ingested
through food and taken in by the small intestine. It is recognized that the activation of
proteins in the excretory system contributes to the low absorption rate from the small
intestine. Only a small percentage of these aglycones are taken up by epithelial cells,
rapidly conjugated with glucuronide or sulfate, and subsequently secreted into the portal
vein. Polyphenols that enter the liver through the portal vein undergo reactions such as
glucuronic acid conjugation, sulfate conjugation, methylation, etc. After conversion, they
are secreted as metabolites into the peripheral blood [102,103]. These metabolites are then
transported into the bloodstream and eliminated in the urine. Part of the polyphenols that
reach the lower part of the gastrointestinal tract are degraded by intestinal bacteria and
many types of degradation products are produced in the colon [104,105]. The microbiota
metabolism of polyphenols involves cleaving glycosidic linkages and breaking down the
heterocyclic backbone [106]. It was reported that the primary genera responsible for the
metabolism of various phenolics, such as isoflavones, flavonols, flavones, and flavan-3-ols,
are Clostridium and Eubacterium. The microbiome breaks down procyanidins and tannins
that remain unabsorbed in the upper gastrointestinal tract and produces characteristic,
low-molecular-weight degradation products in the colon [107]. For instance, procyanidins
and flavan-3-ol oligomers are examples of compounds that can undergo intestinal bacterial
catabolism to produce 3,4-dihydroxyphenylvaleric acid, which is further degraded into
phenolic acids like 3,4-dihydroxyphenylpropionic acid and 3,4-dihydroxybenzoic acid [108].
Since these degradation products are more readily absorbed than the original polyphenol
compounds, it was suggested that they might impact biological activity.

In addition, recent reports suggest that polyphenol consumption causes temporary
changes to the composition of microbiota [107]. These alterations in microbiota in the gut
modulate the intestinal barrier function, innate and adaptive immune response, and signal-
ing pathways and then impact host homeostasis [109]. However, only a limited number of
papers in relation to this are reported to date, and the relationship between the alterations in
the intestinal environment of polyphenols and their positive effects on the central nervous
system, cardiovascular system, and inner ear is uncertain. Nevertheless, the mechanism
by which polyphenols show preventive or therapeutic effects against inner ear disorders
has attracted much attention. Therefore, we selected papers related to polyphenols and
hearing loss from Google Scholar, Scopus, PubMed, and the Web of Science using the
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following keywords in June 2023: “polyphenol, flavonoid, flavanol, flavanon, flavone,
flavonol, flavanonol, isoflavon, procyanidin, anthocyanin, chalcone, tannin, phenolc acid,
and/or curcumin” and “hearing loss, hair cell, and/or neurodegeneration”. In addition,
papers containing mixtures of polyphenols such as plant extracts or whose contents were
unknown were excluded from the selection. We additionally examined the literature on the
bioavailability of compounds whose effectiveness was expressed in the survey findings.

4.1. Flavonoids

Flavonoids are a group of compounds characterized by a backbone of 15 carbon atoms
and two phenyl rings A and B linked by a heterocyclic (pyran) ring [110]. Epigallocatechin
gallate (EGCG, Figure 3A), a flavanol as a subgroup of flavonoids, is the most representative
polyphenolic compound found in green tea [111]. The anti-inflammatory activities of
EGCG are well demonstrated in in vitro and in vivo models, accompanied by increased
Nrf2 signaling and inhibited NFkB pathway through its antioxidant activity [112–114].
These effects are not observed in Nrf2 knockout mice or their cells, suggesting that EC
indirectly induces Nrf2 and its underlying signals to exert its effect [113]. EGCG was
reported to inhibit NO-mediated ototoxicity. Kim et al. examined the preventive effect of
EGCG on a HEI-OC1 auditory cells ototoxicity model using RNS generated by S-nitroso-
N-acetylpenicillamine (SNAP), an NO donor. SNAP released cytochrome c and activated
caspase-3 from the cells, but EGCG inhibited this change and the subsequent reduction in
cell viability [115–117]. EGCG also reduced SNAP-induced destruction of hair cell arrays in
the organ of Corti by suppressing the activation of caspase-3/NF-κB. It was also suggested
that EGCG may protect cochlear hair cells from the ototoxic drug gentamicin. Gentamicin is
known to increase γ-secrectase activity and to suppress Notch signaling, which inhibits hair
cell proliferation. EGCG inhibited γ-secretase activity and promoted hair cell proliferation
and regeneration in the damaged cochlea [118]. ROS and RNS in the cochlea, which increase
with age, are known to cause age-related hearing loss. It was reported that the redox balance
in the cochlea of rats fed for up to 24 months was gradually altered, with decreased SOD
and GPx and increased total ROS/RNS and nitrotyrosine. However, supplementation
with a mixture of flavonoids and other phenolics consisting of quercetin, rutin and morin,
tannic acid, resveratrol, and gallic acid in their drinking water significantly inhibited these
changes, thus protecting against ototoxicity [119]. In addition, flavanol derived from cocoa,
consisted of (-)-epicatechin and its oligomers, inhibits the activation of senescence-related
apoptotic signaling by decreasing oxidative stress in auditory senescent cells such as the
HEI-OC1 cell, the stria vascularis-derived cell line SV-k1, and the organ of Corti (OC-k3)
cells derived from the auditory organ of a transgenic mouse [120].

EGCG is shown to have poor bioavailability in human volunteers. The peak plasma
concentration of EGCG 1.5–2.6 h after intake of green tea is in the submicromolar range
and half-lives of it last for a few hours [121]. Moreover, the bioavailability of EGCG is
only about 2%. This low bioavailability of EGCG is related to its instability in the intestine,
poor pharmacokinetic properties, and tissue accumulation. It is also well known that
cocoa flavanols have poor bioavailability [122]. In particular, the oligomers that make up
80% of them are not absorbed at all and can only be detected in small amounts in the
blood [123,124]. Despite this low biophysical availability, it is very interesting that they
prevent hair cell damage and understanding the mechanisms involved is important.
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4.2. Stilbene

Stilbene is characterized by a carbon skeleton of 1,2-diphenylethylene (C6–C2–C6),
consisting of an ethylene moiety in the middle of two benzene rings [125]. Several plants
produce natural stilbenes to protect themselves against stress conditions such as exces-
sive ultraviolet (UV) radiation, heat, insect attack, and fungal or the bacterial infection
Pecyna. The neuroactive compounds of blueberry pterostilbene possess the ability to acti-
vate cellular resilience pathways Nrf2-dependent scavenging free radicals and inhibiting
the NF-κB inflammatory pathway and consequently protecting against oxidative, inflam-
matory cell damage, and cytotoxicity [126]. Resveratrol (Figure 3B) is a compound with
three hydroxyl groups with a stilbene skeleton and is found in fruits such as grapes and
grape products, especially red wine. It exhibits health-promoting effects including pre-
vention and/or treatment of neurodegenerative disorders modulating the Nrf2 pathway
and stress resilience vitagenes [127]. It was also revealed that resveratrol protects cochlear
cells from cisplatin-induced ototoxicity [128] and neuronal cells from hydrogen peroxide-
induced oxidative damage dose-dependently [129]. Consistent with hormesis, in vitro
studies have shown that a low dose (50 µM) of resveratrol significantly attenuates CoCl2-
induced cochlear hair cell damage via activation of Sirt1, which deacetylates NF-κB [130].
Similarly, in vivo studies have demonstrated that a low dose (0.5 mg/kg) of resveratrol
exerts otoprotective effects on cisplatin-induced ototoxicity by reducing hearing loss and
inflammatory responses (NF-κB, IL6, and IL1β), as well as increasing the expression of
antioxidant molecules (CYP1A1 and RAGE). On the other hand, a high-dose (50 mg) of
resveratrol activated pro-inflammatory cytokines and did not ameliorate cisplatin-induced
ototoxicity [131]. Moreover, a low-dose of resveratrol inhibited serine/threonine protein
kinase (RIPK3)-mediated necroptosis in aging cochlea and delayed the onset of age-related
hearing loss in old mice [132]. In addition, resveratrol at a low dose of 10 mg/kg also
exerted potent antioxidant effects against amikacin ototoxicity in rats [133]. Notably, in-
tratympanic dexamethasone in synergy with resveratrol provided significant protection
against cisplatin-induced ototoxicity in rats [134]. Importantly, resveratrol is the first natural
agonist of Sirt1 and induces protection of cochlear hair cells, delaying age-related hearing
loss via autophagy. Specifically, the activation of Sirt1 modulates the deacetylation status
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of ATG9A, which acts as a sensor of endoplasmic reticulum stress and restores cochlear
autophagy impairment in C57BL/6 AHL mice [135]. Furthermore, resveratrol upregulated
miR-455-5p, reducing apoptosis and oxidative stress in HEI-OC1 cells and inhibiting hair
cell damage in cochlear tissues from cisplatin-treated mice via the PTEN-PI3K-Akt signal-
ing pathway [136]. The imbalance of mitophagy and mitochondrial biogenesis is present in
the cochlear hair cells during aging or under oxidative stress, contributing to mitochondrial
dysfunction and cell damage. In this regard, it was shown that long-term supplementation
with resveratrol targeting Sirt1 enhanced mitochondrial function and attenuated spiral gan-
glion neuron loss in the aging cochlea [137], as well as improving resistance to intense noise
exposure damage [138]. Likewise, the pharmacological inhibition of an miR-34a deficiency
protected cochlear hair cells and improved age-related hearing loss induced by oxidative
stress in C57BL/6 mice [137]. Resveratrol also exhibits promising neuroprotective effects by
modulating antioxidant and anti-inflammatory pathways. Other recent evidence showed
that resveratrol reduced the phosphorylated and acetylated levels of NF-κB and STAT3,
as well as attenuated manganese-induced oxidative stress and inflammatory cytokines by
activating Sirt1 signaling. Conversely, EX527, a potent Sirt1 inhibitor, inactivated Sirt1 by
inhibiting resveratrol in adult mice [121]. Notably, resveratrol (100 mg/kg) exerted cogni-
tive enhancement and neuroprotection against amyloid and tau pathologies by increasing
AMPK protein levels and upregulating the SIRT1 pathway in AD transgenic mice. The
improvement of proteostasis by resveratrol, in both healthy and AD mice, suggests that
it is a mechanism of brain resilience and defense against neurodegeneration caused by
the accumulation of aberrant proteins [122]. Importantly, resveratrol induced significant
changes in BBB permeability, edema formation, and the distribution of aquaporin 1 and
4, in addition to the astrocyte profile in the animal model of autism [123]. Taken together,
stilbenes, especially resveratrol, induce protection in moderate doses by activating vitagenes,
primarily targeting the Sirt1 pathway, and this could provide a promising antioxidant ther-
apeutic strategy to delay the neurodegeneration of vulnerable neurons leading to hearing
loss and brain dysfunction in humans.

Resveratrol shows high intestinal absorption and rapid and intense metabolism in the
gastrointestinal tract and/or liver [139]. Recent stable isotope-labeled studies have reported
a high resveratrol absorption rate of 43.9 ± 25.9% [140]. Only resveratrol conjugated
derivatives are detected in plasma, such as glucuronide, sulfate, and methoxy forms, with
little unchanged form. These resveratrol metabolites might interfere with its therapeutic
use because of their difficulty in crossing cell membranes, particularly the BBB, due to their
water solubility.

4.3. Hydroxytyrosol

Hydroxytyrosol (HT, Figure 3C) is a metabolite of the secoiridoid compound oleu-
ropein found in green olive skins, seeds, and leaves. The degradation of oleuropein to
hydroxytyrosol, elenolic acid, and glucose is promoted by acid or heat treatment [141],
similar to that in the gastrointestinal tract. In an isotopic study, 90% of ingested HT was
absorbed and excreted in the urine within 5 h, suggesting that HT is readily absorbed [142].
The peak of HT in plasma was reported to occur 0.5–1 h after administration. Absorbed
HT is oxidized by phase I enzymes to 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-
dihydroxyphenylacetaldehyde, metabolites produced in the dopamine pathway, which
are subsequently metabolized by phase II reactions to O-methylated forms, specifically ho-
movanillic acid [143]. Recent research has focused on the brain health benefits of the major
olive oil polyphenols, especially HT and HT-rich aqueous olive pulp extract (Hidrox®),
which exert multiple preventive and pharmacological activities at low doses, such as
antioxidant [144], anti-aging [24], and anti-proliferative effects in vitro and in vivo [145].
Among the phenolic compounds, hydroxytyrosol (50–70%) is the major constituent of the
pulp extract, while other polyphenols present include oleuropein (5–10%), tyrosol (0.3%),
oleuropein aglycone, and gallic acid [144]. In vitro studies on endothelial cells [146] and
the human monocytic cell line [147] have highlighted the ability of HT to downregulate
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NF-κB activation and its translocation into the nucleus. Recent double-blind randomized
preclinical studies have shown that the neuroprotective effect of a HT-enriched diet, in
particular a dose of 45 mg HT/kg BW/day, favors recovery after ischemic stroke by im-
proving stroke-associated learning and motor impairments. This effect is probably related
to an increase in cerebral blood flow (CBF). In addition, a growing body of evidence reports
the brain health benefits of HT supplementation, which at a dose of (50 mg/kg diet) im-
proved cognitive function and reduced Aβ42 and pE3-Aβ plaque in the cortex of TgCRND8
mice [148]. Furthermore, aged mice were shown to have a downregulation of Sirt1, CREB,
Gap43 and GPx-1 gene expression in brain tissue [149]. Also in the inner ear, the right dose
range is essential to explain the protective effects of antioxidants. Indeed, a high dose of
hydroxytyrosol (100 uM) was reported to induce cisplatin-induced ototoxicity in vitro via
apoptosis-related JNK and AIF pathways [150].

4.4. Curcumin

Curcumin (Figure 3D), diferuloylmethane, is a bright yellow lipophilic pigment found
in turmeric [151]. Curcumin is present in the root of the Curcuma longa herb, originally
from Asia, in particular from India and Pakistan, a nutritional compound commonly used
in food as a spice, mainly in the traditional cuisine of these geographical areas (Middle
Eastern and Indian) [152]. The root is the component of greatest nutritional interest, it con-
sists of an aromatic rhizome, yellow or orange in color. Curcuma longa possesses powerful
biological activities and has various properties, including antioxidant, anti-inflammatory,
antiviral, antibacterial, immunomodulatory, and anticancer activities. It was widely proven
since ancient times that this polyphenolic compound has anti-inflammatory characteristics.
Due to its anti-inflammatory action, both in the acute and chronic phase, it acts on the
arachidonic acid cascade, at the level of cyclooxygenase and lipoxygenase enzymes [153]
blocking the synthesis of inflammatory mediators, prostaglandins, and leukotrienes. Cur-
cumin is a strong antioxidant and is one of the compounds expected to be effective against
neurodegenerative diseases [154]. In AD model cells, it was reported that curcumin sup-
presses oxidative stress and increases cell viability by activating the Nrf2 pathway with
increased DNA repair enzyme expressions [155]. Curcumin was also shown to improve
rotational behavior in rotenone-induced PD rats by reducing oxidative stress via Nrf2
signaling activation. In rats, curcumin alone and/or in synergy with vitamin E prevented
cisplatin ototoxicity [156]. In addition, curcumin treatment at a dose of 200 mg attenu-
ated cisplatin-induced ototoxicity and hearing loss by decreasing 4-HNE expression and
increasing HO-1 expression in rats [157].

Moreover, dietary curcumin is extensively bio-transformed in phases I and II. A
reductase reduces the double bonds of curcumin in enterocytes and hepatocytes to curcumin
derivatives [103]. These curcumin derivatives are rapidly absorbed and then found in
small amounts in the blood. The plasma concentration ranged from 1 to 3200 ng/mL
depending on the dose, which ranged from 2 to 10 g [158]. Studies have shown that
curcumin’s bioavailability remains a barrier to understanding the mechanisms behind its
neuroprotective effects.

4.5. Tannins

Tannins, a class of polyphenolic biomolecules, are large polyphenolic compounds con-
taining sufficient hydroxyl moiety to form strong complexes with various macromolecules.
The chemical structures of plant tannins are diverse and can be broadly divided into hy-
drolyzed tannins and condensed tannins. Hydrolyzed tannins consist of polyphenol nuclei
and condensed tannins are oligomeric or polymeric flavan 3-ols with molecular weights
ranging from 500 to 20,000 Da [159]. Pomegranate fruit is known to be rich in hydrolyzable
tannins, a type of tannin that yields gallic acid on heating with hydrochloric or sulfuric
acids (Figure 3E). Administration of pomegranate extract rich in hydrolyzable tannins
inhibited cisplatin-induced reduction in distortion product otoacoustic emissions and re-
duction in mid-turn external ciliated cells in the cochlea [160]. Phlorotannins, the oligomer
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of phloroglucinol (Figure 3F), are tannins found in brown and red algae. It was reported
that dieckol, a phlorotannin, prevents gentamicin-induced hair cell loss in rat cochlear
explants [161]. It was also reported that dieckol or phlorofucofuroeckol A, a phlorotannin,
suppressed the shift of auditory brainstem response threshold by noise exposure in mice.
These phlorotannins showed higher hair cell survival after exposure in the apical turn.
In general, highly polymerized, high-molecular-weight tannins are poorly absorbed in
the small intestine [162]. The biological activity of tannins was thought to be limited to
localized areas such as the gastrointestinal tract so far. Because tannins are a large molecule
among polyphenols, ranging from 500 Da to 20 kDa, their bioavailability is known to
be extremely low [163]. It is, therefore, unclear whether the efficacy of tannins on the
inner ear is due to the breakdown of high-molecular-weight tannins into more bioavailable
low-molecular-weight compounds or whether they have an entirely different mechanism.

4.6. Phenolic Acid

Rosmarinic acid (RA, Figure 3G is an ester of caffeic acid and 3,4-dihydroxyphenyl lac-
tic acid. It is widely distributed in the Lamiaceae family: basil, lemon balm, rosemary, mar-
joram, sage, thyme, and peppermint [164]. It was shown to have potent anti-inflammatory
properties through antioxidant activities in animal models such as the house dust mite
allergy model [165], diesel exhaust particle-induced lung injury model [166], LPS-induced
liver damage model [167], or phorbol ester-induced skin irritation model [168], as well
as seasonal allergic rhinoconjunctivitis in clinical trials [169,170]. The preventive effect of
RA on Cd2+-induced ototoxicity in vitro and ex vivo was reported. The results showed
that RA inhibited ROS generation, IL-6 and IL-1β production, and caspase-3 translocation
in the auditory cells HEI-OC1. RA also prevented the destruction of hair cell arrays in
the rat organ of Corti primary explants induced by Cd2+ [171]. It was reported that RA
inhibits apoptosis in the primary organ of Corti explants. Administration of RA reduced
the thresholds of the auditory brainstem response in cisplatin-injected mice, along with
inhibiting the caspase-1 downstream signaling pathway, such as activation of caspase-3
and -9, release of cytochrome c, translocation of apoptosis-inducing factor, upregulation
of Bax, downregulation of Bcl-2, generation of ROS, and activation of NFκB [172]. Trans-
tympanic and systemic administration of RA were previously compared to prevent damage
to hair cells caused by noise exposure. Systemic administration of RA to rats, similar
to the trans-tympanic treatment, significantly reduced noise-induced hearing loss, and
improvement in auditory function paralleled the significant reduction in cochlear oxidative
stress, such as O2

− production and lipid peroxidation, [173]. In addition, RA potentiates the
Nrf2/HO-1 signaling pathway, resulting in endogenous antioxidant defenses, as decreased
O2

− production and the expression of 4-HNE, and upregulation of SODs. Finally, RA
attenuates noise-induced hearing loss, reducing the threshold shift, and promotes hair cell
survival [174]. In rodents and humans, approximately 75% of orally administered RA was
reported to be excreted in the urine and detected as metabolites. In addition to methylated
RA, the degradation products of RA, caffeic acid (Figure 3H), ferulic acid (Figure 3I), and
their conjugates (glucuronide and/or sulfate) were detected in plasma [170,175]. There-
fore, it is unclear whether the beneficial effects on hair cells are mediated by RA or its
breakdown products, such as caffeic acid or ferulic acid, produced during absorption
from the gut and passage through the liver. In fact, caffeic acid, a breakdown product of
RA, and its esters were reported to prevent inner ear damage. In streptozotocin-induced
ototoxicity, intramuscular administration of caffeic acid ester prevented otoacoustic emis-
sions and the loss of hair cells [176]. Caffeic acid also inhibited hair cell damage induced
by cisplatin in vitro [177], or neomycin-induced cell damage in zebrafish [178]. It also
prevented HEI-OC1 cell damage by the cisplatin treatment in vitro [179]. Furthermore,
noise-induced hearing loss in guinea pigs was significantly reduced by the administration
of ferulic acid [180,181]. Based on these findings, it will be necessary to verify the in vivo
degradation process of RA to determine the mechanism by which the beneficial effects of
RA on inner ear dysfunction occur.
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5. Attempt to Increase the Bioavailability of Polyphenols

As mentioned above, polyphenols were shown to suppress hair cell damage and poten-
tially reduce the risk of hearing loss. However, one of the limitations to the effectiveness of
polyphenols is their poor bioavailability. Therefore, numerous attempts are currently being
made to improve the bioavailability of polyphenols. The development of formulations
and delivery systems, such as prodrugs or conjugates using nanotechnologies to target the
appropriate molecules, has been attempted [182]. For instance, resveratrol-loaded PLGA
nanoparticles were observed to enhance resveratrol penetration into the BBB and induce
neuroprotection within the brain in experimental models of PD [183]. Of equal importance,
the oral administration of novel resveratrol-selenium peptide nanoparticles was reported
to effectively improve cognitive dysfunction by interacting with Aβ and decreasing Aβ

aggregation and deposition in the hippocampus, reducing Aβ-induced ROS and increasing
the activity of antioxidant enzymes in PC12 cells and in vivo. Furthermore, in the same
study, resveratrol downregulated Aβ-induced neuroinflammation via the NF-κB/mitogen-
activated protein kinase/Akt signaling pathway in BV-2 cells and in vivo and alleviated gut
microbiota disturbance, particularly as regards oxidative stress and inflammation-related
bacteria such as Alistipes, Helicobacter, Rikenella, Desulfovibrio, and Faecalibaculum [184].
Similar results were also shown in the inner ear disorders via resveratrol-loaded polymer
nanoparticles, which did not show any cytotoxicity in vitro and thus could be a suitable
model for antioxidant delivery in the cochlea for otoprotection [185]. Nano-encapsulated
curcumin administered with dexamethasone protected against cisplatin-induced hearing
loss by reducing toxic damage to auditory cells in animal models [186]. Curcumin nanopar-
ticles at a much lower dose than dexamethasone provided otoprotection via the inhibition
of Caspase-3 and Bax activation, thereby reducing the concentration of ROS and protecting
mitochondrial integrity in hair cells in vitro and in vivo [187]. Interestingly, Yamaguchi
and coworkers demonstrated that curcumin abolished intranuclear translocation of nu-
clear factor-κB-p65 and the generation of 4-hydroxynonenal-adducted proteins found in
the cochlea after noise exposure. In particular, Theracurmin®, a highly absorbable and
bioavailable preparation of curcumin, has shown preventive solid effects on hearing loss
induced by repeated noise exposure and suggests it is a promising therapeutic candidate
for preventing sensorineural hearing loss [188].

6. Development of Model Systems to Elucidate the Hearing Loss Prevention
Mechanism of Polyphenols

Clarifying the process by which polyphenols reduce the risk of hearing loss by pro-
tecting hair cells is a key priority, as is improving their bioavailability. For this purpose,
two model systems are currently considered promising.

6.1. C. elegans Models

C. elegans is an approximately 1 mm long free-living nematode, which exists predomi-
nantly as a self-fertilizing hermaphrodite with a minor percentage of males. It has a rapid
life cycle, high reproductive capacity, and limited adult life span of about three weeks under
standard culture conditions. The C. elegans genome displays about 80% homology to human
sequences and more than 42% to human disease-related genes [189]. Functional studies
of corresponding or related human genes can be performed either with various mutants
available or by RNA interference (RNAi), the latter being easily and exclusively achieved
in the nematodes by feeding Escherichia coli expressing target-gene dsRNA [190]. Moreover,
in the absence of endogenous homologues, C. elegans can be transgenically manipulated
to express human disease-associated genes in specific cell types, including neurons [191].
Even the co-expression of pathogenic proteins is possible, as was exemplified for the
co-expression of β-amyloid and tau, both involved in the pathogenesis of Alzheimer’s
disease [192], or for β-amyloid and α-synuclein reflecting the pathogenesis of Lewy-body
dementia [193]. Finally, the transparency of C. elegans allows the in vivo visualization of
neuronal function expression of fluorescent protein reporters in free form or attached to
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transgenic proteins [194,195]. The primary functional constituents of synaptic transmission
found in mammals, including transmitters, receptors, transporters, and ion channels, are
preserved in C. elegans. Consequently, it could be valuable in assessing hearing impairment.

There are, moreover, C. elegans models for further neurodegenerative diseases such
as amyotrophic lateral sclerosis, frontotemporal dementia, or Huntington’s disease [196].
Especially for the first, disturbed redox balance appears to represent a pathomechanism.
Pan-neuronal expression of the G85R mutant of superoxide dismutase in C. elegans is
associated with locomotor defects, development of aggregates, and axonal abnormali-
ties [196]. C. elegans can be a viable model for neurodevelopmental disorders, depicting
challenges in social interaction and communication like autism, and displays great versatil-
ity for application.

Like humans, C. elegans exhibits a decline in physical ability with age and loss of
ability to recover from stress. Those alterations are expressed in the nematodes by reduced
body movement and increased sensitivity to heat and oxidative stress [197], These findings
suggest that C. elegans could be utilized as an advantageous model for evaluating hearing
impairment and defects in auditory neurodegeneration. Additionally, it is promising that
C. elegans is highly responsive to antioxidant nutrients.

Various secondary plant compounds were shown to improve the phenotype in C.
elegans models of neurodegeneration. In a recent study, the flavonoid chrysin reduced
the α-synuclein-induced toxicity in so far as the degeneration of dopaminergic neurons
and food-sensing behavioral disabilities, both of which occur after the administration of
6-hydroxydopamine [198]. Chrysin triggered the ubiquitin-like proteasome and super-
oxide dismutase activities, in agreement with the general concept that oxidative stress
and accumulation of non-functional cellular proteins underlie the degeneration of neu-
rons in various neurodegenerative diseases [198]. Hydroxytyrosol from olive oil in its
“natural” environment in C. elegans Parkinson´s disease models, characterized either by
α-synuclein expression in muscles or in dopaminergic neurons, was shown by the authors
to significantly improve swimming performance [24]. 10-O-trans-p-Coumaroylcatalpol,
a monoterpene extracted from arni, was demonstrated to decrease the aggregation of
α-synuclein in transgenic nematodes in association with an increased tolerance against
chemical-induced stress, improved chemotaxis index, and reduced content of reactive oxy-
gen species [199]. Moreover, catalpol improved the locomotory ability of aged nematodes,
while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated
changes of nematode [200]. At the molecular level, these effects appear to be mediated
through DAF-16 and SKN-1, orthologues of mammalian FOXO-transcription factors, and
Nrf2, respectively [200].

In a C. elegans strain expressing β-amyloid, we demonstrated that the polyphenol
quercetin, occurring in substantial amounts in apples and onions, dose-dependently de-
creased the amount of aggregated proteins in solution and also paralysis [201]. Those effects
were mediated through the activation of proteasomal protein degradation or macroau-
tophagy, as discovered when using RNA-interference for members of those pathways [201].
Quercetin, together with kaempferol, were identified as two major effective compounds
of Ginkgo biloba extract with regard to the attenuation of basal H2O2-related reactive
oxygen species, which increase in wild-type C. elegans with age, but also in a strain with
constitutive β-amyloid expression, where initial rates of reactive oxygen species are greatly
increased versus the wild-type nematodes [202]. Also, with regard to Alzheimer´s disease,
ingredients of olive oil show promising results. Here, it is oleuropein aglycone (OLE),
the most abundant polyphenol in extra virgin olive oil, which caused reduced β-amyloid
plaque deposition, less abundant toxic β-amyloid oligomers, and decreased paralysis of
nematodes expressing β-amyloid in muscle cells [203]. So far, however, investigations of
promising compounds from plant food in C. elegans models for neurodegeneration are
rather scarce.
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6.2. Organoid Models

The complexity of brain and sensory nerve architecture and physiology, and the
scarcity of approaches available, have limited the investigation of their functions over the
years. The advent of human-induced pluripotent stem cell (hiPSC) technology and the
development of three-dimensional organoid models boosted the opportunities for studying
brain function and disorders in in vitro models. hiPSCs are generated by reprogramming
adult human cells, obtained from tissues such as skin, blood, or urine, into a pluripotent
state [204,205]. The 3D culture system provides the right environment for the stem cells so
they can follow their own genetic instructions to self-organize, forming an organ-like tissue
composed of multiple cell types. Neural differentiation protocols allow the formation of key
features of brain-specific cytoarchitecture and brain processes, including synaptogenesis,
differentiation, cell migration, and cell–cell and cell–matrix interactions. This provides
researchers with a limitless supply of human organotypic models that recapitulate sophisti-
cated aspects of human in vivo organs, enabling experimental studies that are difficult or
impossible to conduct in human subjects [206]. Using brain organoids with these properties
has provided a detailed understanding of age-related auditory neuropathy and is valuable
for developing therapeutic and preventive strategies for physiologically active substances,
such as the polyphenols found in food.

Furthermore, several pathological characteristics of neuropsychiatric disorders were
recapitulated using human brain organoids [207]. For example, genetically modified
iPSC brain organoids carrying mutations in CHD8 (chromodomain helicase DNA-binding
protein 8), one of the most commonly mutated genes in patients with autism spectrum
disorder (ASD), bipolar disorder (BPI), schizophrenia and intellectual disabilities, were
generated [208,209]. Accordingly, current technology makes it nearly possible to establish a
model for hearing organ damage by employing organoids and building an experimental
setup capable of assessing active compounds, like polyphenols.

7. Polyphenol and the Hormesis Paradigm: Conclusions and Future Perspectives

This review proposes that polyphenols are an effective and clinically applicable way
to prevent or delay the onset of hearing loss by activating vitagenes such as Nrf2 and HSP.
In addition, these effects, as typified by resveratrol, have potential effectiveness within a
hormetic response framework. This conclusion is supported by a limited but consistent
series of studies, as summarized below. These studies consist of various experimental
protocols, including both direct stimulation and chemoprotective studies within precondi-
tioning protocols. When appropriate dosages were used, the dose–response pattern follows
a biphasic dose–response that mirrors the quantitative characteristics of the hormetic
dose–response [210]. Additionally, the unified mechanism for hormetic-induced chemopre-
vention is shown to involve the activation of Nrf2 (Figure 2), as extensively demonstrated
in this study. Despite the generally observed hormetic dose–response pattern, it is prob-
able that each studied clinical endpoint has its specific hormetic pattern regarding dose
optimality and the quantitative pattern for the stimulatory amplitude and width of the
protective treatment zone [211]. However, although there may be variations in the dose–
response optimality for specific endpoints, several clinical studies have demonstrated
effective dosing for various endpoints at comparable doses. This indicates a potential
overlap in the optimal range for multiple therapeutic endpoints, all operating within a
comparable hormetic dose–response and mechanistic strategy. These findings may prevent
a wide range of neurodegenerative disorders through hormetic mechanisms among diverse
groups of people who have varying risk factors for these disorders. This could prove
to be an effective public health strategy with widespread implications [212–214]. Such a
preventive strategy at the population level has the potential to revolutionize public health
practices with the realistic objective of considerably reducing the onset and severity of
neurodegenerative diseases within society.

Although data from experimental studies look convincing, further well-designed
clinical trials are needed to confirm the use of polyphenols for the prevention and treatment
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of hearing loss, including auditory hair cell and XIII cranial/auditory nerve cell degen-
eration. Future research could be directed to assessing potential synergy at low doses of
the several key active constituents. However, such interactions would likely display a
maximum therapeutic response that would to be limited to a 30–60% improvement range
of the hormetic dose–response. These suggestive general findings have the potential to
guide future studies with respect to the doses employed in the experimental and clinical
evaluations. In addition, the employment of polyphenols in the prevention strategies en-
counters various challenges. Researchers are presently working to increase the preventive
effects of polyphenols by improving their bioavailability but further testing is needed
to determine whether their efforts will be successful. As previously indicated, there are
reports verifying that the ingestion of polyphenols results in significant changes to the
intestinal environment. It cannot be excluded that this may have some influence on sensory
function. Further research is necessary to comprehend the exact mechanisms that underlie
the advantageous impacts of polyphenols.

Overall, the data highlight the neuropharmacological relevance of hormetic nutrition
from dietary polyphenols and the upregulation of the stress resilience Nrf2/vitagenes axis
as a potential therapeutic target to counteract oxidative stress and inflammation, as well
as to prevent neuronal loss associated with neurodegeneration ensuring brain health in
humans [215].
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