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Abstract: Objective: The objective of this study was to examine the preparation process of DSPE-PEG-
C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity
and antitumor activity of NCTD. Method: The micelles containing NCTD were prepared using the
ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles
loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and
BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB)
double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles
on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized
to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen
species (ROS) following micelle treatment was determined through 2′,7′-dichlorofluorescein diacetate
(DCFDA) staining. Results: The particle size distribution of the DSPE-PEG-C60/NCTD micelles was
determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be −13.8 mV.
The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles
followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity
of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect
on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased
apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD
group (36%) at an NCTD concentration of 75 µM. The rate of apoptosis in the HepG2 cells exhibited
a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at
a concentration of 150 µM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and
an increase in mitochondrial membrane potential (∆ψM) upon exposure to C60-modified micelles
compared to the NCTD group. Conclusions: The DSPE-PEG-C60/NCTD micelles, as prepared in
this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells
(HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human
hepatocellular carcinoma cells (HepG2, BEL-7402).

Keywords: norcantharidin; attenuate; C60; nanomicelles; hepatic carcinoma

1. Introduction

Norcantharidin (NCTD) is a derivative of Chinese medicine cantharidin (CTD) after
the removal of two methyl groups at 1 and 2 positions of cantharidin [1]. NCTD has been
shown to inhibit the growth of solid tumors, such as liver cancer, esophageal cancer, gastric
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cancer, with the advantages of the white blood cell increase, immunity regulation and no
bone marrow suppression [2–4]. NCTD has been used for many years in China to treat
liver cancer and hepatitis through oral administration and injection. It is available in the
form of demethylcantharidin tablets and sodium demethylcantharidate for injection.

However, despite its lower toxicity compared to cantharidin, NCTD still involved
nephrotoxicity in clinical settings [5]. Following oral administration of a high dose, the
glomerular epithelial cells exhibited turbidity and swelling. Toxicology of NCTD in mice
found that ROS levels in kidney tissues of mice were significantly increased after the ad-
ministration of NCTD, and attributable injuries such as tissue congestion and vasodilation
occurred [6]. The results of significant toxic effects on normal human cells indicated that
NCTD had no selective inhibition of tumors. In addition, the poor solubility, short half-life
and low LD50 of NCTD are the disadvantages that limit its clinical application [7].

In order to mitigate the toxic damage to normal cells, we hypothesized that antioxi-
dants could be potential candidates for reducing oxidative stress in cells. This is particularly
important due to the high levels of ROS induced by NCTD in normal tissues, which can
result in cell injury [6]. It was reported that fullerene, one of the allotropes of the carbon
nanomaterial family, had powerful antioxidant properties with long-lasting activity. How-
ever, its poor water solubility limits the biological application. Fullerenol, a derivative
of fullerene that is soluble in water, showed high ROS scavenging activity both in vivo
and in vitro [8–11]. It has been reported that fullerenol exhibits protective effects against
doxorubicin-induced cytotoxicity in the lungs, kidneys and testes of rats [12–16]. In pre-
vious experimental studies, we employed micelles that were modified with fullerenol in
a drug delivery system that contained doxorubicin hydrochloride (DOX). The findings
indicated that the fullerenol (C60)-modified micelles demonstrated reduced cytotoxicity in
normal cell lines (L02, H9c2, GES-1) in comparison to free DOX in vitro. The results also
showed that micelles modified with C60 exhibited a reduction in intracellular ROS in the
H9c2 cells in comparison to free DOX [17]. However, it is still uncertain whether fullerenol
has the potential to play a role against the oxidative stress induced by other anticancer
drugs in normal tissues.

Polymer micelles have emerged as a promising approach for drug delivery, offering a
potential solution to the challenges associated with low bioavailability and poor solubility
of free drugs [18]. Polymer micelles are generated through the process of self-assembly
involving amphiphilic polymers. Drugs can be either grafted with polymers to produce
pharmacologically active polymer systems or encapsulated in the nanoscale-diameter mi-
celles by polymer self-assembly, which provided opportunities for solubility and stability
enhancement of the drugs [19,20]. The micelles’ appropriate diameter, typically ranging
from 100 to 200 nm, facilitates their accumulation within the tumor microenvironment by
leveraging the enhanced permeability and retention (EPR) effects [21–23]. Polymerized
micelles have demonstrated enhanced pharmacokinetic properties in preclinical animal
models, as well as improved therapeutic effectiveness and superior safety. Several poly-
meric micellar formulations have advanced to the clinical stage, either undergoing clinical
trials or having obtained approval for human use [24–26]. For instance, regulatory author-
ities in Korea, China and other countries have granted approval for the use of Genexol®

PM, Nanoxel® M, Zicheng® and other drugs as effective treatments for cancer [27,28].
In the present investigation, distearyl phosphacylethanolamine-polyethylene glycol

(DSPE-PEG 2000) was used as the skeletal material of the micelles, which was further
modified by C60(OH)22. DSPE-PEG, which has been approved by the US FDA, is fre-
quently employed for the encapsulation of proteins, peptides and other pharmaceuticals.
This utilization aims to extend the half-life of these substances in the bloodstream and
enhance their stability. It has also been reported that the utilization of DSPE-PEG as a
carrier in a nanodrug delivery system demonstrated enhancements in the cellular uptake
and cytotoxicity of insoluble anticancer drugs [29,30]. Hence, this study focused on the
preparation of the DSPE-PEG-C60 micelles loaded with NCTD and aimed to investigate
their cytotoxicity in both the tumor cells and the normal cells.



Molecules 2023, 28, 7609 3 of 18

2. Results
2.1. Determination of NCTD by HPLC

As demonstrated in Figure 1, the retention period of NCTD was approximately 4.1 min
(Figure 1A), and DSPE-PEG-C60 did not interfere with NCTD detection (Figure 1B,C).
The NCTD regression curve exhibited a solid linear relationship between 59.47 uM and
2973.54 uM (Figure 1D), and the correlation coefficient (R2) was larger than 0.9996.
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Figure 1. The HPLC spectra of NCTD (A), DSPE-PEG-C60 (B) and DSPE-PEG-C60/NCTD (C) and
the standard regression equation curve of NCTD (D).

2.2. Preparation and Characterization of Micelles

The results are presented in Table 1. The sizes of the micelles decreased progressively as
the vectors increased. The particle sizes were measured to be 117.8 nm (vector: NCTD = 10:1
(W/W)), 91.57 nm (vector: NCTD = 15:1 (W/W)) and 45.74 nm (vector: NCTD = 20:1
(W/W)) (Table 1, Batches 1, 2 and 3). The findings of the study also demonstrated that
the micellar sizes were influenced by the ultrasound time and power. The micelles were
able to achieve the desired particle size of about 100 nm in diameter by subjecting them
to the ultrasonic treatment for 10 min at an ultrasound power of 200 W. The particle sizes
decreased with both an increase and decrease in the ultrasound time and power (Table 1,
Batches 2, 4, 5, 6, 7). Finally, the processing parameters that were adopted included an
NCTD-to-carrier weight ratio of 1:15, an ultrasound time of 10 min and an ultrasound
power of 200 W. The micelles loaded with NCTD exhibited a high encapsulation efficiency
(EE) of 91.90% and a drug loading content (LC) of 5.92%. These micelles also demonstrated
an ideal particle size distribution of 91.6 nm and a negative charge of −13.8 mV. The
unmodified DSPE-PEG micelles were also prepared using the same process, with a similar
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particle size of 96.1 nm, as shown in Table 2 and Figure 2. TEM images depicting the
micelles are presented in Figure 3.

Table 1. Preparation and optimization of NCTD-loaded micelles (n = 3).

Batch NCTD:DSPE-PEG-C60
(W/W)

Ultrasound
Time

Ultrasound
Power

Particle Size
(nm) PDI Zeta Potential

(mV)

1 1:10 10 min 200 W 117.8 ± 1.041 0.375 ± 0.034 −10.1 ± 0.49
2 1:15 10 min 200 W 91.57 ± 9.78 0.231 ± 0.01 −13.8 ± 1.28
3 1:20 10 min 200 W 45.74 ± 3.35 0.439 ± 0.016 −8.07 ± 1.87
4 1:15 5 min 200 W 42.15 ± 1.13 0.428 ± 0.08 −9.25 ± 1.45
5 1:15 15 min 200 W 38.96 ± 5.37 0.295 ± 0.10 −12.0 ± 3.96
6 1:15 15 min 100 W 42.23 ± 0.845 0.430 ± 0.01 −9.73 ± 2.06
7 1:15 15 min 300 W 57.98 ± 2.35 0.260 ± 0.02 −10.4 ± 1.22

Table 2. Particle size distribution (PSD), zeta potential (ZP), encapsulation efficiency (EE) and drug
loading content (LC) of micelles (n = 3).

PSD (nm) Zeta (mV) EE (%) LC (%)

DSPE-PEG/NCTD 96.1 ± 8.01 −12.0 ± 3.96 81.31 ± 0.6 5.08 ± 0.37
DSPE-PEG-C60/NCTD 91.57 ± 9.78 −13.8 ± 1.28 96.54 ± 0.03 6.05 ± 0.02
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C60/NCTD (C,D).

Compared to the results obtained from DLS, the particle size appeared smaller in
TEM detection. This is because the micelles undergo shrinkage during the drying process,
leading to a reduction in particle size. In dynamic light scattering (DLS), however, micelles
form hydration layers with surrounding water molecules, which leads to larger results in
particle size detection using DLS.
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2.3. Stability of Micellar Solution

The impact of temperature on the stability of the micellar solution is demonstrated
in Figure 4. The micellar solution of DSPE-PEG-C60/NCTD exhibited a relatively stable
behavior, with minimal variation in particle size over a period of 7 days at a temperature of
4 ◦C. However, the turbid phenomenon of DSPE-PEG-C60/NCTD micellar solution was
observed at room temperature during the experimental process.
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2.4. Drug Release Assay

As depicted in Figure 5, the release of the DSPE-PEG-C60/NCTD and DSPE-PEG/NCTD
micelles in PBS buffers (including 1% SDS) followed the Higuchi equation. After a duration
of 6 h, the cumulative release rates of NCTD from the DSPE-PEG-C60/NCTD micelles
and the DSPE-PEG/NCTD micelles were observed to be 56% and 58%, respectively, in
pH 7.4 PBS buffers. The in vitro release experiments demonstrated a sustained release
of approximately 90% of NCTD over a period of 48 h, with no significant burst release
observed (Figure 5A). In line with our earlier research, these findings showed that the
introduction of C60(OH)22 had no appreciable effect on the micelles’ release kinetics.
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Since the pH of tumor tissues is much lower than that of normal tissues, the release
profile of NCTD from the micelles was evaluated at pH 5.5 and 6.5 (Figure 5C,E). Approxi-
mately 94.3% of the released NCTD was observed from the micelles at pH 6.5, while about
97.4% was observed at pH 5.5 within 48 h. There was no significant difference in the release
of NCTD from the micelles in different pH environments. This result suggests that the
release of NCTD from micelles is pH-independent.

2.5. In Vitro Cytotoxicity Examination

Cell activity was assessed using the CCK-8 method. The cytotoxicity of the DSPE-PEG-
C60/NCTD micelles was evaluated in comparison to free NCTD and the DSPE-PEG/NCTD
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micelles in the L02, HK-2, HepG2 and BEL-7402 cell lines. As depicted in Figure 6, the
encapsulation of NCTD into the micelles resulted in a substantial increase in the inhibition
effect on the tumor cells of HepG2 and BEL-7402. The IC50 of the DSPE-PEG-C60/NCTD
micelles was found to be 90.07 µM in the HepG2 cells and 63.20 µM in the BEL-7402
cells. These values were lower compared to the IC50 of the free NCTD group, which was
117.50 µM in the HepG2 cells and 102.62 µM in the BEL-7402 cells. This phenomenon can
be attributed to the surface-active properties of the carrier (DSPE-PEG and DSPE-PEG-C60),
which can penetrate the cell membrane, inducing the increase in cell membrane fluidity and
accelerating the transmembrane turnover of NCTD, contributing to the increased uptake of
NCTD by cells and the enhanced cytotoxicity of the NCTD micelles [31–34].
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Interestingly, the micelle groups did not exhibit an elevated cytotoxic effect on the
HK-2 cells in comparison to the free NCTD group. The DSPE-PEG-C60/NCTD micelles
exhibited less toxicity (IC50 = 36.59 µM) than the free NCTD group (IC50 = 23.05 µM) on
the HK-2 cells. A potential explanation for this observation was that the HK-2 cell line
was more susceptible to NCTD than the other cell lines. This increased susceptibility may
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have compromised the cytotoxicity enhancement capacity of the DSPE-PEG/DSPE-PEG-
C60 carrier.

2.6. Cell Apoptosis Assay Using Acridine Orange/Ethidium Bromide (AO/EB) Staining

Given that hepatocellular carcinoma is the primary clinical context in which NCTD
is applied, and considering its significant association with nephrotoxicity, the staining
subjects for this study were chosen to be the HepG2 and HK-2 cells. The effect of the DSPE-
PEG-C60/NCTD micelles on the cell apoptosis was detected using the AO/EB staining.
As depicted in Figure 7, the representative fluorescence microscopic images of the double-
stained cells reveal that significant apoptosis was detected in the free NCTD group, whose
cells were stained with EB and are shown orange-red in color (Figure 7B,F). The DSPE-PEG-
C60/NCTD micelle group showed less orange-red fluorescence than the free NCTD group,
indicating a decrease in the cytotoxicity of the DSPE-PEG-C60/NCTD micelles in the HK-2
cell line (Figure 7D). In the case of the HepG2 cells, both the DSPE-PEG/NCTD micelles
and the DSPE-PEG-C60/NCTD micelles demonstrated higher induction of apoptotic cells
with orange-red fluorescence compared to the free NCTD group (Figure 7G,H).
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Figure 7. Fluorescence microscopic images showing the live and dead cell assay of NCTD and
NCTD-loaded micelles in HK-2 cells and HepG2 cells: control (A), free NCTD (B), DSPE-PEG/NCTD
(C), and DSPE-PEG-C60/NCTD (D). Cells were treated with micelles or free NCTD at equivalent
concentrations of 75 µM NCTD (for HK-2 cells) or 150 µM NCTD (for HepG2 cells) for 24 h. The
cells were then stained with acridine orange/ethidium bromide and observed under a fluorescence
microscope. (A–D) shows fluorescence microscopic images of HK-2 cells, (E–H) shows Fluorescence
microscopic images of HepG2 cells. The scale is 100 nm.

2.7. Mitochondrial Membrane Potential Assay

The functional integrity of mitochondria was evaluated by JC-1 staining. The rep-
resentative fluorescence microscopic images demonstrate that the administration of free
NCTD resulted in a reduction in the number of JC-1 aggregates (red fluorescence) and an
increase in the quantity of JC-1 monomers (green fluorescence) in the HK-2 cells (Figure 8B),
when compared to the DSPE-PEG-C60/NCTD micelle treatment group (Figure 8D). This
observation suggests a significant mitochondrial damage in the HK-2 cells exposed to
free NCTD.
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Figure 8. Fluorescence microscopic images showing mitochondrial outer membrane potential (∆ψM)
of NCTD and NCTD-loaded micelles in HK-2 cells and HepG2 cells: control (A), free NCTD (B),
DSPE-PEG/NCTD (C), and DSPE-PEG-C60/NCTD (D). Cells were treated with micelles or free
NCTD at equivalent concentrations of 75 µM NCTD (HK-2 cells) or 150 µM NCTD (HepG2 cells)
for 24 h with JC-1 staining followed by fluorescence microscope observation. Healthy cells with
high ∆ψM form JC-1 aggregates showing red fluorescence, while apoptotic cells with low ∆ψM
exhibit green fluorescence. (A–D) shows fluorescence microscopic images of HK-2 cells, (E–H) shows
Fluorescence microscopic images of HepG2 cells. The scale is 100 nm.

With respect to the HepG2 cells, the diminished orange fluorescence and the increased
green fluorescent intensity of the DSPE-PEG-C60/NCTD micelles, in comparison with the
control group and the NCTD-treated group, indicated the collapse of the mitochondrial
membrane potential, as shown in Figure 8H.

2.8. Cell Apoptosis by Flow Cytometry

The impact of the DSPE-PEG-C60/NCTD micelles on cellular apoptosis was also
assessed using flow cytometry and the Annexin V-FITC/PI double-staining method.
As shown in the representative pseudo-color plots and the apoptosis ratio of the cells
(Figure 9A–E), the average apoptosis rates of the HK-2 cells was 5% (control), 36% (NCTD
group), 21% (DSPE-PEG/NCTD group) and 12% (DSPE-PEG-C60/NCTD group) at a 75 µM
NCTD concentration. The DSPE-PEG-C60 micelles demonstrated a significant inhibitory
effect on the toxicity induced by NCTD, leading to a notable decrease in the cell apoptosis
ratio. This study provided additional evidence to support the notion that incorporating
C60(OH)22 into the drug delivery system resulted in a notable decrease in the toxicity of
NCTD in the HK-2normal cell line.

The HepG2 cells were also subjected to apoptosis detection to examine whether the
cytotoxicity of the DSPE-PEG-C60/NCTD micelles against tumor cells was increased, as
observed in the results of the cytotoxicity examination. The representative pseudo-color
plots and the apoptosis ratio of the cells indicated that the NCTD-loaded DSPE-PEG-C60
micelles had an increased apoptosis ratio of approximately 48% at a concentration of
150 µM NCTD, compared with 24% in the free NCTD group (Figure 9F–J).
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the HepG2 cells at a 150 μM NCTD concentration (Figure 10C,D). The result confirmed 
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Figure 9. Effects of micelles and free NCTD on apoptosis of HK-2 cells and HepG2 cells: control
(A), free NCTD (B), DSPE-PEG/NCTD (C) and DSPE-PEG-C60/NCTD (D). Cells were treated with
micelles or free NCTD at equivalent concentrations of 75 µM NCTD (for HK-2 cells) or 150 µM
NCTD (for HepG2 cells) for 24 h. Afterward, Annexin V/PI staining and flow cytometry detection
were performed. (A–D) Representative pseudo-color plots of Annexin V/PI staining of HK-2 cells.
(E) Apoptosis ratio of the calculated HK-2 cells. (F–I) Representative pseudo-color plots of Annexin
V/PI staining of HepG2 cells. (J) Apoptosis ratio of the calculated HepG2 cells. The values presented
are the means ± standard deviations of three independent experiments (** p < 0.01, *** p < 0.001 and
**** p < 0.0001). Different colored dots represent the number of cells.

2.9. Intracellular ROS Level Evaluation

The ROS levels in the cell lines treated with the micelles or free NCTD were assessed
by flow cytometry with DCFDA staining. The NCTD-induced oxidative stress in the
HK-2 cells resulted in an increased ROS level with a 1.9-fold increase in DCF fluorescence
compared with the untreated cells at a 75 µM NCTD concentration. And the DCF level
of the DSPE-PEG-C60 micelle group was 1.14-fold compared to the control group, which
was lower than that of the free NCTD group and similar to that of the control group
(Figure 10A,B). The results indicated the strong capability of C60(OH)22 to reduce oxidative
stress in the HK-2 cells.

On the contrary, the DCF fluorescence level of the DSPE-PEG-C60/NCTD micelle
group was 1.6 times that of the control group, more than that of the free NCTD group in
the HepG2 cells at a 150 µM NCTD concentration (Figure 10C,D). The result confirmed the
increased cytotoxicity of the NCTD-loaded micelles against the HepG2 cells.
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Figure 10. Effects of micelles and free NCTD on ROS levels in HK-2 cells and HepG2 cells: control
(A), free NCTD (B), DSPE-PEG/NCTD (C) and DSPE-PEG-C60/NCTD (D). Cells were treated with
micelles or free NCTD at equivalent concentrations of 75 µM NCTD (HK-2 cells) or 150 µM NCTD
(HepG2 cells) for 24 h, followed by DCFDA staining and flow cytometry detection. (A) Representative
fluorescence intensity plots of DCF in HK-2 cells. (B) Fluorescence intensity rate of the calculated
HK-2 cells. (C) Representative fluorescence intensity plots of DCF in HepG2 cells. (D) Fluorescence
intensity rate of the calculated HepG2 cells. The values presented are the means± standard deviations
of three independent experiments (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).

3. Discussion

The physicochemical characteristics of micelles, including particle size, shape and
surface charge, are important for their fate in vivo. Nanoparticles within the range of
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100–200 nm in diameter have the ability to infiltrate and amass at tumor locations. Micelles
were prepared with an approximate size of 100 nm in this study. These micelles exhibited a
negative charge in the physiological environment due to the introduction of C60(OH)22.
This negative charge has the potential to enhance stability by inhibiting the interaction
between micelles and negatively charged vascular endothelial cells or plasma components
in vivo [35]. PEG was utilized to create a compact coating on the micelles’ surface, with the
purpose of prolonging the circulation time of the micelles and delaying their phagocytic
clearance [36].

Although the EPR effect of nanomedicines on solid tumors is widely acknowledged,
the increase in nanomedicine exposure in tumor tissue is only around 20% to 30% compared
to normal tissues [37,38]. The necessity to study the reduction in severe side effects of
anticancer drugs arises from the challenge of achieving complete drug enrichment in
tumors. C60(OH)n has been reported as an antioxidant protector against cytotoxicity
induced by chemotherapeutic drugs, as well as in other protective applications such
as a radical scavenger to shield cells from radiation and as an antagonist of glutamate
receptors [12–16]. Many studies have reported that fullerenols exhibit protective effects
against doxorubicin (DOX)-induced cardiotoxicity, hepatotoxicity and nephrotoxicity in
rats subjected to high doses of DOX in vivo. The cytoprotective effects of fullerenols against
doxorubicin (DOX)-induced damage in normal cells in vitro were also observed in our
previous studies [17]. In the present study, an investigation was conducted to examine
the antioxidant properties of C60(OH)22 and its amphiphilic derivative DSPE-PEG-C60 in
protecting normal HK-2 and L02 cells against cytotoxicity induced by NCTD. The observed
decrease in cytotoxicity against the HK-2 and L02 cell lines aligns with the findings of
our previous investigations. The NCTD-loaded DSPE-PEG-C60 micelles demonstrated a
significant protective effect on normal cells, specifically the HK-2 cells, in comparison to the
free NCTD group (with a mole ratio of NCTD:DSPE-PEG-C60 = 1:0.7). However, in vitro
experiments did not reveal any protective effects of C60(OH)22 on the cells treated with
NCTD (with a mole ratio of NCTD:C60(OH)22 = 1:0.7–2). One possible reason was that
DSPE-PEG-C60 was more readily taken up by the cells than C60(OH)22.

It was also found that both of the carriers (DSPE-PEG-C60 and DSPE-PEG) enhanced
the activity of NCTD on tumor cells significantly in this study. After the drugs or drug-
loaded micelles reach the tumor tissue, the internalization of the drugs into the tumor cells
is one of the key steps to exert the antitumor activity. The inefficient cell uptake of NCTD
by tumor cells was improved by the amphiphilic carrier (DSPE-PEG or DSPE-PEG-C60).

Interestingly, in the HK-2 cells, the carriers did not increase the cytotoxicity of NCTD
but decreased it (Figure 6). The microscopic fluorescence images of the AO/EB staining
show that cell treatment with NCTD caused significant cell apoptosis compared to the
control group. The DSPE-PEG-C60 micelles showed protection against NCTD with reduced
cell apoptosis compared to the NCTD group in the HK-2 cell line (Figure 7). The loss of
mitochondrial membrane potential (∆Ψ) in the cells signifies the early stage of apoptosis.
The microscopic fluorescence images of JC-1 staining show that NCTD treatment caused
severe cell apoptosis, indicated by the increased green fluorescence and decrease red
fluorescence, compared to the control group, whose healthy cells showed red fluorescence
with high mitochondrial membrane potential (∆ψM). The DSPE-PEG-C60/NCTD micelles
were less potent than NCTD in damaging mitochondria, as evidenced by a relatively high
ratio of red fluorescence to green fluorescence in the HK-2 cell line (Figure 8). The apoptosis
examination was further validated by flow cytometry. The percentages of apoptotic cells
were 36% and 12% in the NCTD and DSPE-PEG-C60/NCTD micelle groups, respectively
(Figure 9). The decreased cell apoptosis of the DSPE-PEG-C60/NCTD micelles was mainly
attributed to the antioxidative stress of DSPE-PEG-C60. NCTD treatment led to a 1.9-fold
increase in the ROS levels, as evidenced by the increased DCF fluorescence, in comparison
to the control group. In contrast, micelles modified with C60 exhibited comparable levels
of ROS to the control group. These levels were significantly lower than those observed in
the free NCTD group when tested on the HK-2 cell line (Figure 10).
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Concurrently, the micelles loaded with NCTD demonstrated enhanced cytotoxicity
against the HepG2 tumor cells. The DSPE-PEG-C60/NCTD micelles induced greater
mitochondrial damage compared to the NCTD group, as demonstrated by a reduction in
red fluorescence and an elevation in green fluorescence in the HepG2 cells. In the context of
flow cytometry detection, it was observed that the DSPE-PEG-C60 micelles, when loaded
with NCTD, exhibited a significantly higher apoptosis ratio (48%) as compared to the
free NCTD group, which showed an apoptosis ratio of 24%. The elevated apoptotic ratio
observed in the HepG2 cells and the decreased apoptotic ratio observed in the HK-2
cells, following the treatment with the C60-modified micelles, can be attributed to the
combined effects of increased intracellular uptake facilitated by the carrier (DSPE-PEG-C60)
and the interference of the antioxidant capacity of the C60 derivative with the oxidative
stress induced by NCTD. Considering that hepatocellular carcinoma is the primary clinical
indication for NCTD, which is mainly associated with nephrotoxicity, the utilization of the
DSPE-PEG-C60/NCTD micelles could potentially provide a favorable safety profile, thus
enhancing its clinical utility.

4. Materials and Methods
4.1. Materials

Norcantharidine (NCTD, Shanghai YiEn Chemical Technology Co., Ltd., Shanghai,
China), Fullerenol (C60(OH)22, Hengqiu Technology Co., Ltd., Suzhou, China), DSPE-PEG
(2000)-NH2 (Yuxi Pharmaceutical Technology Co., Ltd., Chongqing, China), Cell Counting
Kit-8 (CCK-8, Biosharp Biology Co., Ltd., Hefei, China), Annexin V-FITC/PI Apoptosis
Assay Kit (Biosharp Biology Co., Ltd., Hefei, China), Reactive Oxygen Species Assay
Kit (Biosharp Biology Co., Ltd., Hefei, China), Acridine Orange and Ethidium Bromide
(AO/EB, Shanghai yuanye Bio-Technology Co., Ltd., Shanghai, China), JC-1 (Biosharp
Biology Co., Ltd., Hefei, China), Fetal Bovine Serum (FBS) (Gibco, California, America),
DMEM/RPMI 1640/DMEM F12 Medium (Gibco, California, America) and Penicillin-
streptomycin solution with double resistance (Biosharp Biology Co., Ltd., Hefei, China)
were used in this study.

4.2. Determination of NCTD Content

The concentration of NCTD was detected using HPLC. The chromatographic con-
ditions were as follows: column—Agilent ZORBAX ODS (4.6 × 250 nm, 5 µm); mobile
phase—0.02 mol/L potassium dihydrogen phosphate solution (pH adjusted to 3.0 with
phosphoric acid) and methanol in a ratio of 70:30; detection wavelength—213 nm; flow
rate—1 mL/min; column temperature—35 ◦C; sample size—20 µL.

4.3. Synthesis of Fullerenol-Grafted Distearoyl Phosphatidylethanolamine—Polyethylene Glycol
(DSPE-PEG-C60)

DSPE-PEG-C60 was prepared based on our previous laboratory research [17]. In short,
fullerenol (C60(OH)22) (316 mg, 0.275 mmol) and DSPE-PEG-NH2 (500 mg, 0.275 mmol)
were put in a 25 mL round-bottom flask, dissolved with 20 mL water. The solution was
stirred at 60 ◦C for 8 h and then dialyzed with water (MW = 2000) for 6 h. After freeze-
drying, brown product was obtained with a yield of about 90%.

4.4. Preparation of Micelles

The NCTD-loaded micelles were prepared using the ultrasonication method. NCTD
(10 mg) and DSPE-PEG-C60 (or DSPE-PEG) (150 mg) were carefully weighed and put into
a 50 mL centrifuge tube. Then, DMSO (1 mL) and deionized water (10 mL) were added
into the centrifuge tube. After the complete dissolution of NCTD and carriers, DMSO was
removed by dialysis (MW = 100). NCTD-loaded micelles were obtained by ultrasound of
the dialysate followed by filtration (0.22 µm). The optimization of the preparation method,
including the feed ratio, ultrasound time and ultrasound power, was investigated (Table 1).
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4.5. Characterization of Micelles
4.5.1. Morphology

The diameter and morphology of NCTD-loaded micelles were obtained using trans-
mission electron microscopy (TEM, H-7650, Hitachi, Tokyo, Japan). The micellar solution
was dropped onto a carbon-coated copper grid and allowed to dry naturally in the air. The
micellar morphology was observed immediately using a transmission electron microscope.
The micellar size distribution, zeta potential and PDI were determined using dynamic light
scattering (DLS) with the Zetasizer Nano ZS-90 instrument (Malvern, UK).

4.5.2. Determination of Entrapment Efficiency

The drug loading capacity and encapsulation efficiency were determined through
ultrafiltration centrifugation. NCTD micellar solution (2 mL) was added to the upper
centrifuge tube and centrifuged at 4 ◦C at 12,000 r/min for 20 min. The concentration of
NCTD in the filtrate was determined by HPLC, obtaining the content of free NCTD in
micellar solution (W1). Afterwards, the concentration of NCTD in micellar solution was
determined by HPLC, obtaining the total content of NCTD (W2) in micelles. The mass of
the carrier in the solution was W3. The drug loading content (LC) and the encapsulation
efficiency (EE) were calculated using the following formula:

EE =
W2 −W1

W2
× 100%

LC =
W2 −W1

W2 + W3
× 100%

4.5.3. Stability Evaluation

NCTD-loaded micellar solution (10 mL) was placed in centrifuge tubes either at
room temperature or at 4 ◦C for 0, 7, 14, 21 and 28 days. The stability of micelles system
was investigated by the detection of the micelle particle size distribution (PSD), PDI and
zeta potential.

4.5.4. In Vitro Drug Release Assay

In order to fit the requirements of “sink condition”, SDS was added to PBS buffer
solution to improve the solubility of NCTD in the buffer. NCTD-loaded micelles solution
(1 mL) was put into a dialysis bag (MW = 2000), which was placed in 30 mL PBS buffer
solution (containing 1% SDS) and stirred at 37 ◦C for 48 h at 100 r/min. The released NCTD
concentration was determined at a predetermined time point using HPLC method. The
release rates of NCTD from the micelles were determined by dividing the amount of NCTD
released within a certain period of time by the initial NCTD content of the micelles.

4.6. Cell Lines and Cell Culture

Human hepatocellular carcinoma (HCC) cell lines (BEL-7402, HepG2) and immortal-
ized normal human hepatocytes (L02) were obtained from the Cell Bank of the Chinese
Academy of Sciences in Shanghai, China. Immortalized normal human kidney cells (HK-2)
were purchased from Pricella Life Technology Co., Ltd. (Wuhan, China). HepG2 cells and
L02 cells were cultured in DMEM medium supplemented with 10% FBS and 1% antibiotics
(100 U/mL penicillin G and 0.1 mg/mL streptomycin). BEL-7402 cells were maintained in
RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics.
HK-2 cells were maintained in DMEM F12 medium supplemented with 10% FBS and 1%
antibiotics. Cells were maintained at 37 ◦C in a humidified environment with 5% CO2.

4.6.1. Cell Viability Assay

Cell activity was detected by CCK-8 method. Logarithmic growth phase cells were
seeded onto 96-well plates (3× 103/well) for 24 h and then treated either with free NCTD or
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with NCTD-loaded micelles at the equivalent NCTD dosage for 72 h. CCK-8 solution (10 µL)
was added to each well. The cells were incubated for another 30–60 min. The absorbance
value (OD value) of each hole was measured at 450 nm by MK-3 microplate reader (Thermo
Fisher Scientific, United States). The untreated control samples had a default cell activity
value of 100%. The cell inhibition rate was calculated using the following formula: cell
inhibition rate = [(OD450 control well – OD450 administration well)/OD450 control well]
× 100%.

4.6.2. Acridine Orange/Ethidium Bromide (AO/EB) Staining

Cell apoptosis was detected by dual acridine orange/ethidium bromide (AO/EB) stain-
ing. Cells in the logarithmic growth phase were seeded into 24-well plates (5 × 104/well),
and the plates were incubated in a CO2 incubator (37 ◦C, 95% humidity and 5% CO2)
for 24 h. Cells were treated either with free NCTD or with NCTD-loaded micelles at the
same concentration of NCTD for another 24 h, followed by the digestion with trypsin
and collection. Dual fluorescent staining solution (12 µL) containing acridine orange and
ethidium bromide was added to each group. After a half-hour incubation, the morphology
of apoptotic cells was examined using a fluorescent microscope (Nikon Eclipse Ti-S, Tokyo,
Japan) at 10×magnification.

4.6.3. JC-1 Staining

To measure mitochondrial membrane potential, cells at logarithmic growth stage
were incubated in 24-well plates (5 × 104/well) for 24 h and treated with free NCTD or
NCTD-loaded micelles at the same concentration of NCTD for another 24 h. Then, the
treated cells were washed and incubated with DMEM/medium containing 10 µg/mL JC-1
in the dark at 37 ◦C for 30 min. The cells were washed with the staining buffer, and JC-1
fluorescence was visualized using a Nikon Ti-S microscope at 20×magnification.

4.6.4. Apoptosis by Flow Cytometry

The effect of NCTD-loaded micelles on cell apoptosis was also evaluated by flow cy-
tometry. The cells in logarithmic growth stage were cultured on 6-well plates (3 × 105/well)
for 24 h and then treated either with free NCTD or with NCTD-loaded micelles at the same
concentration of NCTD for additional 24 h. Then, the cells were collected, treated using
the Annexin V-FITC/PI apoptosis assay kit and incubated in the dark at room temperature
for 15 min. The stained cells were examined by flow cytometry and analyzed using the
CytExpert software (Version 2.4).

4.6.5. Intracellular ROS Detection

ROS production upon micelle treatment was detected by 2′,7′-dichloroflfluorescein
diacetate (DCFDA) staining using a DCFDA based cell kit (Biosharp). Cells at logarithmic
growth stage were cultured on 6-well plates (3 × 105/well) for 24 h and treated with free
NCTD and NCTD-loaded micelles respectively at the same concentration of NCTD for
another 24 h. The cells were collected and stained with DCFDA in the dark at 37 ◦C for
30 min, which were detected by flow cytometry and analyzed using CytExpert software.

4.7. Statistical Analysis

All data were generated from three independent experiments and are presented as
the means ± SD. The data were analyzed using Student’s t-test by Prism software version
8.0 (Graph Pad Software Inc., San Diego, CA, United States), and the critical level of
significance was set at p < 0.05.

5. Conclusions

In this study, we prepared the DSPE-PEG-C60/NCTD micelles with an optimal particle
size of 91.57 nm (PDI = 0.231) and a negative zeta potential of−13.8 mV. This study showed
that the DSPE-PEG-C60/NCTD micelles decreased cytotoxicity in normal renal cells (HK-2)
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and increased antineoplastic activity in human hepatocellular carcinoma cells (HepG2, BEL-
7402) in vitro. The scavenging capacity of the DSPE-PEG-C60 micelles against the NCTD-
induced ROS showed a significant reduction in the HK-2 cells. Further investigations are
in progress to examine their safety in clinically relevant animal models.

Author Contributions: Z.D., B.X. and H.Z. contributed to the design of the experiment and wrote
the manuscript. Z.W., M.T. and L.S. contributed to the data analysis. M.D., T.Z. and S.S. contributed
to reviewing and editing the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We appreciate the great help received from the Public Platform of Medical
Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University.

Conflicts of Interest: All of the authors declare that there are no conflict of interest, and that they
have read and approved the submitted manuscript.

Abbreviations

NCTD Norcantharidin
CTD Cantharidin
ROS Reactive oxygen species
LD50 Median lethal dose
DOX Doxorubicin hydrochloride
EPR effect Enhanced permeability and retention effect

DSPE-PEG2000
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-[poly(ethylene
glycol)]; PEG MW = 2000

C60(OH)22 Fullerenol
FDA Food and Drug Administration

DSPE-PEG-C60
Fullerenol-Grafted 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-
methoxy-[poly(ethylene glycol)]

CCK-8 Cell Counting Kit-8
FITC 3′,6′-dihydroxy-5-isothiocyanato-3H-spiro[isobenzofuran-1,9′-xanthen]-3-one
PI Propidium iodide
HPLC High- performance liquid chromatography
DMSO Dimethyl sulfoxide
TEM Transmission electron microscopy
DLS Dynamic light scattering
LC Loading content
EE Entrapment efficiency
SDS Sodium dodecyl sulfate
PBS Phosphate-buffered saline
DCFDA 2′,7′-Dichlorodihydrofluorescein diacetate
IC50 Half-maximal inhibitory concentration
AO and ER Acridine orange and ethidium bromide
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